Lecture 5: Steepest descent methods

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

A generic linesearch method (Lecture 2)

(UP): minimize f(x) subject to $x \in \mathbb{R}^n$, where $f \in \mathcal{C}^1$ or \mathcal{C}^2 .

A Generic Linesearch Method (GLM)

Choose $\epsilon > 0$ and $x^0 \in \mathbb{R}^n$. For $k \geq 0$, do: While $\|
abla f(x^k) \| > \epsilon$, REPEAT:

 \blacksquare compute a <u>descent</u> search direction $s^k \in \mathbb{R}^n$,

$$\nabla f(x^k)^T s^k < 0;$$

 ${\color{red} \blacksquare}$ compute a stepsize $lpha^k > 0$ along s^k such that

$$f(x^k + \alpha^k s^k) < f(x^k);$$

uset $x^{k+1}:=x^k+lpha^ks^k$ and k:=k+1. \Box

Recall property of descent directions (Lemma 1, Lecture 1).

Global convergence of GLM (Lecture 4)

Theorem 4. Let $f \in C^1(\mathbb{R}^n)$ be bounded below on \mathbb{R}^n by f_{low} . Let ∇f Lipschitz continuous. Apply GLM with bArmijo linesearch to minimizing f with $\epsilon := 0$. Then either

there exists $l \ge 0$ such that $\nabla f(x^l) = 0$

or

$$\lim_{k \to \infty} \min \left\{ \frac{|\nabla f(x^k)^T s^k|}{\|s^k\|}, |\nabla f(x^k)^T s^k| \right\} = 0.$$
 (CONV)

Note that the limit (conv) is equivalent to $\lim_{k\to\infty} \|\nabla f(x^k)\| \cdot \cos \theta_k \cdot \min\{1, \|s^k\|\} = 0,$

where $\cos \theta_k = rac{(abla f(x^k))^T s^k}{\|
abla f(x^k)\| \cdot \|s^k\|}$.

Steepest descent (SD) direction: set $s^k := -\nabla f(x^k)$, $k \ge 0$, in Generic Linesearch Method (GLM).

Steepest descent (SD) direction: set $s^k := -\nabla f(x^k)$, $k \ge 0$, in Generic Linesearch Method (GLM).

$$s^k \quad \underline{\text{descent}} \text{ direction whenever } \nabla f(x^k) \neq 0:$$

$$\nabla f(x^k)^T s^k < 0 \iff \nabla f(x^k)^T (-\nabla f(x^k)) < 0 \iff -\|\nabla f(x^k)\|^2 < 0.$$

■ s^k steepest descent: unique global solution of minimize_{$s \in \mathbb{R}^n$} $f(x^k) + s^T \nabla f(x^k)$ subject to $||s|| = ||\nabla f(x^k)||$. Cauchy-Schwarz: $|s^T \nabla f(x^k)| \le ||s|| \cdot ||\nabla f(x^k)||, \forall s$, with equality iff s is proportional to $\nabla f(x^k)$.

Steepest descent methods

Method of steepest descent (SD): GLM with $s^k == SD$ direction; any linesearch.

Steepest Descent (SD) Method

Choose
$$\epsilon > 0$$
 and $x^0 \in \mathbb{R}^n$. While $\|\nabla f(x^k)\| > \epsilon$, REPEAT:
compute $s^k = -\nabla f(x^k)$.
compute a stepsize $\alpha^k > 0$ along s^k such that
 $f(x^k + \alpha^k s^k) < f(x^k)$;
set $x^{k+1} := x^k + \alpha^k s^k$ and $k := k + 1$.

SD-bA :== SD method with bArmijo linesearches.

Global convergence of steepest descent methods

• $f \in \mathcal{C}^1(\mathbb{R}^n); \nabla f$ is Lipschitz continuous (on \mathbb{R}^n) iff $\exists L > 0$, $\| \nabla f(y) - \nabla f(x) \| \leq L \| y - x \|, \quad \forall x, y \in \mathbb{R}^n.$

Theorem 5 Let $f \in C^1(\mathbb{R}^n)$ be bounded below on \mathbb{R}^n . Let ∇f be Lipschitz continuous. Apply the SD-e or the SD-bA method to minimizing f with $\epsilon := 0$. Then both variants of the SD method have the property:

either

```
there exists l \ge 0 such that \nabla f(x^l) = 0
```

or

 $\|
abla f(x^k)\| o 0$ as $k o \infty$.

