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Other search directions in Generic Linesearch Methods (GLMs)

Let Bk symmetric, positive definite matrix [Bk ! 0]. Let sk be
defined by

Bksk = −∇f(xk). (∗)
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Other search directions in Generic Linesearch Methods (GLMs)

Let Bk symmetric, positive definite matrix [Bk ! 0]. Let sk be
defined by

Bksk = −∇f(xk). (∗)

=⇒ sk descent direction:
∇f(xk)T sk = −∇f(xk)T (Bk)−1∇f(xk) < 0 whenever
∇f(xk) &= 0 as Bk pos. def. implies (Bk)−1 pos. def.
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Other search directions in Generic Linesearch Methods (GLMs)

Let Bk symmetric, positive definite matrix [Bk ! 0]. Let sk be
defined by

Bksk = −∇f(xk). (∗)

=⇒ sk descent direction:
∇f(xk)T sk = −∇f(xk)T (Bk)−1∇f(xk) < 0 whenever
∇f(xk) &= 0 as Bk pos. def. implies (Bk)−1 pos. def.

=⇒ sk uniquely solves
minimizes∈Rn mk(s) = f(xk) + ∇f(xk)T s + 1

2s
TBks.

mk(s) is a convex quadratic function in s:
∇mk(sk) = ∇f(xk) + Bksk = 0 and ∇2mk(s) = Bk.
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Other search directions in Generic Linesearch Methods (GLMs)

Let Bk symmetric, positive definite matrix [Bk ! 0]. Let sk be
defined by

Bksk = −∇f(xk). (∗)

=⇒ sk descent direction:
∇f(xk)T sk = −∇f(xk)T (Bk)−1∇f(xk) < 0 whenever
∇f(xk) &= 0 as Bk pos. def. implies (Bk)−1 pos. def.

=⇒ sk uniquely solves
minimizes∈Rn mk(s) = f(xk) + ∇f(xk)T s + 1

2s
TBks.

mk(s) is a convex quadratic function in s:
∇mk(sk) = ∇f(xk) + Bksk = 0 and ∇2mk(s) = Bk.

(∗) is a scaled steepest descent direction;
For some Bk, resulting GLMs can be made scale-invariant,

and faster than steepest descent asymptotically
How to choose Bk ?...[Newton, modified Newton, quasi-Newton; to follow.]
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Linesearch Newton’s method

Let f ∈ C2(Rn) and Bk := ∇2f(xk) in GLM.
Linesearch-Newton (also called Damped Newton’s) method for minimization:
Choose ε > 0 and x0 ∈ Rn.
While ‖∇f(xk)‖ > ε, REPEAT:

solve the linear system ∇2f(xk)sk = −∇f(xk).

set xk+1 = xk +αksk, where αk ∈ (0, 1]; k := k+1. END.
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Linesearch Newton’s method

Let f ∈ C2(Rn) and Bk := ∇2f(xk) in GLM.
Linesearch-Newton (also called Damped Newton’s) method for minimization:
Choose ε > 0 and x0 ∈ Rn.
While ‖∇f(xk)‖ > ε, REPEAT:

solve the linear system ∇2f(xk)sk = −∇f(xk).

set xk+1 = xk +αksk, where αk ∈ (0, 1]; k := k+1. END.

Needs ∇2f(xk) to be positive definite so that sk descent.
Then αk can be computed by exact linesearch, bArmijo, etc.
Whenever ∇2f(xk) is positive definite, sk minimizes the

second-order Taylor approximation of f around xk (recall stp.
descent minimizes first-order Taylor).

Lecture 6: Second-order methods: Newton’s method for unconstrained optimization – p. 3/11



Linesearch Newton’s method

Let f ∈ C2(Rn) and Bk := ∇2f(xk) in GLM.
Linesearch-Newton (also called Damped Newton’s) method for minimization:
Choose ε > 0 and x0 ∈ Rn.
While ‖∇f(xk)‖ > ε, REPEAT:

solve the linear system ∇2f(xk)sk = −∇f(xk).

set xk+1 = xk +αksk, where αk ∈ (0, 1]; k := k+1. END.

Needs ∇2f(xk) to be positive definite so that sk descent.
Then αk can be computed by exact linesearch, bArmijo, etc.
Whenever ∇2f(xk) is positive definite, sk minimizes the

second-order Taylor approximation of f around xk (recall stp.
descent minimizes first-order Taylor).
Some terminology:
Newton direction: sk = −(∇2f(xk))−1∇f(xk).
(Pure) Newton’s method: Newton’s method without linesearch
sets xk+1 = xk + sk where sk is the Newton direction for all k.
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Connection to Newton’s method for root-finding

x∗ stationary point of f ⇐⇒ ∇f(x∗) = 0.

