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Summary of first-order conditions. A look ahead

minimize f(x) subject to x ∈ Rn. (UP)

First-order necessary optimality conditions: f ∈ C1(Rn);
x∗ a local minimizer of f =⇒ ∇f(x∗) = 0.

x̃ = argmaxx∈Rn f(x)
⇓

∇f(x̃) = 0.
x 1x 2x 

f(x)

ba

Look at higher-order derivatives to distinguish between
minimizers and maximizers.

. . . except for convex functions.
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Second-order optimality conditions (nonconvex fcts.)

Second-order necessary conditions: f ∈ C2(Rn);
x∗ local minimizer of f =⇒ ∇2f(x∗) positive semidefinite, i.e.,
sT∇2f(x∗)s ≥ 0, for all s ∈ Rn. [local convexity]

Example: f(x) := x3, x∗ = 0 not a local minimizer but
f ′(0) = f

′′
(0) = 0.
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Second-order optimality conditions (nonconvex fcts.)

Second-order necessary conditions: f ∈ C2(Rn);
x∗ local minimizer of f =⇒ ∇2f(x∗) positive semidefinite, i.e.,
sT∇2f(x∗)s ≥ 0, for all s ∈ Rn. [local convexity]

Example: f(x) := x3, x∗ = 0 not a local minimizer but
f ′(0) = f

′′
(0) = 0.

Second-order sufficient conditions: f ∈ C2(Rn);
∇f(x∗) = 0 and ∇2f(x∗) positive definite, namely,

sT∇2f(x∗)s > 0, for all s &= 0.

=⇒ x∗ (strict) local minimizer of f .

Example: f(x) := x4, x∗ = 0 is a (strict) local minimizer but
f

′′
(0) = 0.
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Proof of second-order conditions

Recall second-order Taylor expansions (see (4) and (5)
earlier, Lecture 1): let x and s in Rn be fixed; then for any
α > 0, we have
f(x + αs) = f(x) + αsT∇f(x) + α2

2
sT∇2f(x + α̃s)s (5)

for some α̃ ∈ (0,α).

Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization – p. 14/17



Proof of second-order conditions

Recall second-order Taylor expansions (see (4) and (5)
earlier, Lecture 1): let x and s in Rn be fixed; then for any
α > 0, we have
f(x + αs) = f(x) + αsT∇f(x) + α2

2
sT∇2f(x + α̃s)s (5)

for some α̃ ∈ (0,α).
Proof of second order necessary conditions. Assume there
exists s ∈ Rn with sT∇2f(x∗)s < 0.
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Proof of second-order conditions

Recall second-order Taylor expansions (see (4) and (5)
earlier, Lecture 1): let x and s in Rn be fixed; then for any
α > 0, we have
f(x + αs) = f(x) + αsT∇f(x) + α2

2
sT∇2f(x + α̃s)s (5)

for some α̃ ∈ (0,α).
Proof of second order necessary conditions. Assume there
exists s ∈ Rn with sT∇2f(x∗)s < 0. Then s #= 0 and f ∈ C2

imply there exists α̂ > 0 such that

sT∇2f(x∗ + αs)s < 0 for all α ∈ [0, α̂]. (6)
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Proof of second-order conditions

Recall second-order Taylor expansions (see (4) and (5)
earlier, Lecture 1): let x and s in Rn be fixed; then for any
α > 0, we have
f(x + αs) = f(x) + αsT∇f(x) + α2

2
sT∇2f(x + α̃s)s (5)

for some α̃ ∈ (0,α).
Proof of second order necessary conditions. Assume there
exists s ∈ Rn with sT∇2f(x∗)s < 0. Then s #= 0 and f ∈ C2

imply there exists α̂ > 0 such that

sT∇2f(x∗ + αs)s < 0 for all α ∈ [0, α̂]. (6)
Let α ∈ (0, α̂). Then (5) with x = x∗ and ∇f(x∗) = 0 imply

f(x∗ + αs) = f(x∗) + α2

2
sT∇2f(x∗ + α̃s)s. (7)