Proof for SD-bA. Let $s^k = -\nabla f(x^k)$ for all k in Th 4.

SD methods have excellent global convergence properties (under weak assumptions).

SD methods are scale-dependent.

poorly scaled problem/variables \implies SD direction gives little progress.

Usually, SD methods converge very slowly to solution, asymptotically.

Example of a poorly scaled quadratic.

$$f(x) = rac{1}{2}(ax_1^2 + x_2^2) = rac{1}{2}x^T \left(egin{array}{cc} a & 0 \ 0 & 1 \end{array}
ight)x, \quad x = (x_1 \ x_2)^T, \quad (\diamondsuit)$$

where a > 0. Note $x^* = (0 \ 0)^T$ unique global minimizer. $a \gg 1 \longrightarrow f$ poorly scaled (or poorly conditioned). Example of a poorly scaled quadratic.

$$f(x) = rac{1}{2}(ax_1^2 + x_2^2) = rac{1}{2}x^T \left(egin{array}{cc} a & 0 \ 0 & 1 \end{array}
ight)x, \quad x = (x_1 \ x_2)^T, \quad (\diamondsuit)$$

where a > 0. Note $x^* = (0 \ 0)^T$ unique global minimizer. $a \gg 1 \longrightarrow f$ poorly scaled (or poorly conditioned). apply SD-e to (\Diamond) starting at $x^0 := (1 \ a)^T$. Then[see Pb Sheet 2]

$$x^k = \left(rac{a-1}{a+1}
ight)^k \left(egin{array}{c} (-1)^k \ a \end{array}
ight), \quad k \geq 0.$$

Example of a poorly scaled quadratic.

$$f(x) = \frac{1}{2}(ax_1^2 + x_2^2) = \frac{1}{2}x^T \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} x, \quad x = (x_1 \ x_2)^T, \quad (\diamondsuit)$$

where a > 0. Note $x^* = (0 \ 0)^T$ unique global minimizer. $a \gg 1 \longrightarrow f$ poorly scaled (or poorly conditioned). apply SD-e to (\Diamond) starting at $x^0 := (1 \ a)^T$. Then[see Pb Sheet 2]

$$x^k = \left(rac{a-1}{a+1}
ight)^k \left(egin{array}{c} (-1)^k \ a \end{array}
ight), \quad k \geq 0.$$

 $\implies x^k \to 0$ as $k \to \infty$, linearly with $\rho := |(a-1)/(a+1)|$ convergence factor.

 $\blacksquare a \gg 1 \implies \rho$ closer to $1 \implies$ SD-e converges very slowly.

Example of a well-scaled quadratic.

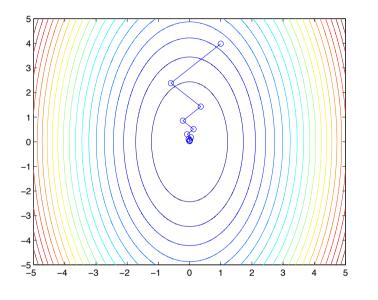
Linear transformation of variables:

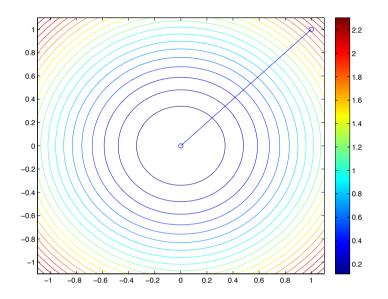
$$y=\left(egin{array}{cc} a^{1/2} & 0 \ 0 & 1 \end{array}
ight)x.$$

let *f*(*y*) := *f*(*x*(*y*)), namely *f* in the new coordinates *y*.
⇒ *f*(*y*) = ½*y*^T*y* = ½(*y*₁² + *y*₂²).
→ *f* well-scaled. *y*^{*} = (0 0)^T unique global minimizer.

