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A generic linesearch method

(UP): minimize f(x) subject to x ∈ Rn, where f ∈ C1 or C2.

A Generic Linesearch Method (GLM)

Choose ε > 0 and x0 ∈ Rn. For k ≥ 0, do:
While ‖∇f(xk)‖ > ε, REPEAT:

compute a descent search direction sk ∈ Rn,

∇f(xk)T sk < 0;

compute a stepsize αk > 0 along sk such that

f(xk + αksk) < f(xk);

set xk+1 := xk + αksk and k := k + 1. !

Recall property of descent directions (Lemma 1, Lecture 1).
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Inexact linesearch

want stepsize αk not “too short”.

Example: f(x) = x2; x0 = 2; sk = −1 and αk = 1/(2k+1)

for all k. Then GLM gives xk −→ 1 as k −→ ∞. [see Pb Sheet 1]
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Inexact linesearch ...

want stepsize αk not “too short”.

A backtracking linesearch algorithm

Choose α(0) > 0 and τ ∈ (0, 1).

While f(xk + α(i)s
k)′′ ≥′′ f(xk), REPEAT:

set α(i+1) := τα(i) and i := i + 1.

END.
Set αk := α(i). !
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Inexact linesearch ...

want stepsize αk not “too short”.

A backtracking linesearch algorithm

Choose α(0) > 0 and τ ∈ (0, 1).

While f(xk + α(i)s
k)′′ ≥′′ f(xk), REPEAT:

set α(i+1) := τα(i) and i := i + 1.

END.
Set αk := α(i). !

• α(0) := 1; τ := 0.5 =⇒ α(0) := 1, α(1) := 0.5, α(2) := 0.25, ...

• “<”: simple or more sophisticated decrease in f at xk.
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Inexact linesearch ...

want stepsize αk not “too long” compared to the decrease in f .

Example: f(x) = x2; x0 = 2; sk = (−1)k+1 and αk = 2 + 3/2k+1

for all k. Then GLM gives xk −→ ±1 as k −→ ∞. [see Pb Sheet 1]
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Inexact linesearch ...

want stepsize αk not “too long” compared to the decrease in f .

The Armijo condition

Choose β ∈ (0, 1).
Compute αk > 0 such that

f(xk + αksk) ≤ f(xk) + βαk∇f(xk)T sk (∗)

is satisfied. !
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Inexact linesearch ...

want stepsize αk not “too long” compared to the decrease in f .

The Armijo condition

Choose β ∈ (0, 1).
Compute αk > 0 such that

f(xk + αksk) ≤ f(xk) + βαk∇f(xk)T sk (∗)

is satisfied. !

• in practice, β := 0.1 or even β := 0.001.

• due to the descent condition, ∃αk > 0 (unknown explicitly
in general) such that (∗) holds for all α ∈ [0,αk]. [see Pb Sheet 2]

Choose αk as large as possible in (0,αk] or in other (greater)
intervals of positive α-values that may satisfy (∗).
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Inexact linesearch ...

Φk : R → R, Φk(α) := f(xk + αsk), α ≥ 0. Then
Armijo ⇐⇒ Φk(αk) ≤ Φk(0) + βαkΦ′

k(0).
Let yβ(α) := Φk(0) + βαΦ′

k(0), α ≥ 0.
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Inexact linesearch ...

The backtracking-Armijo (bArmijo) linesearch algorithm

Choose α(0) > 0, τ ∈ (0, 1) and β ∈ (0, 1).

While f(xk + α(i)s
k) > f(xk) + βα(i)∇f(xk)T sk, REPEAT:

set α(i+1) := τα(i) and i := i + 1.

END.
Set αk := α(i). !

• α(0), β and τ chosen as before.

on each GLM iteration k, the bArmijo linesearch algorithm
terminates in a finite number of steps with αk > 0, due to the
descent condition. [see Pb Sheet 2]

[without any additional assumptions on f ∈ C1]
other popular/useful inexact linesearch techniques: Wolfe,

Goldstein-Armijo, etc.
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Global convergence of GLM

• f ∈ C1(Rn); ∇f is Lipschitz continuous (on Rn) iff ∃L > 0,
‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn.