Let r(x) := ∇f(x) = 0 n × n system of nonlinear equations
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Connection to Newton’s method for root-finding

x∗ stationary point of f ⇐⇒ ∇f(x∗) = 0.

Let r(x) := ∇f(x) = 0 n × n system of nonlinear equations

−→ apply Newton’s method for root-finding to ∇f(x) = 0:

Let xk+1 s. t. r(xk) + J(xk)(xk+1 − xk) = 0, where J(xk) is the
Jacobian (matrix) of r(x) at x = xk, i.e., J(xk)ij =

(
∂ri
∂xj

)
(xk).
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Connection to Newton’s method for root-finding

x∗ stationary point of f ⇐⇒ ∇f(x∗) = 0.

Let r(x) := ∇f(x) = 0 n × n system of nonlinear equations

−→ apply Newton’s method for root-finding to ∇f(x) = 0:

Let xk+1 s. t. r(xk) + J(xk)(xk+1 − xk) = 0, where J(xk) is the
Jacobian (matrix) of r(x) at x = xk, i.e., J(xk)ij =

(
∂ri
∂xj

)
(xk).

J(xk) nonsingular
=⇒ xk+1 = xk − (J(xk))−1r(xk).
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Connection to Newton’s method for root-finding

x∗ stationary point of f ⇐⇒ ∇f(x∗) = 0.

Let r(x) := ∇f(x) = 0 n × n system of nonlinear equations

−→ apply Newton’s method for root-finding to ∇f(x) = 0:

Let xk+1 s. t. r(xk) + J(xk)(xk+1 − xk) = 0, where J(xk) is the
Jacobian (matrix) of r(x) at x = xk, i.e., J(xk)ij =

(
∂ri
∂xj

)
(xk).

J(xk) nonsingular
=⇒ xk+1 = xk − (J(xk))−1r(xk).

The Jacobian of ∇f at x is the Hessian matrix ∇2f(x)

⇓ ∇2f(xk) nonsingular

(Pure) Newton iterate : xk+1 = xk − (∇2f(xk))−1∇f(xk).
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Advantages of Newton’s method for optimization

Fast (i.e., quadratic) local rate of convergence.

Theorem 7 (local convergence of (pure) Newton’s method):

let f ∈ C2(Rn), ∇f(x∗) = 0 with ∇2f(x∗) nonsingular;
∇2f locally Lipschitz continuous at x∗.

If xk0 is sufficiently close to x∗, for some k0 ≥ 0,

=⇒ xk is well-defined for all k ≥ k0;
xk → x∗ as k → ∞, at quadratic rate. !
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Advantages of Newton’s method for optimization

Fast (i.e., quadratic) local rate of convergence.

Theorem 7 (local convergence of (pure) Newton’s method):

let f ∈ C2(Rn), ∇f(x∗) = 0 with ∇2f(x∗) nonsingular;
∇2f locally Lipschitz continuous at x∗.

If xk0 is sufficiently close to x∗, for some k0 ≥ 0,

=⇒ xk is well-defined for all k ≥ k0;
xk → x∗ as k → ∞, at quadratic rate. !

In the conditions of Th 7: ∇f(xk) → 0 quadratically as well.

“xk0 sufficiently close to x∗”= there exists N (x∗, δ) such that
xk0 ∈ N . In general, N not known beforehand (depends on
unknown x∗ and problem-dependent constants).
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7:
Taylor expansion of ∇f around x [vector form]:

∇f(x∗) = ∇f(x) + ∇2f(x)(x∗ − x) + O(‖x∗ − x‖2),

where x is sufficiently close to x∗ and O(·) depends on the
Lipschitz constant of ∇2f(x∗).
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7:
Taylor expansion of ∇f around x [vector form]:

∇f(x∗) = ∇f(x) + ∇2f(x)(x∗ − x) + O(‖x∗ − x‖2),

where x is sufficiently close to x∗ and O(·) depends on the
Lipschitz constant of ∇2f(x∗). Using ∇f(x∗) = 0 and x := xk,
whenever xk suff. close to x∗, we have

0 = ∇f(xk) + ∇2f(xk)(x∗ − xk) + O(‖x∗ − xk‖2). (∗∗)
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7:
Taylor expansion of ∇f around x [vector form]:

∇f(x∗) = ∇f(x) + ∇2f(x)(x∗ − x) + O(‖x∗ − x‖2),

where x is sufficiently close to x∗ and O(·) depends on the
Lipschitz constant of ∇2f(x∗). Using ∇f(x∗) = 0 and x := xk,
whenever xk suff. close to x∗, we have

0 = ∇f(xk) + ∇2f(xk)(x∗ − xk) + O(‖x∗ − xk‖2). (∗∗)