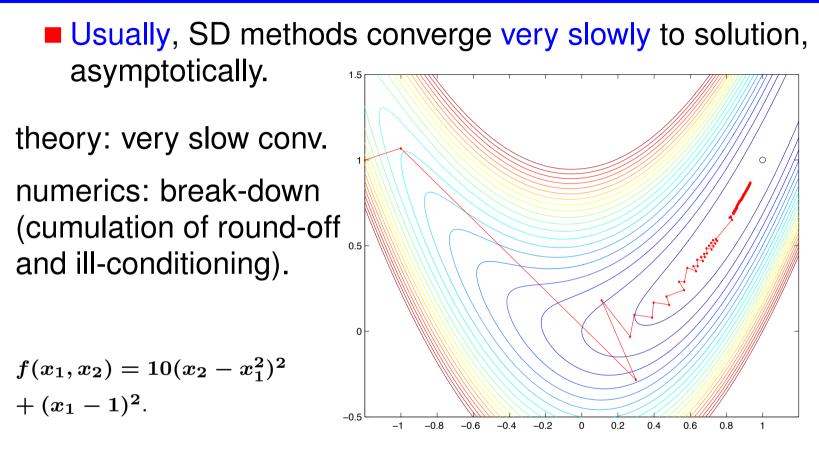
apply SD-e to
$$\overline{f}$$
 from any $y^0 \in \mathbb{R}^2$: $y^1 = (0 \ 0)^T = y^*$.

The scale-dependence of steepest descent





The effect of problem scaling on SD-e performance. Left figure: $a = 10^{0.6}$ (mildly poor scaling). Right figure: a = 1 ("perfect" scaling).



SD-bA applied to the Rosenbrock function f.

Asymptotically, SD converges <u>linearly</u> to a solution. Namely, if $x^k \to x^*$, as $k \to \infty$, then $\|x^{k+1} - x^*\| \le \rho \|x^k - x^*\|$, $\forall k$ suff. large

BUT

Asymptotically, SD converges linearly to a solution. Namely, if $x^k \to x^*$, as $k \to \infty$, then $\|x^{k+1} - x^*\| \le \rho \|x^k - x^*\|$, $\forall k$ suff. large

BUT convergence factor ρ v. close to 1 usually!

Asymptotically, SD converges <u>linearly</u> to a solution. Namely, if $x^k \to x^*$, as $k \to \infty$, then $\|x^{k+1} - x^*\| \le \rho \|x^k - x^*\|$, $\forall k$ suff. large

BUT convergence factor ρ v. close to 1 usually!

Theorem 6 $f \in C^2$; x^* local minimizer of f with $\nabla^2 f(x^*)$ positive definite $\longrightarrow \lambda^*_{\max}$, λ^*_{\min} eigenvalues. Apply SD-e to min f. If $x^k \to x^*$ as $k \to \infty$, then x^k converges linearly to x^*

 $\rho \leq rac{\kappa(x^*)-1}{\kappa(x^*)+1} :=
ho_{SD},$

where $\kappa(x^*) = \lambda^*_{\max}/\lambda^*_{\min}$ condition number of $abla^2 f(x^*)$.

Asymptotically, SD converges linearly to a solution. Namely, if $x^k \to x^*$, as $k \to \infty$, then $\|x^{k+1} - x^*\| \le \rho \|x^k - x^*\|$, $\forall k$ suff. large

BUT convergence factor ρ v. close to 1 usually!

Theorem 6 $f \in C^2$; x^* local minimizer of f with $\nabla^2 f(x^*)$ positive definite $\longrightarrow \lambda^*_{\max}$, λ^*_{\min} eigenvalues. Apply SD-e to min f. If $x^k \to x^*$ as $k \to \infty$, then x^k converges linearly to x^*

$$ho \leq rac{\kappa(x^*)-1}{\kappa(x^*)+1} :=
ho_{SD},$$

where $\kappa(x^*) = \lambda^*_{\max}/\lambda^*_{\min}$ condition number of $abla^2 f(x^*)$.

• practice:
$$ho=
ho_{SD}$$
;
for Rosenbrock f: $\kappa(x^*)=258.10, \,
ho_{SD}pprox 0.992.$

Summary: steepest descent methods

- first-order method \longrightarrow inexpensive.
- global convergence under weak assumptions, but no second-order optimality guarantees for the generated solution.
- scale-dependent; too expensive, or impossible, to make a function well-scaled.
- when the objective is poorly scaled, very very slow convergence to a solution; hence, not used in general.
- useful sometimes: for example, for some convex problems with special structure that are very well conditioned (compressed sensing, etc).