Lecture 4: Linesearch methods (continued)
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A generic linesearch method (Lecture 2)

(UP): minimize f(x) subjectto x= € R", where f € C! or C2.

A Generic Linesearch Method (GLM)

Choose € >0 and 22 € R*. For k>0, do:
While ||V f(x®)|| > €, REPEAT:

B compute a descent search direction sF € R7?,

Vf(a:k’)Tsk < 03
B compute a stepsize ak >0 along s® such that
f(a® +a®s®) < f(z");
Bset 2ttt = 2F + aks® and ki=k+1. O

Recall property of descent directions (Lemma 1, Lecture 1).
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Global convergence of GLM (Lecture 3)

e f € C1(R™); V£ Is Lipschitz continuous (on R®?) iff 3L > o,
IVf(y) — Vf(z)|| < Llly — ||, Vz,yeR"

Lemma 2. Let f € ¢c*(R™) with v £ Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f. Then at the kth iteration, the Armijo condition :

f(a* + ask) < f(a¥) + BaVf(a¥)Tsk  (ac)

. ENT Kk
is satisfied for all « € [0,a% ], where of = (8 1]3F£|(|f ) s”
S

Lemma 3. Let f € ¢c*(R®) with v £ Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f. Then at the kth iteration, the bArmijo stepsize o* satisfies

af > min{a @, 7ak 1} forall &k > o,

max

where ok _ is defined in Lemma 2.
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Global convergence of GLM (continued)

Theorem 4. Let f € c*(R™) be bounded below on R™ by fiow.
Let v £ Lipschitz continuous. Apply GLM with bArmijo
linesearch to minimizing f with € := 0. Then

either

there exists 1 > 0 such that vf(z!) =0

lim min { VF@")"s" |Vf(:13k)Tsk|} — 0.

or

k00 [s
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Global convergence of GLM (continued)

Theorem 4. Let f € c*(R™) be bounded below on R™ by fiow.
Let v £ Lipschitz continuous. Apply GLM with bArmijo
linesearch to minimizing f with € := 0. Then
either

there exists 1 > 0 such that vf(z!) =0
or

Iim min
k— oo

ENT _k
{'Vfl('wkﬂ > |,|Vf(mk)Tsk|} = 0.
S
Proof of Theorem 4. If there exists 1 > 0 such that
Vf(x!) = 0, we are done.
Assume now that v f(z*) £ o for all K > 0. Then Armijo
condition (ac) with « := o*, and z**! = z* + o*sk, give

F(xrt1) < f(x*) + Ba*V f(xF)Tsk for all £ > o,
or equivalently, for all £ > o,

Lecture 4: Linesearch methods (continued). Steepest descent methods — p. 4/18



Global convergence of GLM ...

Proof of Theorem 4. or equivalently, for all & > o,
f(@F) — f(xFth) > —BaFV f(xF)Ts* = Ba|V f(2*))Ts*], (1)
where in the last equality, we used
(=Vf(xF)T's* = |V f(x*))Ts"|
since V f(z*)Ts* < 0 (s* Is descent).
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Global convergence of GLM ...

Proof of Theorem 4. or equivalently, for all & > o,
f(@F) — f(xFth) > —BaFV f(xF)Ts* = Ba|V f(2*))Ts*], (1)
where in the last equality, we used
(=Vf(xF)T's* = |V f(x*))Ts"|
since V f(z*)Ts* < 0 (s* Is descent).

Let i > 0. Summing up (1) from k& = 0 to &k = i (see next slide),
we find that consecutive terms on the left-hand side cancel to
give

f(x%) — f(x*1h) > B3 o a®|V f(z¥))Ts"]. (2)

Lecture 4: Linesearch methods (continued). Steepest descent methods — p. 5/18



Global convergence of GLM ...

Proof of Theorem 4. or equivalently, for all & > o,
f(@F) — f(xFth) > —BaFV f(xF)Ts* = Ba|V f(2*))Ts*], (1)
where in the last equality, we used
(=Vf(xF)T's* = |V f(x*))Ts"|
since V f(z*)Ts* < 0 (s* Is descent).

