Lecture 3: Methods for local unconstrained optimization. Linesearch methods

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Methods for local unconstrained optimization

minimize f(x) subject to $x\in\mathbb{R}^n$ (UP) $\left[f\in\mathcal{C}^1(\mathbb{R}^n) \text{ or } f\in\mathcal{C}^2(\mathbb{R}^n)\right]$ A Generic Method (GM)

Choose $\epsilon>0$ and $x^0\in\mathbb{R}^n$. While (TERMINATION CRITERIA not achieved), REPEAT:

compute the change

$$x^{k+1}-x^k=F(x^k, exttt{problem data}),$$
 [linesearch, trust-region]

to ensure $f(x^{k+1}) < f(x^k)$.

$$lacksquare$$
 set $x^{k+1}:=x^k+F(x^k, ext{prob.}$ data), $k:=k+1$. \Box

Methods for local unconstrained optimization

minimize f(x) subject to $x\in\mathbb{R}^n$ (UP) $[f\in\mathcal{C}^1(\mathbb{R}^n) \text{ or } f\in\mathcal{C}^2(\mathbb{R}^n)]$ A Generic Method (GM)

Choose $\epsilon>0$ and $x^0\in\mathbb{R}^n$. While (TERMINATION CRITERIA not achieved), REPEAT:

compute the change

$$x^{k+1} - x^k = F(x^k, ext{problem data}),$$
 [linesearch, trust-region] to ensure $f(x^{k+1}) < f(x^k)$.

- lacksquare set $x^{k+1}:=x^k+F(x^k, ext{prob.}$ data), k:=k+1. \Box
- TC: $\|\nabla f(x^k)\| \le \epsilon$; maybe also, $\lambda_{\min}(\nabla^2 f(x^k)) \ge -\epsilon$.

Methods for local unconstrained optimization

minimize f(x) subject to $x\in\mathbb{R}^n$ (UP) $\left[f\in\mathcal{C}^1(\mathbb{R}^n) \text{ or } f\in\mathcal{C}^2(\mathbb{R}^n)\right]$ A Generic Method (GM)

Choose $\epsilon>0$ and $x^0\in\mathbb{R}^n$. While (TERMINATION CRITERIA not achieved), REPEAT:

compute the change

$$x^{k+1} - x^k = F(x^k, exttt{problem data}),$$
 [linesearch, trust-region] to ensure $f(x^{k+1}) < f(x^k)$.

- lacksquare set $x^{k+1}:=x^k+F(x^k, ext{prob.}$ data), k:=k+1. \Box
- TC: $\|\nabla f(x^k)\| \le \epsilon$; maybe also, $\lambda_{\min}(\nabla^2 f(x^k)) \ge -\epsilon$.
- e.g., $x^{k+1} \equiv \text{minimizer of some (simple) model of } f \text{ around } x^k \longrightarrow \text{linesearch, trust-region methods.}$
- \blacksquare if $F = F(x_k, x_{k-1}, \text{problem data}) \longrightarrow \text{conjugate gradients mthd.}$

Issues to consider about GM

Global convergence of GM:

if
$$\epsilon:=0$$
 and any $x^0\in\mathbb{R}^n$: $abla f(x^k) o 0$, as $k o\infty$?

[maybe also,
$$\liminf_{k\to\infty}\lambda_{\min}(\nabla^2 f(x^k))\geq 0$$
?]

Local convergence of GM:

if $\epsilon := 0$ and x^0 sufficiently close to $x^* \equiv$ stationary/local minimizer of f: $x^k \to x^*, k \to \infty$?

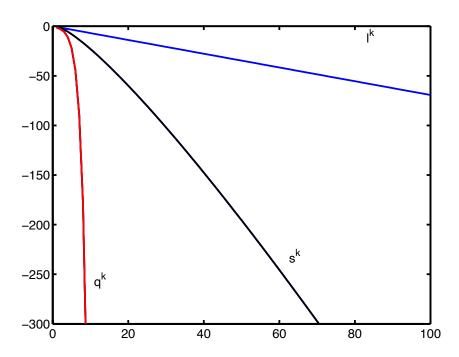
Global/local complexity of GM: count number of iterations and their cost required by GM to generate x^k within desired accuracy $\epsilon > 0$, e.g., such that $\|\nabla f(x^k)\| \leq \epsilon$.

