Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization (continued)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

laylor expansions (REVISION) FIRST ORDER TAYLOR EXPANSION let f:R" > R, fec'(R") with gradient of = (21, ... 24). let X=(x1, ... Xn)T and S=(S1, ... Sn)T EIRN, fixed. Let p:R->R, dec'(R) is continuoslus differentiable. Then for any dEIR, we have Let $\phi(x) := f(x + \alpha s), \alpha \in \mathbb{R} (s_0, \phi; \mathbb{R} \to \mathbb{R}).$ $\phi(d) = \phi(0) + \alpha \phi'(0) + O(\alpha^2)$ (1) Then $\phi'(\omega) = \frac{d}{d\omega} f(x_1 + ds_1, \dots, x_n + ds_n)$ (by chain rule) where O(.) implies an upper bound $= \frac{\partial f}{\partial x_1} (x + x s) \cdot \frac{\partial f}{\partial x_1} (x_1 + x s_1) + \frac{\partial f}{\partial x_2} (x + x s) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) + \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) + \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot \frac{\partial f}{\partial x_1} (x + x s_2) \cdot \frac{\partial f}{\partial x_2} (x + x s_2) \cdot$ that is a multiple of 2. Also, [mean-volue theorem] [\$\phi(\overline) = \$\phi(0) + \$\phi(\overline), for some \$\overline(0,\overline). $= \sum_{i=1}^{2} \widehat{f}_{i}(x + ds), \ s_{i}^{*} = \nabla \widehat{f}_{i}(x + ds) Ts.$ Thus first-order Taylor expansion of \$ gives from(2), $f(x+\lambda s) = f(x) + \alpha \nabla f(x+\alpha s)^{T}s, \text{ for some } \alpha \in [0, \alpha].$ Let $f: \mathbb{R}^n \to \mathbb{R}$, $f \in \mathbb{C}^2(\mathbb{R}^n)$ with Hessian $\mathcal{V}^2 f = \begin{bmatrix} \partial_1 f & \cdots & \partial_{2n} \partial_{2n} \\ \partial_{2n} \partial_{2n} & \cdots & \partial_{2n} \partial_{2n} \end{bmatrix}$ $\max \operatorname{symmetric}_{\operatorname{Symmetric}} \begin{bmatrix} \partial_2 f & \cdots & \partial_{2n} \partial_{2n} \\ \partial_{2n} \partial_{2n} & \cdots & \partial_{2n} \partial_{2n} \end{bmatrix}$ $\max \operatorname{matrix}_{\operatorname{Symmetric}} \begin{bmatrix} \partial_1 f & \cdots & \partial_{2n} \partial_{2n} \\ \partial_{2n} \partial_{2n} & \cdots & \partial_{2n} \partial_{2n} \end{bmatrix}$ SECOND ORDER TATLOR EXPANSION Let &: IR-> R, & EC2(IR) is twice continuously differentiable $\frac{(\omega)}{(\omega)} = \frac{(\omega)}{(\omega)} =$ Thus the second order Taylos expansion of \$(4) gives Then for any dell, we have $f(x+xs) = f(x) + x \partial f(x)^{T}s + \frac{1}{2}x^{2}s^{T}\partial^{2}f(x+xs)s$ $\phi(\lambda) = \phi(0) + \alpha \phi'(0) + \frac{1}{2} \phi''(\overline{\alpha}),$ where L'Elosa). (4) for some Zelo, 2). (5) (mean value theorem)

Unconstrained optimization problems and solutions

minimize f(x) subject to $x \in \mathbb{R}^n$. (UP)

■ $f : \mathbb{R}^n \to \mathbb{R}$ is (sufficiently) smooth ($f \in C^i(\mathbb{R}^n)$, $i \in \{1, 2\}$).

• f objective; x variables.

 x^* global minimizer of f (over \mathbb{R}^n) $\iff f(x) \ge f(x^*), \forall x \in \mathbb{R}^n$. x^* local minimizer of f (over \mathbb{R}^n) \iff there exists $\mathcal{N}(x^*, \delta)$ such that $f(x) \ge f(x^*)$, for all $x \in \mathcal{N}(x^*, \delta)$, where $\mathcal{N}(x^*, \delta) := \{x \in \mathbb{R}^n : ||x - x^*|| \le \delta\}$ and $||\cdot||$ is the Euclidean norm.

