
Lecture 4: Linesearch methods (continued)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Lecture 4: Linesearch methods (continued) – p. 1/18



A generic linesearch method (Lecture 2)

(UP): minimize f(x) subject to x ∈ Rn, where f ∈ C1 or C2.

A Generic Linesearch Method (GLM)

Choose ε > 0 and x0 ∈ Rn. For k ≥ 0, do:
While ‖∇f(xk)‖ > ε, REPEAT:

compute a descent search direction sk ∈ Rn,

∇f(xk)T sk < 0;

compute a stepsize αk > 0 along sk such that

f(xk + αksk) < f(xk);

set xk+1 := xk + αksk and k := k + 1. !

Recall property of descent directions (Lemma 1, Lecture 1).
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Global convergence of GLM (Lecture 3)

• f ∈ C1(Rn); ∇f is Lipschitz continuous (on Rn) iff ∃L > 0,
‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn.

Lemma 2. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f . Then at the kth iteration, the Armijo condition :

f(xk + αsk) ≤ f(xk) + βα∇f(xk)T sk (ac)

is satisfied for all α ∈ [0,αk
max], where αk

max =
(β − 1)∇f(xk)T sk

L‖sk‖2
.

Lemma 3. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Assume a GLM is applied to minimizing
f . Then at the kth iteration, the bArmijo stepsize αk satisfies

αk ≥ min{α(0), ταk
max} for all k ≥ 0,

where αk
max is defined in Lemma 2.
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Global convergence of GLM (continued)

Theorem 4. Let f ∈ C1(Rn) be bounded below on Rn by flow.
Let ∇f Lipschitz continuous. Apply GLM with bArmijo
linesearch to minimizing f with ε := 0. Then
either

there exists l ≥ 0 such that ∇f(xl) = 0

or

lim
k→∞

min

{
|∇f(xk)T sk|

‖sk‖
, |∇f(xk)T sk|

}
= 0.
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Global convergence of GLM (continued)

Theorem 4. Let f ∈ C1(Rn) be bounded below on Rn by flow.
Let ∇f Lipschitz continuous. Apply GLM with bArmijo
linesearch to minimizing f with ε := 0. Then
either

there exists l ≥ 0 such that ∇f(xl) = 0

or

lim
k→∞

min

{
|∇f(xk)T sk|

‖sk‖
, |∇f(xk)T sk|

}
= 0.

Proof of Theorem 4. If there exists l ≥ 0 such that
∇f(xl) = 0, we are done.
Assume now that ∇f(xk) )= 0 for all k ≥ 0. Then Armijo
condition (ac) with α := αk, and xk+1 = xk + αksk, give

f(xk+1) ≤ f(xk) + βαk∇f(xk)T sk for all k ≥ 0,
or equivalently, for all k ≥ 0,
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Global convergence of GLM ...

Proof of Theorem 4. or equivalently, for all k ≥ 0,
f(xk) − f(xk+1) ≥ −βαk∇f(xk)T sk = βαk|∇f(xk))T sk|, (1)

where in the last equality, we used
(−∇f(xk))T sk = |∇f(xk))T sk|

since ∇f(xk)T sk < 0 (sk is descent).
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Global convergence of GLM ...

Proof of Theorem 4. or equivalently, for all k ≥ 0,
f(xk) − f(xk+1) ≥ −βαk∇f(xk)T sk = βαk|∇f(xk))T sk|, (1)

where in the last equality, we used
(−∇f(xk))T sk = |∇f(xk))T sk|

since ∇f(xk)T sk < 0 (sk is descent).

Let i ≥ 0. Summing up (1) from k = 0 to k = i (see next slide),
we find that consecutive terms on the left-hand side cancel to
give

f(x0) − f(xi+1) ≥ β
∑i

k=0 α
k|∇f(xk))T sk|. (2)
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Global convergence of GLM ...

Proof of Theorem 4. or equivalently, for all k ≥ 0,
f(xk) − f(xk+1) ≥ −βαk∇f(xk)T sk = βαk|∇f(xk))T sk|, (1)

where in the last equality, we used
(−∇f(xk))T sk = |∇f(xk))T sk|

since ∇f(xk)T sk < 0 (sk is descent).

