Lecture 2: Problems and solutions. Optimality conditions for unconstrained optimization (continued)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Lecture 2: Problems and solutions. Optimality conditions for unconstrained optimization (continued) - p. 1/13

Summary of first-order conditions. A look ahead

minimize f(x) subject to $x \in \mathbb{R}^n$. (UP) First-order necessary optimality conditions: $f \in C^1(\mathbb{R}^n)$; x^* a local minimizer of $f \implies \nabla f(x^*) = 0$.

 Look at higher-order derivatives to distinguish between minimizers and maximizers.

... except for convex functions.

Second-order optimality conditions (nonconvex fcts.)

Example: $f(x) := x^3$, $x^* = 0$ not a local minimizer but f'(0) = f''(0) = 0.

Second-order optimality conditions (nonconvex fcts.)

Example: $f(x) := x^3$, $x^* = 0$ not a local minimizer but f'(0) = f''(0) = 0. The second order necessary conditions are not sufficient.

Second-order sufficient conditions: $f \in C^2(\mathbb{R}^n)$; $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ positive definite, namely, $s^T \nabla^2 f(x^*) s > 0$, for all $s \neq 0$.

 $\implies x^*$ (strict) local minimizer of f.

Example: $f(x) := x^4$, $x^* = 0$ is a (strict) local minimizer but f''(0) = 0.

$$\chi^{*}=0$$
 not a local min. but
 $f^{1}(\chi^{*})=f^{11}(\chi^{*})=0.$
(so second-order
recessary opt. conditions
are satisfied).

シュ

laylor expansions (REVISION) FIRST ORDER TAYLOR EXPANSION let f:R" > R, fec'(R") with gradient of = (21, ... 24). let X=(x1, ... Xn)T and S=(S1, ... Sn)T EIRM, fixed. Let p:R->R, dec'(R) is continuoslus differentiable. Then for any dEIR, we have Let $\phi(x) := f(x+\alpha s), \alpha \in \mathbb{R} (s_0, \phi: \mathbb{R} \to \mathbb{R}).$ $\phi(d) = \phi(0) + \alpha \phi'(0) + O(\alpha^2)$ (1) Then $\phi'(\omega) = \frac{d}{d\omega} f(\overline{x}_1 + d\overline{s}_1, \dots, \overline{x}_n + d\overline{s}_n)$ Thy chain rule where O(.) implies an upper bound $= \frac{\partial f}{\partial x_1} (x + x + s) \cdot \frac{\partial f}{\partial x_1} (x_1 + x + s_1) + \frac{\partial f}{\partial x_2} (x + x + s) \cdot \frac{\partial f}{\partial x_2} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_2} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_2} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_2} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_2} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_2} (x + x + s_2) \cdot \frac{\partial f}{\partial x_1} (x + x + s_2) \cdot \frac{\partial f}{\partial x_2} (x + x + s_2) \cdot \frac{\partial$ that is a multiple of 2. Also, [mean-value theorem] [\$\phi(d) = \$\phi(0) + \$\phi(2)\$ for some \$\partial E(0,\$\phi)\$. $= \underbrace{\widehat{Z}}_{i=1}^{2} \underbrace{\widehat{J}}_{i}(x + dS), S_{i}^{*} = \nabla \underbrace{\widehat{J}}_{i}(x + dS)^{T}S.$ Thus first-order Taylor expansion of \$ gives from(2), $f(x+\lambda s) = f(x) + \alpha \nabla f(x+\alpha s)^{T}s, \text{ for some } aflo, d).$ Let firen sir, fecer(ren) with Hessian 22f= (2f - 3xid xn) nxn symmetric (22f - 3xid xn) matrix (22f - 3xid xn) SECOND ORDER TATLOR EXPANSION Let &: R>R, &EC2(R) is twice continuously differentiable $\frac{\phi(\omega)}{f(x+\omega s)}$, $\phi'(\omega) = \nabla f(x)Ts$, $\phi''(\omega) = ST O^2 f(x+\alpha s)s$. Thus the second order Taylos expansion of \$(4) gives Then for any det, we have $f(x+xs) = f(x) + x pf(x)^{T}s + \frac{1}{2}x^{2}s^{T}p^{2}f(x+xs)s$ $\phi(\lambda) = \phi(0) + \alpha \phi'(0) + \frac{1}{2} \phi''(\lambda),$ for some 2 tlo, 2). (5) where Litlord). (4) (mean value therew)

Recall second-order Taylor expansions (see (4) and (5) earlier, Lecture 1): let x and s in \mathbb{R}^n be fixed; then for any $\alpha > 0$, we have

 $f(x + \alpha s) = f(x) + \alpha s^T \nabla f(x) + \frac{\alpha^2}{2} s^T \nabla^2 f(x + \tilde{\alpha} s) s$ (5) for some $\tilde{\alpha} \in (0, \alpha)$.