for some α̃ ∈ (0,α). Since 0 < α̃ < α ≤ α̂, (6) implies that
sT∇2f(x∗ + α̃s)s < 0. Thus (7) implies f(x∗ + αs) < f(x∗), and
this holds for all α ∈ (0, α̂]. Contradiction, as x∗ is a local minimizer.!
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f ∈ C2 and
∇2f(x∗) % 0 imply that
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f ∈ C2 and
∇2f(x∗) % 0 imply that there exists a neighbourhood N (x∗, δ)

of x∗ such that
∇2f(x∗ + s) % 0 for all x∗ + s ∈ N (x∗, δ). (8)
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f ∈ C2 and
∇2f(x∗) % 0 imply that there exists a neighbourhood N (x∗, δ)

of x∗ such that
∇2f(x∗ + s) % 0 for all x∗ + s ∈ N (x∗, δ). (8)

Use (5) with x = x∗, α = 1 and for any s with x∗ + s ∈ N (x∗, δ):
f(x∗ + s) = f(x∗) + sT∇f(x∗) + 1

2
sT∇2f(x∗ + α̃s)s (9)

for some α̃ ∈ (0, 1).
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f ∈ C2 and
∇2f(x∗) % 0 imply that there exists a neighbourhood N (x∗, δ)

of x∗ such that
∇2f(x∗ + s) % 0 for all x∗ + s ∈ N (x∗, δ). (8)

Use (5) with x = x∗, α = 1 and for any s with x∗ + s ∈ N (x∗, δ):
f(x∗ + s) = f(x∗) + sT∇f(x∗) + 1

2
sT∇2f(x∗ + α̃s)s (9)

for some α̃ ∈ (0, 1).
Note that ‖x∗ + α̃s − x∗‖ = α̃‖s‖ ≤ δ since α̃ ∈ (0, 1) and
x∗ + s ∈ N (x∗, δ) (so that ‖s‖ ≤ δ); thus x∗ + α̃s ∈ N (x∗, δ)

which ensures that ∇2f(x∗ + α̃s) % 0 due to (8).
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Proof of second-order conditions ...

Proof of second order sufficient conditions. f ∈ C2 and
∇2f(x∗) % 0 imply that there exists a neighbourhood N (x∗, δ)

of x∗ such that
∇2f(x∗ + s) % 0 for all x∗ + s ∈ N (x∗, δ). (8)

Use (5) with x = x∗, α = 1 and for any s with x∗ + s ∈ N (x∗, δ):
f(x∗ + s) = f(x∗) + sT∇f(x∗) + 1

2
sT∇2f(x∗ + α̃s)s (9)

for some α̃ ∈ (0, 1).
Note that ‖x∗ + α̃s − x∗‖ = α̃‖s‖ ≤ δ since α̃ ∈ (0, 1) and
x∗ + s ∈ N (x∗, δ) (so that ‖s‖ ≤ δ); thus x∗ + α̃s ∈ N (x∗, δ)

which ensures that ∇2f(x∗ + α̃s) % 0 due to (8).

This and (9), as well as ∇f(x∗) = 0, imply f(x∗ + s) > f(x∗) for
all s #= 0 with x∗ + s ∈ N (x∗, δ), q.e.d. !
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Stationary points of quadratic functions

H ∈ Rn×n symmetric (wlog), g ∈ Rn: q quadratic function
q(x) := gTx + 1

2x
THx.

∇q(x∗) = 0 ⇐⇒ Hx∗ + g = 0: linear system.
∇2q(x) = H for all x ∈ Rn.

H nonsingular: x∗ = −H−1g unique stationary point.
H positive definite =⇒ x∗ minimizer (a), e)).
H negative definite =⇒ x∗ maximizer (b), e)).
H indefinite =⇒ x∗ saddle point (c), f)).

H singular and g + Hx = 0 consistent:
H positive semidefinite =⇒ infinitely many global

minimizers (d), g)).
Similarly H negative semidefinite or indefinite.

General f : approximately locally quadratic around x∗ stationary.
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Stationary points of quadratic functions...

*x

(a) Minimum

x*

(b) Maximum

*x

(c) Saddle (d) Semidefi-

nite

1

2x

x

x*

(e) Maximum or

minimum

2

1x

x

*x

(f) Saddle
1

2

x

x

(g) Semidefinite
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