[connection to convergence and its rate]

Rate of global/local convergence of GM.

Rates of convergence of sequences: an example

$$l^k:=(1/2)^k\longrightarrow 0$$
 linearly, $q^k:=(1/2)^{2^k}\longrightarrow 0$ quadratically, $s^k:=k^{-k}\longrightarrow 0$ superlinearly as $k\longrightarrow \infty$.



Rates of convergence on a log scale.

k	l^k	q^k
0	1	0.5
1	0.5	0.25
2	0.25	$0.6\cdot(-1)$
3	0.12	$0.4\cdot(-2)$
4	$0.6\cdot(-2)$	$0.1\cdot(-4)$
5	$0.3\cdot(-2)$	$0.2\cdot(-9)$
6	$0.2\cdot(-2)$	$0.5\cdot(-19)$

Notation: $(-i) := 10^{-i}$.

Rates of convergence of sequences

 $\{x^k\}\subset\mathbb{R}^n, x^*\in\mathbb{R}^n; \quad x^k\to x^* \text{ as } k\to\infty.$ p-Rate of convergence: $x^k\to x^*$ with rate $p\geq 1$ if $\exists \rho>0$ and $k_0\geq 0$ such that

$$||x^{k+1} - x^*|| \le \rho ||x^k - x^*||^p, \quad \forall k \ge k_0.$$

ho convergence factor; $e^k := x^k - x^*$ error in $x^k \approx x^*$.

Linear convergence: $p=1 \Rightarrow \rho < 1$; (asymptotically,) no of correct digits grows linearly in the number of iterations.

Quadratic convergence: p=2; (asymptotically,) no of correct digits grows exponentially in the number of iterations.

Superlinear convergence: $||x^{k+1} - x^*||/||x^k - x^*|| \to 0$ as $k \to \infty$. [faster than linear, slower than quadratic; practically very acceptable]

Summary: methods for local unconstrained probs.

Consider (UP), with $f \in C^1$ or C^2 .

Methods:

- iterative: start from any initial 'guess' x^0 , generate x^k , $k \ge 0$.
- find (approximate) local solutions, unless special structure (convexity, etc.)
- terminate when iterate within ϵ of local optimality.

Issues: global convergence, local convergence, rate of convergence, complexity.

Information employed on each iteration:

current x^k : linesearch and trust-region methods

current+previous: conjugate-gradients method etc

A generic linesearch method

(UP): minimize f(x) subject to $x \in \mathbb{R}^n$, where $f \in \mathcal{C}^1$ or \mathcal{C}^2 .

A Generic Linesearch Method (GLM)

Choose $\epsilon>0$ and $x^0\in\mathbb{R}^n$. For $k\geq 0$, do: While $\|
abla f(x^k)\|>\epsilon$, REPEAT:

lacksquare compute a <u>descent</u> search direction $s^k \in \mathbb{R}^n$,

$$\nabla f(x^k)^T s^k < 0;$$

lacksquare compute a stepsize $lpha^k>0$ along s^k such that

$$f(x^k + \alpha^k s^k) < f(x^k);$$

lacksquare set $x^{k+1}:=x^k+lpha^ks^k$ and k:=k+1. \Box

Recall property of descent directions (Lemma 1, Lecture 1).

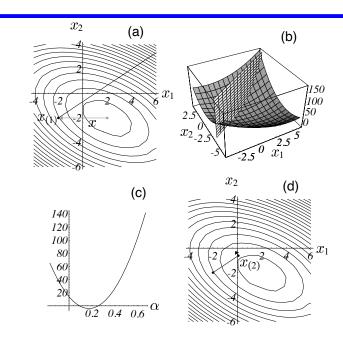
Performing a linesearch

How to compute α^k ?

Exact linesearch:

$$\alpha^k := \arg\min_{\alpha > 0} f(x^k + \alpha s^k).$$

computationally expensive for nonlinear objectives.