Recall second-order Taylor expansions (see (4) and (5) earlier, Lecture 1): let x and s in \mathbb{R}^n be fixed; then for any $\alpha > 0$, we have

 $f(x + \alpha s) = f(x) + \alpha s^T \nabla f(x) + \frac{\alpha^2}{2} s^T \nabla^2 f(x + \tilde{\alpha} s) s$ (5) for some $\tilde{\alpha} \in (0, \alpha)$.

Proof of second order necessary conditions. Assume there exists $s \in \mathbb{R}^n$ with $s^T \nabla^2 f(x^*) s < 0$.

Recall second-order Taylor expansions (see (4) and (5) earlier, Lecture 1): let x and s in \mathbb{R}^n be fixed; then for any $\alpha > 0$, we have

 $f(x + \alpha s) = f(x) + \alpha s^T \nabla f(x) + \frac{\alpha^2}{2} s^T \nabla^2 f(x + \tilde{\alpha} s) s$ (5) for some $\tilde{\alpha} \in (0, \alpha)$.

Proof of second order necessary conditions. Assume there exists $s \in \mathbb{R}^n$ with $s^T \nabla^2 f(x^*) s < 0$. Then $s \neq 0$ and $f \in C^2$ imply there exists $\hat{\alpha} > 0$ such that

 $s^T \nabla^2 f(x^* + \alpha s) s < 0$ for all $\alpha \in [0, \hat{\alpha}]$. (6)

Recall second-order Taylor expansions (see (4) and (5) earlier, Lecture 1): let x and s in \mathbb{R}^n be fixed; then for any $\alpha > 0$, we have

 $f(x + \alpha s) = f(x) + \alpha s^T \nabla f(x) + \frac{\alpha^2}{2} s^T \nabla^2 f(x + \tilde{\alpha} s) s$ (5) for some $\tilde{\alpha} \in (0, \alpha)$.

Proof of second order necessary conditions. Assume there exists $s \in \mathbb{R}^n$ with $s^T \nabla^2 f(x^*) s < 0$. Then $s \neq 0$ and $f \in C^2$ imply there exists $\hat{\alpha} > 0$ such that

 $s^T \nabla^2 f(x^* + \alpha s)s < 0$ for all $\alpha \in [0, \hat{\alpha}]$. (6) Let $\alpha \in (0, \hat{\alpha})$. Then (5) with $x = x^*$ and $\nabla f(x^*) = 0$ imply $f(x^* + \alpha s) = f(x^*) + \frac{\alpha^2}{2}s^T \nabla^2 f(x^* + \tilde{\alpha} s)s$. (7) for some $\tilde{\alpha} \in (0, \alpha)$. Since $0 < \tilde{\alpha} < \alpha \le \hat{\alpha}$, (6) implies that $s^T \nabla^2 f(x^* + \tilde{\alpha} s)s < 0$. Thus (7) implies $f(x^* + \alpha s) < f(x^*)$, and this holds for all $\alpha \in (0, \hat{\alpha}]$. Contradiction, as x^* is a local minimizer. \Box

Proof of second order sufficient conditions. $f \in C^2$ and $\nabla^2 f(x^*) \succ 0$ imply that

Proof of second order sufficient conditions. $f \in C^2$ and $\nabla^2 f(x^*) \succ 0$ imply that there exists a neighbourhood $\mathcal{N}(x^*, \delta)$ of x^* such that

 $\nabla^2 f(x^* + s) \succ 0$ for all $x^* + s \in \mathcal{N}(x^*, \delta)$. (8)

Proof of second order sufficient conditions. $f \in C^2$ and $\nabla^2 f(x^*) \succ 0$ imply that there exists a neighbourhood $\mathcal{N}(x^*, \delta)$ of x^* such that

 $\nabla^2 f(x^* + s) \succ 0$ for all $x^* + s \in \mathcal{N}(x^*, \delta)$. (8)

Use (5) with $x = x^*$, $\alpha = 1$ and for any s with $x^* + s \in \mathcal{N}(x^*, \delta)$: $f(x^* + s) = f(x^*) + s^T \nabla f(x^*) + \frac{1}{2} s^T \nabla^2 f(x^* + \tilde{\alpha}s)s$ (9) for some $\tilde{\alpha} \in (0, 1)$.