∇2f(x∗) nonsingular =⇒ ∇2f(xk) nonsingular whenever xk

suff. close to x∗. Then (**) implies
xk − x∗ = [∇2f(xk)]−1∇f(xk) + O(‖x∗ − xk‖2).
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7:
Taylor expansion of ∇f around x [vector form]:

∇f(x∗) = ∇f(x) + ∇2f(x)(x∗ − x) + O(‖x∗ − x‖2),

where x is sufficiently close to x∗ and O(·) depends on the
Lipschitz constant of ∇2f(x∗). Using ∇f(x∗) = 0 and x := xk,
whenever xk suff. close to x∗, we have

0 = ∇f(xk) + ∇2f(xk)(x∗ − xk) + O(‖x∗ − xk‖2). (∗∗)

∇2f(x∗) nonsingular =⇒ ∇2f(xk) nonsingular whenever xk

suff. close to x∗. Then (**) implies
xk − x∗ = [∇2f(xk)]−1∇f(xk) + O(‖x∗ − xk‖2). Letting
sk be the Newton direction, and xk+1 = xk+sk, we deduce that,
xk − x∗ = xk − xk+1 + O(‖x∗ − xk‖2), and so xk+1 − x∗ = O(‖xk − x∗‖2). !
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Local convergence for linesearch-Newton’s method

Theorem 8 Let f ∈ C2(Rn) and ∇2f be Lipschitz continuous
and positive definite at the iterates.
Apply Newton’s method with bArmijo linesearch and the
choices β ≤ 0.5 and α(0) = 1. Assume the iterates xk → x∗ as
k → ∞, where ∇f(x∗) = 0 and ∇2f(x∗) ! 0.

Then αk = 1 for all k sufficiently large, and the rate of
convergence of xk to x∗ is quadratic (asymptotically).
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Local convergence for Newton with bArmijo linesearch

f(x1, x2) = 10(x2 − x2
1)

2 + (x1 − 1)2; x∗ = (1, 1).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Newton with bArmijo linesearch applied to the Rosenbrock function f .

β < 0.5 and α(0) = 1 in bArmijo; αk = 1 for suff. large k.
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Advantages of Newton’s method for optimization

Newton’s method (with or without linesearch) is scale
invariant with respect to linear transformations of variables.

Let A ∈ Rn×n nonsingular matrix and y = Ax

(A is constant, independent of x and y); let B = A−1.

Let f(y) := f(x(y)) = f(By); minimize f wrt y.

=⇒ ∇f(y) = BT∇f(x) and ∇2f(y) = BT∇2f(x)B.

Newton direction at y: sy = −[BT∇2f(x)B]−1BT∇f(x)

= −B−1[∇2f(x)]−1B−TBT∇f(x)
= −B−1[∇2f(x)]−1∇f(x)
= Asx.

=⇒ y + αsy = A(x + αsx).

Thus y + αsy ≈ y∗ =⇒ x + αsx ≈ x∗, where y∗ = Ax∗.
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Disadvantages of Newton’s method for optimization

Newton’s method with/without linesearch: the Newton
direction sk is not well-defined if ∇2f(xk) singular; sk may
not be descent if ∇2f(xk) is not positive definite.
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Disadvantages of Newton’s method for optimization

Newton’s method with/without linesearch: the Newton
direction sk is not well-defined if ∇2f(xk) singular; sk may
not be descent if ∇2f(xk) is not positive definite.

Newton’s method (’pure’, without linesearch): iterates can
get attracted to local maxima or saddle points of f if
sufficiently close to them (in the conditions of local
convergence Theorem 7, ∇2f(x∗) only required to be
nonsingular).
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Disadvantages of Newton’s method for optimization

Newton’s method with/without linesearch: the Newton
direction sk is not well-defined if ∇2f(xk) singular; sk may
not be descent if ∇2f(xk) is not positive definite.

Newton’s method (’pure’, without linesearch): iterates can
get attracted to local maxima or saddle points of f if
sufficiently close to them (in the conditions of local
convergence Theorem 7, ∇2f(x∗) only required to be
nonsingular).
Newton’s method (’pure’, without linesearch): iterates
may fail to converge at all if x0 ‘too far’ from solution
(outside neighbourhood of local convergence, failure may
occur). Thus linesearch is needed to make Newton’s
method globally convergent.
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Disadvantages of Newton’s method for optimization

Example of failure of (pure) Newton’s method to converge
globally.

f : R → R, f(x) = −
x6

6
+

x4

4
+ 2x2.

x∗ = 0 local minimizer; x = ±
√

(1 +
√
17)/2 ≈ ±1.6 global max.

Newton’s method applied
to f , with x0 = 1;
⇒ x2k = 1 and
x2k+1 = −1, for all k.
−1 and 1 are not (even)
stationary points of f .

Note that sk descent but
we have gone ‘too far’.
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x0,x2,...x1,x3,...
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