Lecture 2: Problems and solutions. Optimality
conditions for unconstrained optimization
(continued)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization
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Summary of first-order conditions. A look ahead

minimize f(x) subjectto x € R™. (UP)

First-order necessary optimality conditions: f € C1(R"™);
z* alocal minimizerof f — V f(x*) = 0.

A
T = arg maxgcprn f(x) fx)
4
Vf(x) =0.
X, X, "X
a b

m ook at higher-order derivatives to distinguish between
minimizers and maximizers.
.. . except for convex functions.
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Second-order optimality conditions (nonconvex fcts.)

Second-order necessary conditions: f € C%(R™);
x* local minimizer of f — V?2f(z*) positive semidefinite, i.e.,

sT'V2f(x*)s > 0, for all s € R". [local convexity]

Example: f(zx) := x3, * = 0 not a local minimizer but
f'(0) = £7(0) = 0.
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Second-order optimality conditions (nonconvex fcts.)

Second-order necessary conditions: f € C%(R™);
x* local minimizer of f — V?2f(z*) positive semidefinite, i.e.,

sT'V2f(x*)s > 0, for all s € R". [local convexity]
Example: f(zx) := x3, * = 0 not a local minimizer but

/ " .
f (O) = f (O) p— O The second order necessary conditions are not sufficient.

Second-order sufficient conditions: f € C?(R"™);
V f(z*) = 0 and V2 f(x*) positive definite, namely,

sT'V?f(x*)s > 0, for all s # 0.
— «* (strict) local minimizer of f.

Example: f(x) := x*, * = 0 is a (strict) local minimizer but

17 .
f (O) — O The second order sufficient conditions are not necessary.
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Coralia Cartis
The second order necessary conditions are not sufficient.

Coralia Cartis
The second order sufficient conditions are not necessary.
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Proof of second-order conditions

Recall second-order Taylor expansions (see (4) and (5)
earlier, Lecture 1): let £ and s in R™ be fixed; then for any

a > 0, we have
f(x + as) = f(z) + astTVf(x) + %28TV2f(a: + as)s (D)
for some a € (0, o).
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Proof of second-order conditions

Recall second-order Taylor expansions (see (4) and (5)
earlier, Lecture 1): let £ and s in R™ be fixed; then for any

a > 0, we have

f(x + as) = f(z) + astTVf(x) + %28TV2f(a: + as)s (D)
for some a € (0, o).

Proof of second order necessary conditions. Assume there
exists s € R™ with sTVv2f(xz*)s < 0.
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Proof of second-order conditions

Recall second-order Taylor expansions (see (4) and (5)
earlier, Lecture 1): let £ and s in R™ be fixed; then for any

a > 0, we have

f(x + as) = f(z) + astTVf(x) + %28TV2f(a: + as)s (D)
for some a € (0, o).

Proof of second order necessary conditions. Assume there
exists s € R™® with sTv2f(z*)s < 0. Then s o0and f € C2
imply there exists & > 0 such that

sTV2f(zx* +as)s < 0foralla e[0,a]. (6)
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Proof of second-order conditions

Recall second-order Taylor expansions (see (4) and (5)
earlier, Lecture 1): let £ and s in R™ be fixed; then for any

a > 0, we have

f(x + as) = f(z) + astTVf(x) + %28TV2f(w + as)s (D)
for some a € (0, o).

Proof of second order necessary conditions. Assume there
exists s € R™ with sTV2f(z*)s < 0. Then s 0and f € C?
imply there exists & > 0 such that

sTV2f(zx* +as)s < 0foralla e[0,a]. (6)
Let « € (0,&). Then (5) with z = z* and Vf(z*) = 0 imply
f(x* + as) = f(z*) + %23TV2f(:13* + as)s.  (7)
for some & € (0,a). Since 0 < & < a < &, (6) implies that
sTV2f(x* + as)s < 0. Thus (7) implies f(z* + as) < f(z*), and
this holds for all o € (0, &]. Contradiction, as z* is a local minimizer.
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f € ¢2? and
VZf(x*) = 0 imply that
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f € ¢2? and
V2f(z*) = 0 imply that there exists a neighbourhood N (z*, §)
of * such that

Vif(x* +s) =o0forall z* +s e M(z*,8). (8)
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f € ¢2? and
V2f(z*) = 0 imply that there exists a neighbourhood N (z*, §)

of * such that
Vif(x* +s) =o0forall z* +s e M(z*,8). (8)

Use (5) with z = z*, a = 1 and for any s with z* 4+ s € M (z*, §):
F(a* +5) = f(z*) + STV F(z*) + LsTV2 (2" + Gs)s (9)

for some a € (0,1).
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f € ¢2? and
V2f(z*) = 0 imply that there exists a neighbourhood N (z*, §)

of z* such that

Vif(x* +s) =o0forall z* +s e M(z*,8). (8)
Use (5) with x = z*, a = 1 and for any s with =* + s € N (x*, §):
f(x* 4 s) = f(x*) + "V f(x*) + 38TV f(z* + as)s (9)
for some a € (0,1).
Note that ||z* + as — =*|| = &||s|| < 6 SInce & € (0,1) and

z* 4+ s € N(z*,6) (so that ||s|| < 48); thus =* 4+ as € N(z*, §)
which ensures that v2f(z* + as) = 0 due to (8).
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f € ¢2? and
V2f(z*) = 0 imply that there exists a neighbourhood N (z*, §)
of z* such that

Vif(x* +s) =o0forall z* +s e M(z*,8). (8)
Use (5) with x = z*, a = 1 and for any s with =* + s € N (x*, §):
f(x* +s) = f(a*) + sTVf(x*) + 35TV f(z* + as)s (9)

for some a € (0,1).

Note that ||z* + as — =*|| = &||s|| < 6 SInce & € (0,1) and
z* 4+ s € N(z*,6) (so that ||s|| < 48); thus =* 4+ as € N(z*, §)
which ensures that v2f(z* + as) = 0 due to (8).

This and (9), as well as Vf(z*) = 0, imply f(z* + s) > f(=*) for
all s #£ 0 with z* + s € M (z*, ), q.e.d. O
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Stationary points of quadratic functions

B H e R™*™ symmetric (wlog), g € R™: q quadratic function
q(z) := gz + %wTH:I;.
Vq(z*) =0 <= Hzx*+ g=0:. linear system.
V?q(x) = H for all x € R™.
B H nonsingular: z* = —H 1g unique stationary point.

m H positive definite — «* minimizer (a), e)).
B H negative definite — =* maximizer (b), e)).
B H indefinite — z* saddle point (c), f)).

B H singular and g + Hx = 0 consistent:

m H positive semidefinite — infinitely many global
minimizers (d), g)).
m Similarly H negative semidefinite or indefinite.

General f: approximately locally quadratic around =* stationary.
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Stationary points of quadratic functions...

Ny
= T Y

(a) Minimum (b) Maximum c) Saddle (d) Semidefi-
nite
X % \// X
> =
//\\\
(e) Maximum or (f) Saddle (g) Semidefinite
minimum
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