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A generic linesearch method (Lecture 2)

(UP): minimize f(x) subject to x ∈ Rn, where f ∈ C1 or C2.

A Generic Linesearch Method (GLM)

Choose ε > 0 and x0 ∈ Rn. For k ≥ 0, do:
While ‖∇f(xk)‖ > ε, REPEAT:

compute a descent search direction sk ∈ Rn,

∇f(xk)T sk < 0;

compute a stepsize αk > 0 along sk such that

f(xk + αksk) < f(xk);

set xk+1 := xk + αksk and k := k + 1. !

Recall property of descent directions (Lemma 1, Lecture 1).
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Global convergence of GLM (Lecture 4)

Theorem 4. Let f ∈ C1(Rn) be bounded below on Rn by flow.
Let ∇f Lipschitz continuous. Apply GLM with bArmijo
linesearch to minimizing f with ε := 0. Then
either

there exists l ≥ 0 such that ∇f(xl) = 0

or

lim
k→∞

min

{
|∇f(xk)T sk|

‖sk‖
, |∇f(xk)T sk|

}
= 0. (conv)

Note that the limit (conv) is equivalent to
lim
k→∞

‖∇f(xk)‖ · cos θk · min{1, ‖sk‖} = 0,

where cos θk = (−∇f(xk))T sk

‖∇f(xk)‖·‖sk‖ .
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Steepest descent method

Steepest descent (SD) direction: set sk := −∇f(xk), k ≥ 0,
in Generic Linesearch Method (GLM).
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Steepest descent method

Steepest descent (SD) direction: set sk := −∇f(xk), k ≥ 0,
in Generic Linesearch Method (GLM).

sk descent direction whenever ∇f(xk) $= 0:
∇f(xk)T sk < 0 ⇐⇒ ∇f(xk)T (−∇f(xk)) < 0 ⇐⇒ −‖∇f(xk)‖2 < 0.

sk steepest descent: unique global solution of
minimizes∈Rnf(xk) + sT∇f(xk) subject to ‖s‖ = ‖∇f(xk)‖.

Cauchy-Schwarz: |sT∇f(xk)| ≤ ‖s‖ · ‖∇f(xk)‖, ∀s,
with equality iff s is proportional to ∇f(xk).
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Steepest descent methods

Method of steepest descent (SD): GLM with sk == SD
direction; any linesearch.

Steepest Descent (SD) Method

Choose ε > 0 and x0 ∈ Rn. While ‖∇f(xk)‖ > ε, REPEAT:

compute sk = −∇f(xk).

compute a stepsize αk > 0 along sk such that

f(xk + αksk) < f(xk);

set xk+1 := xk + αksk and k := k + 1. !

SD-e :== SD method with exact linesearches;
SD-bA :== SD method with bArmijo linesearches.
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Global convergence of steepest descent methods

• f ∈ C1(Rn); ∇f is Lipschitz continuous (on Rn) iff ∃L > 0,
‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ Rn.

Theorem 5 Let f ∈ C1(Rn) be bounded below on Rn.
Let ∇f be Lipschitz continuous. Apply the SD-e or the SD-bA
method to minimizing f with ε := 0.
Then both variants of the SD method have the property:
either

there exists l ≥ 0 such that ∇f(xl) = 0
or

‖∇f(xk)‖ → 0 as k → ∞.

Proof for SD-bA. Let sk = −∇f(xk) for all k in Th 4. !
SD methods have excellent global convergence properties
(under weak assumptions).
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Some disadvatanges of steepest descent methods

SD methods are scale-dependent.

poorly scaled problem/variables =⇒ SD direction gives little progress.