Lemma 2. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f . Then at the kth iteration, the Armijo condition :

f(xk + αsk) ≤ f(xk) + βα∇f(xk)T sk (ac)
is satisfied for all α ∈ [0,αk

max], where

αk
max =

(β − 1)∇f(xk)T sk

L‖sk‖2
.
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Global convergence of GLM

• f ∈ C1(Rn); ∇f is Lipschitz continuous (on Rn) iff ∃L > 0,
‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn.

Lemma 2. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f . Then at the kth iteration, the Armijo condition :

f(xk + αsk) ≤ f(xk) + βα∇f(xk)T sk (ac)
is satisfied for all α ∈ [0,αk

max], where

αk
max =

(β − 1)∇f(xk)T sk

L‖sk‖2
.

Proof. Firstly note that αk
max > 0 since β ∈ (0, 1) and sk is

descent direction.
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Global convergence of GLM

• f ∈ C1(Rn); ∇f is Lipschitz continuous (on Rn) iff ∃L > 0,
‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn.

Lemma 2. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f . Then at the kth iteration, the Armijo condition :

f(xk + αsk) ≤ f(xk) + βα∇f(xk)T sk (ac)
is satisfied for all α ∈ [0,αk

max], where

αk
max =

(β − 1)∇f(xk)T sk

L‖sk‖2
.

Proof. Firstly note that αk
max > 0 since β ∈ (0, 1) and sk is

descent direction.
First-order Taylor (see Video 2) gives the first equality below:
for any α > 0 and some α̃ ∈ (0,α), we have
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Global convergence of GLM...

Proof (continued).
f(xk + αsk) = f(xk) + α∇f(xk + α̃sk)T sk

= f(xk) + α∇f(xk)T sk + α[∇f(xk + α̃sk) − ∇f(xk)]T sk

≤ f(xk) + α∇f(xk)T sk + α‖∇f(xk + α̃sk) − ∇f(xk)‖ · ‖sk‖
by Cauchy-Schwarz inequality

≤ f(xk) + α∇f(xk)T sk + αL‖xk + α̃sk − xk|| · ‖sk‖
by Lipschitz continuity of the gradient

≤ f(xk) + α∇f(xk)T sk + α2L‖sk‖2,

where we used α̃ ≤ α.
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Global convergence of GLM...

Proof (continued).
f(xk + αsk) = f(xk) + α∇f(xk + α̃sk)T sk

= f(xk) + α∇f(xk)T sk + α[∇f(xk + α̃sk) − ∇f(xk)]T sk

≤ f(xk) + α∇f(xk)T sk + α‖∇f(xk + α̃sk) − ∇f(xk)‖ · ‖sk‖
by Cauchy-Schwarz inequality

≤ f(xk) + α∇f(xk)T sk + αL‖xk + α̃sk − xk|| · ‖sk‖
by Lipschitz continuity of the gradient

≤ f(xk) + α∇f(xk)T sk + α2L‖sk‖2,

where we used α̃ ≤ α.

Thus Armijo condition (ac) is satisfied for all α ≥ 0 such that
f(xk) + α∇f(xk)T sk + α2L‖sk‖2 ≤ f(xk) + βα∇f(xk)T sk,

which is equivalent to α ∈ [0,αk
max]. !
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Global convergence of GLM ...

Lemma 3. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f . Then at the kth iteration, the bArmijo stepsize αk satisfies

αk ≥ min{α(0), τα
k
max} for all k ≥ 0,

where αk
max is defined in Lemma 2.
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Global convergence of GLM ...

Lemma 3. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f . Then at the kth iteration, the bArmijo stepsize αk satisfies

αk ≥ min{α(0), τα
k
max} for all k ≥ 0,

where αk
max is defined in Lemma 2.

Proof of Lemma 3. If α(0) satisfies the Armijo condition (ac),
bArmijo terminates with i = 0 and αk = α(0).
Else, bArmijo is guaranteed to terminate as soon as
αk ≤ αk

max. Let (i − 1) be the last iteration such that
α(i−1) > αk

max and α(i) ≤ αk
max.

It follows that
αk = α(i) = τα(i−1)> ταk

max.

Note that if α(0) > αk
max, then α(i) = τ iα(0) ≤ αk

max for any
i ≥ log(α(0)/α

k
max)/| log τ |. !

(global convergence of GLM to be continued ...)
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