Proof of second order sufficient conditions. $f \in C^2$ and $\nabla^2 f(x^*) \succ 0$ imply that there exists a neighbourhood $\mathcal{N}(x^*, \delta)$ of x^* such that

 $\nabla^2 f(x^* + s) \succ 0$ for all $x^* + s \in \mathcal{N}(x^*, \delta)$. (8)

Use (5) with $x = x^*$, $\alpha = 1$ and for any s with $x^* + s \in \mathcal{N}(x^*, \delta)$: $f(x^* + s) = f(x^*) + s^T \nabla f(x^*) + \frac{1}{2} s^T \nabla^2 f(x^* + \tilde{\alpha}s)s$ (9)

for some $\tilde{\alpha} \in (0, 1)$.

Note that $||x^* + \tilde{\alpha}s - x^*|| = \tilde{\alpha}||s|| \le \delta$ since $\tilde{\alpha} \in (0, 1)$ and $x^* + s \in \mathcal{N}(x^*, \delta)$ (so that $||s|| \le \delta$); thus $x^* + \tilde{\alpha}s \in \mathcal{N}(x^*, \delta)$ which ensures that $\nabla^2 f(x^* + \tilde{\alpha}s) \succ 0$ due to (8).

Proof of second order sufficient conditions. $f \in C^2$ and $\nabla^2 f(x^*) \succ 0$ imply that there exists a neighbourhood $\mathcal{N}(x^*, \delta)$ of x^* such that

 $\nabla^2 f(x^* + s) \succ 0$ for all $x^* + s \in \mathcal{N}(x^*, \delta)$. (8)

Use (5) with $x = x^*$, $\alpha = 1$ and for any s with $x^* + s \in \mathcal{N}(x^*, \delta)$: $f(x^* + s) = f(x^*) + s^T \nabla f(x^*) + \frac{1}{2} s^T \nabla^2 f(x^* + \tilde{\alpha}s)s$ (9)

for some $\tilde{\alpha} \in (0, 1)$.

Note that $||x^* + \tilde{\alpha}s - x^*|| = \tilde{\alpha}||s|| \le \delta$ since $\tilde{\alpha} \in (0, 1)$ and $x^* + s \in \mathcal{N}(x^*, \delta)$ (so that $||s|| \le \delta$); thus $x^* + \tilde{\alpha}s \in \mathcal{N}(x^*, \delta)$ which ensures that $\nabla^2 f(x^* + \tilde{\alpha}s) \succ 0$ due to (8).

This and (9), as well as $\nabla f(x^*) = 0$, imply $f(x^* + s) > f(x^*)$ for all $s \neq 0$ with $x^* + s \in \mathcal{N}(x^*, \delta)$, q.e.d. \Box

Stationary points of quadratic functions

 $\begin{array}{ll} H \in \mathbb{R}^{n \times n} \text{ symmetric (wlog), } g \in \mathbb{R}^n : q \text{ quadratic function} \\ q(x) := g^T x + \frac{1}{2} x^T H x. \\ \nabla q(x^*) = 0 \iff H x^* + g = 0 : \text{ linear system.} \\ \nabla^2 q(x) = H \text{ for all } x \in \mathbb{R}^n. \end{array}$

- H nonsingular: $x^* = -H^{-1}g$ unique stationary point.
 - *H* positive definite $\implies x^*$ minimizer (a), e)).
 - *H* negative definite $\implies x^*$ maximizer (b), e)).
 - *H* indefinite $\implies x^*$ saddle point (c), f)).
- H singular and g + Hx = 0 consistent:

■ *H* positive semidefinite \implies infinitely many global minimizers (d), g)).

Similarly *H* negative semidefinite or indefinite.

General f: approximately locally quadratic around x^* stationary.

Stationary points of quadratic functions...

