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Methods for local unconstrained optimization

minimize f(x) subjectto x € R™ (UP) [rect®)ors e c2@®n)]
A Generic Method (GM)

Choose € >0 and z% € R™.
While (TERMINATION CRITERIA not achieved), REPEAT:

B compute the change

k+1

xr —xk = F(a:k, problem data), [linesearch, trust-region]

to ensure f(xzFt1) < f(=F).
Wset xFtl:=z* + F(a®, prob. data), k:=k+1. O
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minimize f(x) subjectto x € R™ (UP) [rect®)ors e c2@®n)]
A Generic Method (GM)

Choose € >0 and z% € R™.
While (TERMINATION CRITERIA not achieved), REPEAT:

B compute the change
k+1 k __ k : :
T —x" = F(x”,problem data), [linesearch, trust-region]

to ensure f(xzFt1) < f(=F).
Wset xFtl:=z* + F(a®, prob. data), k:=k+1. O

mTC: ||Vf(zF)] < e maybe also, Apmin(V2f(z%)) > —e.
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Methods for local unconstrained optimization

minimize f(x) subjectto x € R™ (UP) [rect®)ors e c2@®n)]
A Generic Method (GM)

Choose € >0 and z% € R™.
While (TERMINATION CRITERIA not achieved), REPEAT:

B compute the change

k+1

xr —xk = F(a:k, problem data), [linesearch, trust-region]

to ensure f(xzFt1) < f(=F).
Wset xFtl:=z* + F(a®, prob. data), k:=k+1. O

mTC: |[VFf(z®)| < e maybe also, Anin(V2f(z*)) > —e.

m e.g., z*T! = minimizer of some (simple) model of f around x*
— linesearch, trust-region methods.

mif F = F(xg, xr_1,problem data) — conjugate gradients mthd.
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Issues to consider about GM

Global convergence of GM:
if e := 0and any 2° € R™: Vf(z*) — 0,as k — co?

[maybe also, lim infy_, oo Amin (V2 (2F)) > 07]
Local convergence of GM:

if e := 0 and z° sufficiently close to =* = stationary/local
minimizer of f: =% — =*, k — 00?

Global/local complexity of GM: count number of iterations and
their cost required by GM to generate =* within desired

accuracy € > 0, e.g., such that |V f(z*)| <e.
[connection to convergence and its rate]

Rate of global/local convergence of GM.
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Rates of convergence of sequences: an example

¥ := (1/2)* — o linearly,
(1/2)2 — 0 quadratically,
= k—* — 0 superlinearly as k — oc.

0
k lk qkz
= 0|1 0.5
100} 1 0.5 0.25
2 | 0.25 0.6 - (—1)
1 3 | 0.12 0.4-(—2)
—200} 4 | 0.6-(—2) | 0.1:(—4)
51 0.3-(—2) | 0.2-(—9)
_o50}
» 6 | 0.2-(—2) | 0.5 (—19)
0% 20 20 80 80 100
Rates of convergence on a Notation: (—) :=107".

log scale.
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Rates of convergence of sequences

{=F} C R", z* € R"; z*F — z*ask — oo.
p-Rate of convergence: z* — x* with rate p > 1 if 3p > 0 and
ko > 0 such that

l*Ft — z*|| < plla® — 2*||P,  VE > ko.

m p convergence factor; e* := x¥ — z* error in =¥ ~ x*.

Linear convergence: p =1 = p < 1; (asymptotically,)
no of correct digits grows linearly in the number of iterations.
Quadratic convergence: p = 2; (asymptotically,)

no of correct digits grows exponentially in the number of
iterations.

Superlinear convergence: ||z*T! — z*||/||z* — =*|| — 0 as

k — oc. [faster than linear, slower than quadratic; practically very acceptable ]
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Summary: methods for local unconstrained probs.

Consider (UP), with f € ¢ or c2.

Methods:
m iterative: start from any initial ‘guess’ z°, generate z*, k > 0.
m find (approximate) local solutions, unless special structure
(convexity, etc.)

m terminate when iterate within e of local optimality.

