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Unconstrained optimization problems and solutions

minimize f(x) subject to x ∈ Rn. (UP)

f : Rn → R is (sufficiently) smooth (f ∈ Ci(Rn), i ∈ {1, 2}).

f objective; x variables.

x∗ global minimizer of f (over Rn) ⇐⇒ f(x) ≥ f(x∗), ∀x ∈ Rn.

x∗ local minimizer of f (over Rn) ⇐⇒ there exists N (x∗, δ)

such that f(x) ≥ f(x∗), for all x ∈ N (x∗, δ),
where N (x∗, δ) := {x ∈ Rn : ‖x − x∗‖ ≤ δ} and ‖ · ‖ is the
Euclidean norm.
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Example problem in one dimension

Example : min f(x) subject to x ∈ R.

x 1x 2x 

f(x)

ba
The points x1 and x2 are (unconstrained) local minimizers of

f (for example).
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Optimality conditions for unconstrained problems

== algebraic characterizations of solutions −→ suitable for
computations.

provide a way to guarantee that a candidate point is optimal
(sufficient conditions)

indicate when a point is not optimal
(necessary conditions)
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Optimality conditions for unconstrained problems

== algebraic characterizations of solutions −→ suitable for
computations.

provide a way to guarantee that a candidate point is optimal
(sufficient conditions)

indicate when a point is not optimal
(necessary conditions)

First-order necessary conditions for (UP): f ∈ C1(Rn);
x∗ a local minimizer of f =⇒ ∇f(x∗) = 0.

∇f(x) = 0 ⇐⇒ x stationary point of f .
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.
Proof. f ∈ C1 =⇒ ∃α > 0 such that

∇f(x + αs)T s < 0, ∀α ∈ [0,α]. (♦)
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.
Proof. f ∈ C1 =⇒ ∃α > 0 such that

∇f(x + αs)T s < 0, ∀α ∈ [0,α]. (♦)
Taylor’s/Mean value theorem:
f(x + αs) = f(x) + α∇f(x + α̃s)T s, for some α̃ ∈ (0,α).
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.
Proof. f ∈ C1 =⇒ ∃α > 0 such that

∇f(x + αs)T s < 0, ∀α ∈ [0,α]. (♦)
Taylor’s/Mean value theorem:
f(x + αs) = f(x) + α∇f(x + α̃s)T s, for some α̃ ∈ (0,α).
(♦) =⇒ f(x + αs) < f(x), ∀α ∈ [0,α]. "
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.
Proof. f ∈ C1 =⇒ ∃α > 0 such that

∇f(x + αs)T s < 0, ∀α ∈ [0,α]. (♦)
Taylor’s/Mean value theorem:
f(x + αs) = f(x) + α∇f(x + α̃s)T s, for some α̃ ∈ (0,α).
(♦) =⇒ f(x + αs) < f(x), ∀α ∈ [0,α]. "

• s descent direction for f at x if ∇f(x)T s < 0.
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.

Proof. f ∈ C1 =⇒ ∃α > 0 such that
∇f(x + αs)T s < 0, ∀α ∈ [0,α]. (♦)

Taylor’s/Mean value theorem:
f(x + αs) = f(x) + α∇f(x + α̃s)T s, for some α̃ ∈ (0,α).
(♦) =⇒ f(x + αs) < f(x), ∀α ∈ [0,α]. "

• s descent direction for f at x if ∇f(x)T s < 0.
Proof of 1st order necessary conditions. assume ∇f(x∗) "= 0.
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.

Proof. f ∈ C1 =⇒ ∃α > 0 such that
∇f(x + αs)T s < 0, ∀α ∈ [0,α]. (♦)

Taylor’s/Mean value theorem:
f(x + αs) = f(x) + α∇f(x + α̃s)T s, for some α̃ ∈ (0,α).
(♦) =⇒ f(x + αs) < f(x), ∀α ∈ [0,α]. "

• s descent direction for f at x if ∇f(x)T s < 0.
Proof of 1st order necessary conditions. assume ∇f(x∗) "= 0.
s := −∇f(x∗) is a descent direction for f at x = x∗:
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.