Usually, SD methods converge very slowly to solution,
asymptotically.
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The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

f(x) =
1

2
(ax2

1+x2
2) =

1

2
xT

(
a 0

0 1

)
x, x = (x1 x2)

T , (♦)

where a > 0. Note x∗ = (0 0)T unique global minimizer.
a + 1 −→ f poorly scaled (or poorly conditioned).
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The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

f(x) =
1

2
(ax2

1+x2
2) =

1

2
xT

(
a 0

0 1

)
x, x = (x1 x2)

T , (♦)

where a > 0. Note x∗ = (0 0)T unique global minimizer.
a + 1 −→ f poorly scaled (or poorly conditioned).
apply SD-e to (♦) starting at x0 := (1 a)T . Then[see Pb Sheet 2]

xk =

(
a − 1

a + 1

)k
(

(−1)k

a

)
, k ≥ 0.
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The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

f(x) =
1

2
(ax2

1+x2
2) =

1

2
xT

(
a 0

0 1

)
x, x = (x1 x2)

T , (♦)

where a > 0. Note x∗ = (0 0)T unique global minimizer.
a + 1 −→ f poorly scaled (or poorly conditioned).
apply SD-e to (♦) starting at x0 := (1 a)T . Then[see Pb Sheet 2]

xk =

(
a − 1

a + 1

)k
(

(−1)k

a

)
, k ≥ 0.

=⇒ xk → 0 as k → ∞, linearly with ρ := |(a − 1)/(a + 1)|
convergence factor.
a + 1 =⇒ ρ closer to 1 =⇒ SD-e converges very slowly.
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The scale-dependence of steepest descent

Example of a well-scaled quadratic.

Linear transformation of variables:

y =

(
a1/2 0

0 1

)
x.

let f(y) := f(x(y)), namely f in the new coordinates y.

=⇒ f(y) = 1
2y

Ty = 1
2(y

2
1 + y2

2).
−→ f well-scaled.

y∗ = (0 0)T unique global minimizer.

apply SD-e to f from any y0 ∈ R2: y1 = (0 0)T = y∗.
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The scale-dependence of steepest descent
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The effect of problem scaling on SD-e performance.
Left figure: a = 100.6 (mildly poor scaling).
Right figure: a = 1 (“perfect” scaling).
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Local rate of convergence for steepest descent

Usually, SD methods converge very slowly to solution,
asymptotically.

theory: very slow conv.

numerics: break-down
(cumulation of round-off
and ill-conditioning).

f(x1, x2) = 10(x2 − x2
1)

2

+ (x1 − 1)2.
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SD-bA applied to the Rosenbrock
function f .
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution. Namely, if
xk → x∗, as k → ∞, then

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖, ∀k suff. large

BUT
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution. Namely, if
xk → x∗, as k → ∞, then

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖, ∀k suff. large

BUT convergence factor ρ v. close to 1 usually!
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution. Namely, if
xk → x∗, as k → ∞, then

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖, ∀k suff. large

BUT convergence factor ρ v. close to 1 usually!

Theorem 6 f ∈ C2; x∗ local minimizer of f with ∇2f(x∗)
positive definite −→ λ∗

max, λ∗
min eigenvalues.

Apply SD-e to min f . If xk → x∗ as k → ∞, then xk

converges linearly to x∗

ρ ≤ κ(x∗)−1
κ(x∗)+1 := ρSD,

where κ(x∗) = λ∗
max/λ

∗
min condition number of ∇2f(x∗).
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution. Namely, if
xk → x∗, as k → ∞, then

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖, ∀k suff. large

BUT convergence factor ρ v. close to 1 usually!

Theorem 6 f ∈ C2; x∗ local minimizer of f with ∇2f(x∗)
positive definite −→ λ∗

max, λ∗
min eigenvalues.

Apply SD-e to min f . If xk → x∗ as k → ∞, then xk

converges linearly to x∗

ρ ≤ κ(x∗)−1
κ(x∗)+1 := ρSD,

where κ(x∗) = λ∗
max/λ

∗
min condition number of ∇2f(x∗).

• practice: ρ = ρSD;
for Rosenbrock f : κ(x∗) = 258.10, ρSD ≈ 0.992.
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Summary: steepest descent methods

first-order method −→ inexpensive.
global convergence under weak assumptions, but no
second-order optimality guarantees for the generated
solution.
scale-dependent; too expensive, or impossible, to make a
function well-scaled.
when the objective is poorly scaled, very very slow
convergence to a solution; hence, not used in general.
useful sometimes: for example, for some convex
problems with special structure that are very well
conditioned (compressed sensing, etc).
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