Issues: global convergence, local convergence, rate of
convergence, complexity.

Information employed on each iteration:

current z*: linesearch and trust-region methods
current+previous: conjugate-gradients method etc

Lecture 3: Methods for local unconstrained optimization. Linesearch methods — p. 6/17



A generic linesearch method

(UP): minimize f(x) subjectto = € R”, where f € C! or C2.
A Generic Linesearch Method (GLM)

Choose € >0 and 2 € R®*. For k>0, do:
While ||V f(z®)|| > €, REPEAT:

B compute a descent search direction sk e R"”,

V f(x*)Ts® < 0;
B compute a stepsize ak >0 along s¥ such that
f(a® 4+ afs*) < f(2");
Bset 2Ftl = xF + aksk and ki=k+1. O

Recall property of descent directions (Lemma 1, Lecture 1).
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Performing a linesearch

How to compute o*?

Exact linesearch:

a® := arg ming>o f(z® + as®). | (©)

140 = N
m computationally expensive b
for nonlinear objectives. 2

02 04 06 @

Exact linesearch for quadratic

functions
. 1.7 3 2 T 2
Example: q(z) = 2= r+ (-2 8) x, where z € R2.
2 6

Let ! := (-2 —2)T and s! := —Vgq(z!) = (12 8)7T.
Figure (a): contours of g and the line ' 4+ a:s; (b): the plane z(a) = ! 4+ as?! is shown

cutting the g-surface; (c): plot of ¢(); (d): 2 is shown and ¢’ (a*) = 0. L[]
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Exact linesearches for quadratic objectives

g(x) = gTz + ;2T Hx, =z €R",

and let ¢r(a) := q(z* + as*).
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Exact linesearches for quadratic objectives

g(x) = gTz + ;2T Hx, =z €R",
and let ¢r(a) := q(z* 4+ as®). Then
(@) = d®(0) =YL, G - 52 6(a)

=>4 z D q(a: + ask)— (sk)TVq(a:k + as )
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Exact linesearches for quadratic objectives

q(z) = glz + %wTHm, x € R™,
and let ¢r(a) := q(z* 4+ as®). Then
(@) = deple) = iy B - 0@
=>4 z D q(a: + ask)— (sk)TVq(a:k + as )
B Vq(x) =g+ Hx and Vq(z* 4+ as®) = g + H(z* + as®).
—  #(a) = (*)TVq(a) + a(sF)THS".
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Exact linesearches for quadratic objectives

g(x) = gTz + ;2T Hx, =z €R",
and let ¢r(a) := q(z* 4+ as®). Then
#() = Gao(@) = Ty & - g ()

=Y iy st ga-a(a® 4 as®)= (s*)TVq(z* + ash).
B Vq(x) =g+ Hx and Vq(z* 4+ as®) = g + H(z* + as®).
— (@) = (") TVg(a*) + a(sH)THs".
Thus a* stationary point of ¢(«) iff (s*¥)T Hs* # 0 and
¢'(a*) =0 = o* = —(s")"Vq(z")/(s")" Hs".
B «o* global minimizer of ¢(«a) if (s*)THs* > 0.
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Exact linesearches for quadratic objectives

g(x) = gTz + ;2T Hx, =z €R",
and let ¢r(a) := q(z* 4+ as®). Then
qb’(a) = sLo(a) =20, % 2o

= Y ieq $F o a(aF + ask)= (s5)TVq(zF + ash).
B Vq(x) =g+ Hx and Vq(z* 4+ as®) = g + H(z* + as®).
—  ¢'(a) = (s*)"'Vq(z*) + a(s*)"Hs".
Thus a* stationary point of ¢(«) iff (s*¥)T Hs* # 0 and
¢'(a*) =0= o* =—(s")"Vq(z")/(s")" Hs".
B «o* global minimizer of ¢(«a) if (s*)THs* > 0.

m for general f, no explicit expression of o*; approximate
minimizers of f(x* + as®) may be used instead. [see Pb Sheet 1]
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