Exact linesearch for quadratic functions

Example:
$$q(x)=\frac{1}{2}x^T\begin{pmatrix}3&2\\2&6\end{pmatrix}x+(-2&8)^Tx$$
, where $x\in\mathbb{R}^2$. Let $x^1:=(-2&-2)^T$ and $s^1:=-\nabla q(x^1)=(12~8)^T$. Figure (a): contours of q and the line $x^1+\alpha s^1$; (b): the plane $z(\alpha)=x^1+\alpha s^1$ is shown

cutting the q-surface; (c): plot of $\phi(\alpha)$; (d): x^2 is shown and $\phi'(\alpha^*) = 0$.

$$q(x)=g^Tx+rac{1}{2}x^THx,\quad x\in\mathbb{R}^n,$$
 and let $\phi_k(lpha):=q(x^k+lpha s^k).$

$$q(x) = g^T x + \frac{1}{2} x^T H x, \quad x \in \mathbb{R}^n,$$
 and let $\phi_k(\alpha) := q(x^k + \alpha s^k)$. Then
$$\phi'(\alpha) = \frac{d}{d\alpha} \phi(\alpha) = \sum_{i=1}^n \frac{dx_i}{d\alpha} \cdot \frac{\partial}{\partial x_i} \phi(\alpha) = \sum_{i=1}^n s_i^k \frac{\partial}{\partial x_i} q(x^k + \alpha s^k) = (s^k)^T \nabla q(x^k + \alpha s^k).$$

$$q(x) = g^T x + \frac{1}{2} x^T H x, \quad x \in \mathbb{R}^n,$$
 and let $\phi_k(\alpha) := q(x^k + \alpha s^k)$. Then
$$\phi'(\alpha) = \frac{d}{d\alpha} \phi(\alpha) = \sum_{i=1}^n \frac{dx_i}{d\alpha} \cdot \frac{\partial}{\partial x_i} \phi(\alpha) = \sum_{i=1}^n s_i^k \frac{\partial}{\partial x_i} q(x^k + \alpha s^k) = (s^k)^T \nabla q(x^k + \alpha s^k).$$

$$q(x) = g^T x + \frac{1}{2} x^T H x, \quad x \in \mathbb{R}^n,$$

and let $\phi_k(\alpha) := q(x^k + \alpha s^k)$. Then

$$\begin{aligned} \phi'(\alpha) &= \frac{d}{d\alpha}\phi(\alpha) = \sum_{i=1}^{n} \frac{dx_i}{d\alpha} \cdot \frac{\partial}{\partial x_i}\phi(\alpha) \\ &= \sum_{i=1}^{n} s_i^k \frac{\partial}{\partial x_i} q(x^k + \alpha s^k) = (s^k)^T \nabla q(x^k + \alpha s^k). \end{aligned}$$

 $extstyle
abla q(x) = g + Hx ext{ and }
abla q(x^k + \alpha s^k) = g + H(x^k + \alpha s^k).$

$$\implies \phi'(\alpha) = (s^k)^T \nabla q(x^k) + \alpha(s^k)^T H s^k.$$

Thus α^* stationary point of $\phi(\alpha)$ iff $(s^k)^T H s^k \neq 0$ and $\phi'(\alpha^*) = 0 \Longrightarrow \alpha^* = -(s^k)^T \nabla q(x^k)/(s^k)^T H s^k$.

$$q(x) = g^T x + \frac{1}{2} x^T H x, \quad x \in \mathbb{R}^n,$$

and let $\phi_k(\alpha) := q(x^k + \alpha s^k)$. Then

$$\phi'(\alpha) = \frac{d}{d\alpha}\phi(\alpha) = \sum_{i=1}^{n} \frac{dx_i}{d\alpha} \cdot \frac{\partial}{\partial x_i}\phi(\alpha)$$
$$= \sum_{i=1}^{n} s_i^k \frac{\partial}{\partial x_i} q(x^k + \alpha s^k) = (s^k)^T \nabla q(x^k + \alpha s^k).$$

Thus α^* stationary point of $\phi(\alpha)$ iff $(s^k)^T H s^k \neq 0$ and $\phi'(\alpha^*) = 0 \Longrightarrow \alpha^* = -(s^k)^T \nabla q(x^k)/(s^k)^T H s^k$.

- for general f, no explicit expression of α^k ; approximate minimizers of $f(x^k + \alpha s^k)$ may be used instead. [see Pb Sheet 1]