Example problem in one dimension

f (for example).

== algebraic characterizations of solutions \longrightarrow suitable for computations.

- provide a way to guarantee that a candidate point is optimal (sufficient conditions)
- indicate when a point is not optimal (necessary conditions)

== algebraic characterizations of solutions \longrightarrow suitable for computations.

provide a way to guarantee that a candidate point is optimal (sufficient conditions)

 indicate when a point is not optimal (necessary conditions)

First-order necessary conditions for (UP): $f \in C^1(\mathbb{R}^n)$; x^* a local minimizer of $f \implies \nabla f(x^*) = 0$. $\nabla f(x) = 0 \iff x$ stationary point of f.

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small.

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \xrightarrow{\text{gradient is}} \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond)

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \implies \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond)

Taylor's/Mean value theorem: by First order Taylor expansion revision slide, see equation (3) $f(x + \alpha s) = f(x) + \alpha \nabla f(x + \tilde{\alpha} s)^T s$, for some $\tilde{\alpha} \in (0, \alpha)$.

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \implies \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond)

Taylor's/Mean value theorem:

 $\begin{aligned} f(x + \alpha s) &= f(x) + \alpha \nabla f(x + \tilde{\alpha} s)^T s, \text{ for some } \tilde{\alpha} \in (0, \alpha). \\ (\Diamond) \implies f(x + \alpha s) < f(x), \, \forall \alpha \in (0, \overline{\alpha}]. \ \Box \end{aligned}$

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \implies \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond)

Taylor's/Mean value theorem:

 $\begin{aligned} f(x + \alpha s) &= f(x) + \alpha \nabla f(x + \tilde{\alpha} s)^T s, \text{ for some } \tilde{\alpha} \in (0, \alpha). \\ (\Diamond) \implies f(x + \alpha s) < f(x), \, \forall \alpha \in (0, \overline{\alpha}]. \ \Box \end{aligned}$

• s descent direction for f at x if $\nabla f(x)^T s < 0$.

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \implies \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond)

Taylor's/Mean value theorem:

$$\begin{split} f(x + \alpha s) &= f(x) + \alpha \nabla f(x + \tilde{\alpha} s)^T s, \, \text{for some } \tilde{\alpha} \in (0, \alpha). \\ (\Diamond) \implies f(x + \alpha s) < f(x), \, \forall \alpha \in [\!\![0, \overline{\alpha}]\!]. \ \Box \end{split}$$

• *s* descent direction for *f* at *x* if $\nabla f(x)^T s < 0$. Proof of 1st order necessary conditions. assume $\nabla f(x^*) \neq 0$.

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \implies \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond)

Taylor's/Mean value theorem:

$$\begin{aligned} f(x + \alpha s) &= f(x) + \alpha \nabla f(x + \tilde{\alpha} s)^T s, \text{ for some } \tilde{\alpha} \in (0, \alpha). \\ (\diamond) \implies f(x + \alpha s) < f(x), \, \forall \alpha \in [\!\![0, \overline{\alpha}]\!]. \ \Box \end{aligned}$$

• s descent direction for f at x if $\nabla f(x)^T s < 0$.

Proof of 1st order necessary conditions. assume $\nabla f(x^*) \neq 0$. $s := -\nabla f(x^*)$ is a descent direction for f at $x = x^*$:

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \implies \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond)

Taylor's/Mean value theorem:

$$\begin{array}{l} f(x + \alpha s) = f(x) + \alpha \nabla f(x + \tilde{\alpha} s)^T s, \, \text{for some } \tilde{\alpha} \in (0, \alpha). \\ (\Diamond) \implies f(x + \alpha s) < f(x), \, \forall \alpha \in \bigl(\!\!\!\!\!\!0, \overline{\alpha}\!\!\!\!\!]. \ \Box \end{array}$$

• *s* descent direction for *f* at *x* if $\nabla f(x)^T s < 0$. Proof of 1st order necessary conditions. assume $\nabla f(x^*) \neq 0$. $s := -\nabla f(x^*)$ is a descent direction for *f* at $x = x^*$: $\nabla f(x^*)^T (-\nabla f(x^*)) = -\nabla f(x^*)^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$

since $\nabla f(x^*) \neq 0$ and $||a|| \geq 0$ with equality iff a = 0.