Let i > 0. Summing up (1) from k& = 0 to &k = i (see next slide),
we find that consecutive terms on the left-hand side cancel to
give

F(@°) — f(a't) > BY 4o |V F(@*)TsH.  (2)
As f is bounded below by fiow, f(zit1) > fiow for all i > o.
Thus, letting i — oo in (2), we deduce that

00 > f(2°) — fiow > B pep @*|V f(z*)Ts*|, (3)
We deduce from the convergence of the series in (3) that

Jim |V f(x*))Ts® =0. (4)
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Global convergence of GLM ...

Proof of Theorem 4. Recall Lemma 3 (i.e.,
af > min{a, 7a® __}). Define the following index sets
Ki={k: oy >7ak trand K, = {k: ap) < Tak__},

max max

where oF _is defined in Lemma 2. Note that every iteration &

max

belongs either to K, or K.
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Global convergence of GLM ...

Proof of Theorem 4. Recall Lemma 3 (i.e.,
af > min{a, 7a® __}). Define the following index sets
Ki={k: ap >r1al, }and K; = {k: o) < Taf,..},

where oF _is defined in Lemma 2. Note that every iteration &

max

belongs either to K, or K.
For all &k € K, we have from Lemmas 2 & 3 that

ok |V f(ak))Tsh| > A5Pr . (IDLEDTH)® 5

sl

and so (4) implies limy_, oo rexc, |V F(xF)Ts*|/||s*|| = O.
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Global convergence of GLM ...

Proof of Theorem 4. Recall Lemma 3 (i.e.,
af > min{a, 7a® __}). Define the following index sets
Ki={k: ap >r1al, }and K; = {k: o) < Taf,..},

where oF _is defined in Lemma 2. Note that every iteration &

max

belongs either to K, or K.
For all &k € K, we have from Lemmas 2 & 3 that

QMW F(ah)) Tk > AT . (15T 5

[s® ]
and so (4) implies limy_, oo rexc, |V F(xF)Ts*|/||s*|| = O.
Lemma 3 gives that o* > «() for all k € K, and so (4)
prOVideS limk,_>oo,k61(;2 |Vf(£l?k)TSk| = 0.
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Global convergence of GLM ...

Proof of Theorem 4. Recall Lemma 3 (i.e.,
af > min{a, 7a® __}). Define the following index sets
Ki={k: ap >r1al, }and K; = {k: o) < Taf,..},

where oF _is defined in Lemma 2. Note that every iteration &

max

belongs either to K, or K.
For all &k € K, we have from Lemmas 2 & 3 that

QMW F(ah)) Tk > AT . (15T 5

[s%
and so (4) implies limy_,co kerc, |V (xF)Ts*|/||s*|| = 0.
Lemma 3 gives that o* > «() for all k € K, and so (4)
provides limy_y oo, kexc, |V f(x*)Tsk| = o.
These two limits for the ¢, and K€, subsequences, and the
property min{a, b} < aw, bx, Vk, give the required limit,
namely, limy_, o min { AZ(Cadhthiy |Vf(a:k)Tsk|} — 0.0

sl
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Global convergence of GLM ...

Interpretation of Theorem 4: Recall

_ (=VEEP)TS* V@) TS
€08 Ok = [ TF@m) 1T — TV F@®) [>T

Then Th 4 gives, it V£(z*) # o for all &,

klim |V £(x*)|| - cos 8 - min{1, ||s*||} = 0.
—00

A descent direction pg.
Thus to ensure global convergence of GLM, namely,

|V f(x*)|| — 0as k — oo, it is not sufficient to have s* be
descent for each k; we need cos 0, > § > 0 for all k, so that s* is
prevented from becoming orthogonal to the gradient as k increases.
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Summary and a look ahead

Linesearch methods:

m Linesearch: how to choose the stepsize o, from any x*
and along any descent direction s*.

m How to choose a descent direction s¥? What are the
important such choices of s*?

B Steepest descent direction (next).
m Newton direction.
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