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Methods for local unconstrained optimization

minimize f(x) subject to x ∈ Rn (UP) [f ∈ C1(Rn) or f ∈ C2(Rn)]
A Generic Method (GM)

Choose ε > 0 and x0 ∈ Rn.
While (TERMINATION CRITERIA not achieved), REPEAT:

compute the change

xk+1−xk = F (xk, problem data), [linesearch, trust-region]

to ensure f(xk+1) < f(xk).

set xk+1 := xk + F (xk, prob. data), k := k + 1. !
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to ensure f(xk+1) < f(xk).

set xk+1 := xk + F (xk, prob. data), k := k + 1. !

TC: ‖∇f(xk)‖ ≤ ε; maybe also, λmin(∇2f(xk)) ≥ −ε.
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Methods for local unconstrained optimization

minimize f(x) subject to x ∈ Rn (UP) [f ∈ C1(Rn) or f ∈ C2(Rn)]
A Generic Method (GM)

Choose ε > 0 and x0 ∈ Rn.
While (TERMINATION CRITERIA not achieved), REPEAT:

compute the change

xk+1−xk = F (xk, problem data), [linesearch, trust-region]

to ensure f(xk+1) < f(xk).

set xk+1 := xk + F (xk, prob. data), k := k + 1. !

TC: ‖∇f(xk)‖ ≤ ε; maybe also, λmin(∇2f(xk)) ≥ −ε.
e.g., xk+1 ≡ minimizer of some (simple) model of f around xk

−→ linesearch, trust-region methods.
if F = F (xk, xk−1, problem data) −→ conjugate gradients mthd.
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Issues to consider about GM

Global convergence of GM:
if ε := 0 and any x0 ∈ Rn: ∇f(xk) → 0, as k → ∞?

[maybe also, lim infk→∞ λmin(∇2f(xk)) ≥ 0?]

Local convergence of GM:
if ε := 0 and x0 sufficiently close to x∗ ≡ stationary/local
minimizer of f : xk → x∗, k → ∞?

Global/local complexity of GM: count number of iterations and
their cost required by GM to generate xk within desired
accuracy ε > 0, e.g., such that ‖∇f(xk)‖ ≤ ε.

[connection to convergence and its rate]

Rate of global/local convergence of GM.
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Rates of convergence of sequences: an example

lk := (1/2)k −→ 0 linearly,
qk := (1/2)2

k −→ 0 quadratically,
sk := k−k −→ 0 superlinearly as k −→ ∞.
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Rates of convergence on a
log scale.

k lk qk

0 1 0.5

1 0.5 0.25

2 0.25 0.6 · (−1)

3 0.12 0.4 · (−2)

4 0.6 · (−2) 0.1 · (−4)

5 0.3 · (−2) 0.2 · (−9)

6 0.2 · (−2) 0.5 · (−19)

Notation: (−i) := 10−i.
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Rates of convergence of sequences

{xk} ⊂ Rn,x∗ ∈ Rn; xk → x∗ as k → ∞.
p-Rate of convergence: xk → x∗ with rate p ≥ 1 if ∃ρ > 0 and
k0 ≥ 0 such that

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖p, ∀k ≥ k0.

ρ convergence factor; ek := xk − x∗ error in xk ≈ x∗.

Linear convergence: p = 1 ⇒ ρ < 1; (asymptotically,)
no of correct digits grows linearly in the number of iterations.

Quadratic convergence: p = 2; (asymptotically,)
no of correct digits grows exponentially in the number of
iterations.

Superlinear convergence: ‖xk+1 − x∗‖/‖xk − x∗‖ → 0 as
k → ∞. [faster than linear, slower than quadratic; practically very acceptable ]
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Summary: methods for local unconstrained probs.

Consider (UP), with f ∈ C1 or C2.
Methods:

iterative: start from any initial ‘guess’ x0, generate xk, k ≥ 0.
find (approximate) local solutions, unless special structure

(convexity, etc.)
terminate when iterate within ε of local optimality.

Issues: global convergence, local convergence, rate of
convergence, complexity.

Information employed on each iteration:
current xk: linesearch and trust-region methods
current+previous: conjugate-gradients method etc

Lecture 3: Methods for local unconstrained optimization. Linesearch methods – p. 6/17



A generic linesearch method

(UP): minimize f(x) subject to x ∈ Rn, where f ∈ C1 or C2.

A Generic Linesearch Method (GLM)

Choose ε > 0 and x0 ∈ Rn. For k ≥ 0, do:
While ‖∇f(xk)‖ > ε, REPEAT:

compute a descent search direction sk ∈ Rn,

∇f(xk)T sk < 0;

compute a stepsize αk > 0 along sk such that

f(xk + αksk) < f(xk);

set xk+1 := xk + αksk and k := k + 1. !

Recall property of descent directions (Lemma 1, Lecture 1).
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Performing a linesearch

How to compute αk?

Exact linesearch:
αk := argminα>0 f(xk + αsk).

computationally expensive
for nonlinear objectives.
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Exact linesearch for quadratic

functions

Example: q(x) = 1
2
xT



 3 2

2 6



x + (−2 8)T x, where x ∈ R2.

Let x1 := (−2 − 2)T and s1 := −∇q(x1) = (12 8)T .
Figure (a): contours of q and the line x1 + αs1; (b): the plane z(α) = x1 + αs1 is shown

cutting the q-surface; (c): plot of φ(α); (d): x2 is shown and φ′(α∗) = 0. !
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Exact linesearches for quadratic objectives

q(x) = gTx + 1
2x

THx, x ∈ Rn,

and let φk(α) := q(xk + αsk).
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Exact linesearches for quadratic objectives

q(x) = gTx + 1
2x

THx, x ∈ Rn,

and let φk(α) := q(xk + αsk). Then
φ′(α) = d

dαφ(α) =
∑n

i=1
dxi
dα · ∂

∂xi
φ(α)

=
∑n

i=1 s
k
i

∂
∂xi

q(xk + αsk)= (sk)T∇q(xk + αsk).
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q(xk + αsk)= (sk)T∇q(xk + αsk).

∇q(x) = g + Hx and ∇q(xk + αsk) = g + H(xk + αsk).
=⇒ φ′(α) = (sk)T∇q(xk) + α(sk)THsk.
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q(xk + αsk)= (sk)T∇q(xk + αsk).

∇q(x) = g + Hx and ∇q(xk + αsk) = g + H(xk + αsk).
=⇒ φ′(α) = (sk)T∇q(xk) + α(sk)THsk.

Thus α∗ stationary point of φ(α) iff (sk)THsk /= 0 and
φ′(α∗) = 0 =⇒ α∗ = −(sk)T∇q(xk)/(sk)THsk.

α∗ global minimizer of φ(α) if (sk)THsk > 0.
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q(xk + αsk)= (sk)T∇q(xk + αsk).

∇q(x) = g + Hx and ∇q(xk + αsk) = g + H(xk + αsk).
=⇒ φ′(α) = (sk)T∇q(xk) + α(sk)THsk.

Thus α∗ stationary point of φ(α) iff (sk)THsk /= 0 and
φ′(α∗) = 0 =⇒ α∗ = −(sk)T∇q(xk)/(sk)THsk.

α∗ global minimizer of φ(α) if (sk)THsk > 0.
for general f , no explicit expression of αk; approximate

minimizers of f(xk + αsk) may be used instead. [see Pb Sheet 1]
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