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A generic linesearch method (Lecture 2)

(UP): minimize f(x) subjectto x= € R", where f € C! or C2.

A Generic Linesearch Method (GLM)

Choose € >0 and 22 € R*. For k>0, do:
While ||V f(x®)|| > €, REPEAT:

B compute a descent search direction sF € R7?,

Vf(a:k’)Tsk < 03
B compute a stepsize ak >0 along s® such that
f(a® +a®s®) < f(z");
Bset 2ttt = 2F + aks® and ki=k+1. O

Recall property of descent directions (Lemma 1, Lecture 1).
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Global convergence of GLM (Lecture 4)

Theorem 4. Let f € ¢*(R™) be bounded below on R™ by fiow-
Let v Lipschitz continuous. Apply GLM with bArmijo
linesearch to minimizing f with € := 0. Then
either

there exists 1 > 0 such that vf(z!) =0
or

k00 I

k\T ok
lim min{'vf(m )8 |,|Vf(:ck)Tsk|} = 0. (conv)

Note that the limit (conv) is equivalent to
klim |V £(x*)|| - cos ), - min{1, ||s*||} = 0,

. 2PN T gk
where cos 0, = |(|V¥(fw(k)||)')||8k|| )
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Steepest descent method

Steepest descent (SD) direction: set s* := —V f(z*), k > 0,
in Generic Linesearch Method (GLM).
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Steepest descent method

Steepest descent (SD) direction: set s* := —V f(z*), £ > 0,
in Generic Linesearch Method (GLM).

m s* descent direction whenever V f(z*) # 0:

Vf@@k)Tsk <0 <= V()T (=Vf(z")) <0 <= —||Vf(=")|I* <o.

m s* steepest descent: unique global solution of
minimize;cpn f(x®) + sTVF(x¥) subject to ||s|| = ||V Ff(x®)].

Cauchy-Schwarz: [sTV f(z*)| < ||s]| - ||V f(z®)], Vs,
with equality iff s is proportional to V f(z").
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Steepest descent methods

Method of steepest descent (SD): GLM with s* == SD
direction; any linesearch.

Steepest Descent (SD) Method

Choose € >0 and 2° € R®. Wwhile ||V f(z®)|| > €, REPEAT:
B compute s¥ = —Vf(zF).
B compute a stepsize ak >0 along s® such that
k k _k k
fx® +as”) < f(z);
Bset 2Ftl .= 2F + a¥sk and k:i=k+1. O

m SD-e :== SD method with exact linesearches;
m SD-bA == SD method with bArmijo linesearches.
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Global convergence of steepest descent methods

e f € C1(R™); V£ is Lipschitz continuous (on R"?) iff 3L > 0,
IVf(y) = Vf(o)| < Llly —z|, Ve,yecR™

Theorem 5 Let f € C1(R™) be bounded below on R™.

Let V f be Lipschitz continuous. Apply the SD-e or the SD-bA
method to minimizing f with € := 0.

Then both variants of the SD method have the property:

either

there exists I > 0 such that Vf(z!) =0
or

|V f(z*)|]| — 0as k — oo.

Proof for SD-bA. Let s* = —V f(z*) forallkinTh4. O

SD methods have excellent global convergence properties
(under weak assumptions).
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Some disadvatanges of steepest descent methods

m SD methods are scale-dependent.

poorly scaled problem/variables —> SD direction gives little progress.

m Usually, SD methods converge very slowly to solution,
asymptotically.
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The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

a 0O

1 1
f(@) = S (azitay) = Sa' ( 0 1

)wa r=(z1 z2)', (0)

where a > 0. Note =* = (0 0)T unique global minimizer.
ma>1 — fpoorly scaled (or poorly conditioned).
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The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

a 0O

1 1
f(@) = S (azitay) = Sa' ( 0 1

)wa r=(z1 z2)', (0)

where a > 0. Note =* = (0 0)T unique global minimizer.
ma>1 — fpoorly scaled (or poorly conditioned).
m apply SD-e to (¢) starting at z° := (1 a)?. Then(see Po Sheet 2]

*=(a7) () w2e
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The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

a 0O

1 1

)wa z = (z1 z2)", (0)

where a > 0. Note =* = (0 0)T unique global minimizer.
ma>1 — fpoorly scaled (or poorly conditioned).
m apply SD-e to (¢) starting at z° := (1 a)?. Then(see Po Sheet 2]

—_ k —_1)k
mkz(a 1) <( 1) ), k > 0.
a-+1 a -
— zF¥ - 0as k — oo, linearly with p :=|(a — 1)/(a + 1)|

convergence factor.
ma>1— pclosertol — SD-e converges very slowly.
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The scale-dependence of steepest descent

Example of a well-scaled quadratic.

Linear transformation of variables:

al’2 0
— £I.
Y 0 1

m let f(y) := f(xz(y)), namely f in the new coordinates y.

= f(y) = 39"y = (¥ +93).
—  f well-scaled.
m y* = (0 0)T unique global minimizer.

m apply SD-e to f from any y° € R?: y! = (0 0)T = y*.
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The scale-dependence of steepest descent

| | | | |
| o » () N — o — N W » o
L T d -+

The effect of problem scaling on SD-e performance.
Left figure: a = 10°¢ (mildly poor scaling).
Right figure: a = 1 (“perfect” scaling).
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Local rate of convergence for steepest descent

m Usually, SD methods converge very slowly to solution,
asymptotically.

theory: very slow conv.

1}

numerics: break-down |
(cumulation of round-off |\
and ill-conditioning).

f(x1,2) = 10(x2 — x7)?

+ (1 — 1)2.

-0.5

1 ! N\ | I L 1 v/ | |
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

SD-bA applied to the Rosenbrock
function f.
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution. Namely, if
xk — x*, as k — oo, then
|kt — x*|| < pl|lx® — =*||, VK suff. large

BUT
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution. Namely, if
xk — x*, as k — oo, then
|kt — x*|| < pl|lx® — =*||, VK suff. large

BUT convergence factor p v. close to 1 usually!
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution. Namely, if

xk — x*, as k — oo, then
|kt — x*|| < pl|lx® — =*||, VK suff. large

BUT convergence factor p v. close to 1 usually!

Theorem 6 f € C?; =* local minimizer of f with V2 f(x*)
positive definite — A* __, A*. eigenvalues.

Apply SD-e to min f. If 2* — =* as k — oo, then z*

converges linearly to x*

K(z*)—1  _
p S n(w*)—l—l e PSDa

where x(z*) = X* __/X* . condition number of V2 f(z*).

max min
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Local rate of convergence for steepest descent
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BUT convergence factor p v. close to 1 usually!

Theorem 6 f € C?; =* local minimizer of f with V2 f(x*)
positive definite — A* __, A*. eigenvalues.

Apply SD-e to min f. If 2* — =* as k — oo, then z*

converges linearly to x*

K(z*)—1  _
p S n(w*)—l—l e PSDa

where x(z*) = X* __/X* . condition number of V2 f(z*).

max min

e practice: p = psp;
for Rosenbrock f: x(x*) = 258.10, psp ~ 0.992.

Lecture 5: Steepest descent methods — p. 17/18



Summary: steepest descent methods

m first-order method — inexpensive.

m global convergence under weak assumptions, but no
second-order optimality guarantees for the generated
solution.

m scale-dependent; too expensive, or impossible, to make a
function well-scaled.

®m when the objective is poorly scaled, very very slow
convergence to a solution; hence, not used in general.

m useful sometimes: for example, for some convex
problems with special structure that are very well
conditioned (compressed sensing, etc).
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