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Other search directions in Generic Linesearch Methods (GLMs)

Let B* symmetric, positive definite matrix [B* - 0]. Let s* be
defined by
Bksk = —V f(z*). ()
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Other search directions in Generic Linesearch Methods (GLMs)

Let B* symmetric, positive definite matrix [B* - 0]. Let s* be
defined by
Bksk = —V f(z*). ()

m— sk descent direction:
Vf(xF)Tsk = -V f(aF)T(B*)~1V f(z*) < 0 whenever
V f(x®) # 0 as B* pos. def. implies (B¥)~! pos. def.
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Other search directions in Generic Linesearch Methods (GLMs)

Let B* symmetric, positive definite matrix [B* - 0]. Let s* be
defined by
Bksk = —V f(z*). ()

m— sk descent direction:
Vf(xF)Tsk = -V f(aF)T(B*)~1V f(z*) < 0 whenever
V f(x®) # 0 as B* pos. def. implies (B¥)~! pos. def.
B — sk uniquely solves
MINIMIze,cr» my(s) = f(zF) + VF(zF)Ts + %STBkS.

my(s) IS @ convex quadratic function in s:
Vmy(sk) = VF(z*) + B*s* = 0 and V2?m,(s) = BF.
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Other search directions in Generic Linesearch Methods (GLMs)

Let B* symmetric, positive definite matrix [B* - 0]. Let s* be
defined by
Bksk = —V f(z*). ()

m— sk descent direction:
Vf(a:k)T k= _VF(x*)T(B*)~1Vf(2*) < 0 whenever
V f(x®) # 0 as B* pos. def. implies (B¥)~! pos. def.

B — sk uniquely solves
miNimizescr» mi(s) = f(z*) + VF(a*)Ts + $sT Bks.
my(s) IS @ convex quadratic function in s:
Vmy(s®) = Vf(z*) + B¥s* =0 and V?my(s) =

B (x) IS a scaled steepest descent direction;
m For some B*, resulting GLMs can be made scale-invariant,
and faster than steepest descent asymptotically

How to choose B* 2 [Newton modified Newton quasi-Newton: to follow.]
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Linesearch Newton’s method

Let f € C?(R™) and B* := v2f(z*) in GLM.

Linesearch-Newton (also called Damped Newton’s) method for minimization.
Choose € > 0 and z% € R™.

While ||V f(x®)|| > €, REPEAT:

B solve the linear system V2f(zF)sk = —Vf(z*).

B set zFt! = 2F 4 aFs®, where o* € (0,1]; kE:=k-+1. END.
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Linesearch Newton’s method

Let f € C?(R™) and B* := v2f(z*) in GLM.
Linesearch-Newton (also called Damped Newton’s) method for minimization.

Choose € > 0 and z% € R™.

While ||V f(x®)|| > €, REPEAT:

B solve the linear system V2f(zF)sk = —Vf(z*).

B set zFt! = 2F 4 aFs®, where o* € (0,1]; kE:=k-+1. END.
®m Needs V2 f(z*) to be positive definite so that s* descent.
Then o* can be computed by exact linesearch, bArmijo, etc.
m\Whenever v2f(z*) is positive definite, s¥ minimizes the
second-order Taylor approximation of f around =* (recall stp.
descent minimizes first-order Taylor).
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Linesearch Newton’s method

Let f € C?(R™) and B* := v2f(z*) in GLM.
Linesearch-Newton (also called Damped Newton’s) method for minimization.

Choose € > 0 and z° € R™.
While ||V f(x®)|| > €, REPEAT:

B solve the linear system V2f(xF)sk = —Vf(zF).

B set zFt! = 2F 4 aFs®, where o* € (0,1]; kE:=k-+1. END.
®m Needs V2 f(z*) to be positive definite so that s* descent.
Then o* can be computed by exact linesearch, bArmijo, etc.
m\Whenever v2f(z*) is positive definite, s¥ minimizes the
second-order Taylor approximation of £ around z* (recall stp.
descent minimizes first-order Taylor).

Some terminology:

Newton direction: sk = —(V2f(zF))" 1V f(zF).

(Pure) Newton’s method: Newton’s method without linesearch
sets z*t1 = 2% + s* where s* is the Newton direction for all k.
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Connection to Newton’s method for root-finding

x* stationary point of f < Vf(x*) = 0.
Let r(x) := Vf(xz) =0 n x n system of nonlinear equations
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Connection to Newton’s method for root-finding

x* stationary point of f < Vf(x*) = 0.