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \implies \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond)

Taylor's/Mean value theorem:

$$\begin{split} f(x + \alpha s) &= f(x) + \alpha \nabla f(x + \tilde{\alpha} s)^T s, \, \text{for some } \tilde{\alpha} \in (0, \alpha). \\ (\Diamond) \implies f(x + \alpha s) < f(x), \, \forall \alpha \in (0, \overline{\alpha}]. \ \Box \end{split}$$

• *s* descent direction for *f* at *x* if $\nabla f(x)^T s < 0$. Proof of 1st order necessary conditions. assume $\nabla f(x^*) \neq 0$. $s := -\nabla f(x^*)$ is a descent direction for *f* at $x = x^*$: $\nabla f(x^*)^T(-\nabla f(x^*)) = -\nabla f(x^*)^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$ since $\nabla f(x^*) \neq 0$ and $\|a\| \ge 0$ with equality iff a = 0. Thus, by Lemma 1, x^* is not a local minimizer of *f*. \Box

-∇f(x) is a descent direction for f at x whenever ∇f(x) ≠ 0.
s descent direction for f at x if ∇f(x)^Ts < 0, which is equivalent to

$$\cos\langle -
abla f(x),s
angle = rac{(-
abla f(x))^Ts}{\|
abla f(x)\|\cdot\|s\|} = rac{|
abla f(x)^Ts|}{\|
abla f(x)\|\cdot\|s\|} > 0,$$

Summary of first-order conditions. A look ahead

minimize f(x) subject to $x \in \mathbb{R}^n$. (UP) First-order necessary optimality conditions: $f \in C^1(\mathbb{R}^n)$; x^* a local minimizer of $f \implies \nabla f(x^*) = 0$.

 Look at higher-order derivatives to distinguish between minimizers and maximizers.

... except for convex functions.

Optimality conditions for convex problems

 $\begin{array}{l} \blacksquare f \text{ convex } \iff f(x + \alpha(y - x)) \leq f(x) + \alpha(f(y) - f(x)), \\ \text{ for all } x, \, y \in \mathbb{R}^n, \, \alpha \in [0, 1]. \end{array}$

 $\blacksquare \iff
abla^2 f(x)$ positive semidefinite, for all $x \in \mathbb{R}^n$, i.e.,

 $= s^T \nabla^2 f(x^*) s \ge 0, \forall s \in \mathbb{R}^n;$ equivalently,

eigenvalues $\lambda_i(
abla^2 f(x^*)) \geq 0, \, \forall i \in \{1,\ldots,n\}.$

If f convex, then

[Pb Sheet 1]

 x^* local minimizer $\implies x^*$ global minimizer.

 x^* stationary point $\implies x^*$ global minimizer.

Optimality conditions for convex problems

 $\begin{array}{l} \blacksquare f \text{ convex } \iff f(x + \alpha(y - x)) \leq f(x) + \alpha(f(y) - f(x)), \\ \text{ for all } x, \, y \in \mathbb{R}^n, \, \alpha \in [0, 1]. \end{array}$

 $\blacksquare \iff
abla^2 f(x)$ positive semidefinite, for all $x \in \mathbb{R}^n$, i.e.,

 $= s^T \nabla^2 f(x^*) s \ge 0, \forall s \in \mathbb{R}^n;$ equivalently,

- eigenvalues $\lambda_i(
 abla^2 f(x^*)) \geq 0, \, \forall i \in \{1,\ldots,n\}.$
- If f convex, then

```
[Pb Sheet 1]
```

 x^* local minimizer $\implies x^*$ global minimizer.

 x^* stationary point $\implies x^*$ global minimizer.

Quadratic functions: $q(x) := g^T x + \frac{1}{2} x^T H x$.

 $abla^2 q(x) = H$, for all x; if H is positive semidefinite, then q convex; any stationary point x^* is a global minimizer of q.