Let i ≥ 0. Summing up (1) from k = 0 to k = i (see next slide),
we find that consecutive terms on the left-hand side cancel to
give

f(x0) − f(xi+1) ≥ β
∑i

k=0 α
k|∇f(xk))T sk|. (2)

As f is bounded below by flow, f(xi+1) ≥ flow for all i ≥ 0.
Thus, letting i −→ ∞ in (2), we deduce that

∞ > f(x0) − flow ≥ β
∑∞

k=0 α
k|∇f(xk))T sk|, (3)

We deduce from the convergence of the series in (3) that
lim

k−→∞
αk|∇f(xk))T sk| = 0. (4)
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Global convergence of GLM ...

Proof of Theorem 4. Recall Lemma 3 (i.e.,
αk ≥ min{α(0), τα

k
max}). Define the following index sets

K1 = {k : α(0) ≥ ταk
max} and K2 = {k : α(0) < ταk

max},
where αk

max is defined in Lemma 2. Note that every iteration k

belongs either to K1 or K2.
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Global convergence of GLM ...

Proof of Theorem 4. Recall Lemma 3 (i.e.,
αk ≥ min{α(0), τα

k
max}). Define the following index sets

K1 = {k : α(0) ≥ ταk
max} and K2 = {k : α(0) < ταk

max},
where αk

max is defined in Lemma 2. Note that every iteration k

belongs either to K1 or K2.
For all k ∈ K1, we have from Lemmas 2 & 3 that

αk|∇f(xk))T sk| ≥ (1−β)τ
L

·
(

|∇f(xk)T sk|
‖sk‖

)2
≥ 0

and so (4) implies limk→∞,k∈K1 |∇f(xk)T sk|/‖sk‖ = 0.
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Global convergence of GLM ...

Proof of Theorem 4. Recall Lemma 3 (i.e.,
αk ≥ min{α(0), τα

k
max}). Define the following index sets

K1 = {k : α(0) ≥ ταk
max} and K2 = {k : α(0) < ταk

max},
where αk

max is defined in Lemma 2. Note that every iteration k

belongs either to K1 or K2.
For all k ∈ K1, we have from Lemmas 2 & 3 that

αk|∇f(xk))T sk| ≥ (1−β)τ
L

·
(

|∇f(xk)T sk|
‖sk‖

)2
≥ 0

and so (4) implies limk→∞,k∈K1 |∇f(xk)T sk|/‖sk‖ = 0.
Lemma 3 gives that αk ≥ α(0) for all k ∈ K2 and so (4)
provides limk→∞,k∈K2 |∇f(xk)T sk| = 0.
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Global convergence of GLM ...

Proof of Theorem 4. Recall Lemma 3 (i.e.,
αk ≥ min{α(0), τα

k
max}). Define the following index sets

K1 = {k : α(0) ≥ ταk
max} and K2 = {k : α(0) < ταk

max},
where αk

max is defined in Lemma 2. Note that every iteration k

belongs either to K1 or K2.
For all k ∈ K1, we have from Lemmas 2 & 3 that

αk|∇f(xk))T sk| ≥ (1−β)τ
L

·
(

|∇f(xk)T sk|
‖sk‖

)2
≥ 0

and so (4) implies limk→∞,k∈K1 |∇f(xk)T sk|/‖sk‖ = 0.
Lemma 3 gives that αk ≥ α(0) for all k ∈ K2 and so (4)
provides limk→∞,k∈K2 |∇f(xk)T sk| = 0.
These two limits for the K1 and K2 subsequences, and the
property min{ak, bk} ≤ ak, bk, ∀k, give the required limit,
namely, limk→∞ min

{
|∇f(xk)T sk|

‖sk‖ , |∇f(xk)T sk|
}
= 0. !
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Global convergence of GLM ...

Interpretation of Theorem 4: Recall

cos θk = (−∇f(xk))T sk

‖∇f(xk)‖·‖sk‖ = |∇f(xk)T sk|
‖∇f(xk)‖·‖sk‖ .

Then Th 4 gives, if ∇f(xk) )= 0 for all k,

lim
k→∞

‖∇f(xk)‖ · cos θk · min{1, ‖sk‖} = 0.

k

∆–
kf

p

A descent direction pk.
Thus to ensure global convergence of GLM, namely,
‖∇f(xk)‖ −→ 0 as k → ∞, it is not sufficient to have sk be
descent for each k; we need cos θk ≥ δ > 0 for all k, so that sk is
prevented from becoming orthogonal to the gradient as k increases.
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Summary and a look ahead

Linesearch methods:

Linesearch: how to choose the stepsize αk, from any xk

and along any descent direction sk.

How to choose a descent direction sk? What are the
important such choices of sk?

Steepest descent direction (next).
Newton direction.
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