Proof. f ∈ C1 =⇒ ∃α > 0 such that
∇f(x + αs)T s < 0, ∀α ∈ [0,α]. (♦)

Taylor’s/Mean value theorem:
f(x + αs) = f(x) + α∇f(x + α̃s)T s, for some α̃ ∈ (0,α).
(♦) =⇒ f(x + αs) < f(x), ∀α ∈ [0,α]. "

• s descent direction for f at x if ∇f(x)T s < 0.
Proof of 1st order necessary conditions. assume ∇f(x∗) "= 0.
s := −∇f(x∗) is a descent direction for f at x = x∗:
∇f(x∗)T (−∇f(x∗)) = −∇f(x∗)T∇f(x∗) = −‖∇f(x∗)||2 < 0
since ∇f(x∗) "= 0 and ‖a‖ ≥ 0 with equality iff a = 0.
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ Rn and s ∈ Rn with s "= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.

Proof. f ∈ C1 =⇒ ∃α > 0 such that
∇f(x + αs)T s < 0, ∀α ∈ [0,α]. (♦)

Taylor’s/Mean value theorem:
f(x + αs) = f(x) + α∇f(x + α̃s)T s, for some α̃ ∈ (0,α).
(♦) =⇒ f(x + αs) < f(x), ∀α ∈ [0,α]. "

• s descent direction for f at x if ∇f(x)T s < 0.
Proof of 1st order necessary conditions. assume ∇f(x∗) "= 0.
s := −∇f(x∗) is a descent direction for f at x = x∗:
∇f(x∗)T (−∇f(x∗)) = −∇f(x∗)T∇f(x∗) = −‖∇f(x∗)||2 < 0
since ∇f(x∗) "= 0 and ‖a‖ ≥ 0 with equality iff a = 0.
Thus, by Lemma 1, x∗ is not a local minimizer of f . "
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Optimality conditions for unconstrained problems...

• −∇f(x) is a descent direction for f at x whenever ∇f(x) += 0.
• s descent direction for f at x if ∇f(x)T s < 0, which is
equivalent to

cos〈−∇f(x), s〉 =
(−∇f(x))T s

‖∇f(x)‖ · ‖s‖
=

|∇f(x)T s|
‖∇f(x)‖ · ‖s‖

> 0,

and so:
〈−∇f(x), s〉 ∈ [0,π/2).

k

∆–
kf

p

A descent direction pk.
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Summary of first-order conditions. A look ahead

minimize f(x) subject to x ∈ Rn. (UP)

First-order necessary optimality conditions: f ∈ C1(Rn);
x∗ a local minimizer of f =⇒ ∇f(x∗) = 0.

x̃ = argmaxx∈Rn f(x)
⇓

∇f(x̃) = 0.
x 1x 2x 

f(x)

ba

Look at higher-order derivatives to distinguish between
minimizers and maximizers.

. . . except for convex functions.

Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization (continued) – p. 7/13





Optimality conditions for convex problems

f convex ⇐⇒ f(x + α(y − x)) ≤ f(x) + α(f(y) − f(x)),
for all x, y ∈ Rn, α ∈ [0, 1].

⇐⇒ ∇2f(x) positive semidefinite, for all x ∈ Rn, i.e.,

sT∇2f(x∗)s ≥ 0, ∀ s ∈ Rn; equivalently,

eigenvalues λi(∇2f(x∗)) ≥ 0, ∀i ∈ {1, . . . , n}.

If f convex, then [Pb Sheet 1]

x∗ local minimizer =⇒ x∗ global minimizer.
x∗ stationary point =⇒ x∗ global minimizer.
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Optimality conditions for convex problems

f convex ⇐⇒ f(x + α(y − x)) ≤ f(x) + α(f(y) − f(x)),
for all x, y ∈ Rn, α ∈ [0, 1].

⇐⇒ ∇2f(x) positive semidefinite, for all x ∈ Rn, i.e.,

sT∇2f(x∗)s ≥ 0, ∀ s ∈ Rn; equivalently,

eigenvalues λi(∇2f(x∗)) ≥ 0, ∀i ∈ {1, . . . , n}.

If f convex, then [Pb Sheet 1]

x∗ local minimizer =⇒ x∗ global minimizer.
x∗ stationary point =⇒ x∗ global minimizer.

Quadratic functions: q(x) := gTx + 1
2
xTHx.

∇2q(x) = H, for all x; if H is positive semidefinite, then q
convex; any stationary point x∗ is a global minimizer of q.
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