Let r(x) := Vf(xz) =0 n x n system of nonlinear equations
— apply Newton’s method for root-finding to vV f(z) = o:

Let 2+t s. t. r(z*) + J(2F)(z*+1 — z*) = 0, where J(zF) Is the
Jacobian (matrix) of r(x) at x = z*, i.e., J(z*);; = (3—’”) ().

8:13j
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Connection to Newton’s method for root-finding

x* stationary point of f < Vf(x*) = 0.

Let r(x) := Vf(xz) =0 n x n system of nonlinear equations
— apply Newton’s method for root-finding to vV f(z) = o:

Let 2+t s. t. r(z*) + J(2F)(z*+1 — z*) = 0, where J(zF) Is the
Jacobian (matrix) of r(x) at x = z*, i.e., J(z*);; = (3—’”) ().

8:13j

J (z®) nonsingular

et = 2F — (J(2®)) " r(2F).
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Connection to Newton’s method for root-finding

x* stationary point of f < Vf(x*) = 0.
Let r(x) := Vf(xz) =0 n x n system of nonlinear equations

— apply Newton’s method for root-finding to vV f(z) = o:
Let 2+t s. t. r(z*) + J(2F)(z*+1 — z*) = 0, where J(zF) Is the
Jacobian (matrix) of r(x) at x = z*, i.e., J(z*);; = (g—;> ().

J(mk’) nonsingular in_'_l _ QZk . (J({Bk))_l’r‘(a?k)-

m The Jacobian of V£ at = is the Hessian matrix v2f(x)
\U« V2 f(x*) nonsingular

(Pure) Newton iterate : *1t1 = 2% — (V2 f(z*)) "1V f ().
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Advantages of Newton’s method for optimization

m Fast (i.e., quadratic) local rate of convergence.

Theorem 7 (local convergence of (pure) Newton’s method):
mlet f € C2(R"), Vf(z*) = 0 with V2f(x*) nonsingular;
m V2 locally Lipschitz continuous at x*.

If 20 is sufficiently close to =*, for some k¢ > 0,

— zF is well-defined for all & > ko;
x® — x* as k — oo, at quadratic rate. O
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Advantages of Newton’s method for optimization

m Fast (i.e., quadratic) local rate of convergence.

Theorem 7 (local convergence of (pure) Newton’s method):
mlet f € C2(R"), Vf(z*) = 0 with V2f(x*) nonsingular;
m V2 locally Lipschitz continuous at x*.

If 20 is sufficiently close to =*, for some k¢ > 0,

— zF is well-defined for all & > ko;
x® — x* as k — oo, at quadratic rate. O

m In the conditions of Th 7: vV f(«*) — 0 quadratically as well.

m “zko sufficiently close to =*”= there exists M (x*, §) such that
¥ € N. In general, M not known beforehand (depends on
unknown x* and problem-dependent constants).
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7:
Taylor expansion of v f around x [vector form]:

Vf(z*) = V() + Vf(z)(z" —z) + O(]|z" — =|?),

where z Is sufficiently close to =* and O(-) depends on the
Lipschitz constant of v2f(z*).
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7:
Taylor expansion of v f around x [vector form]:

Vf(z*) = V() + Vf(z)(z" —z) + O(]|z" — =|?),

where z Is sufficiently close to =* and O(-) depends on the
Lipschitz constant of v2f(z*). Using Vf(z*) = 0 and z := z*,
whenever z* suff. close to z*, we have

0= Vf(z") + V2f(a")(z* — ) + O([|lz" — ®||*). (+x)
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7:
Taylor expansion of v f around x [vector form]:

Vf(z*) = V() + Vf(z)(z" —z) + O(]|z" — =|?),

where z Is sufficiently close to =* and O(-) depends on the
Lipschitz constant of v2f(z*). Using Vf(z*) = 0 and z := z*,
whenever z* suff. close to z*, we have

0= Vf(z") + V2f(a")(z* — ) + O([|lz" — ®||*). (+x)

V2f(x*) nonsingular = v2f(z*) nonsingular whenever z*
suff. close to z*. Then (**) implies
% — 2 = [V2f(2*)] 7'V f(2*) + O(||lz* — 2*||?).
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Advantages of Newton’s method for optimization

Sketch of Proof for Theorem 7:
Taylor expansion of v f around x [vector form]:

Vf(z*) = V() + Vf(z)(z" —z) + O(]|z" — =|?),

where z Is sufficiently close to =* and O(-) depends on the
Lipschitz constant of v2f(z*). Using Vf(z*) = 0 and z := z*,
whenever z* suff. close to z*, we have

0= Vf(z") + V2f(a")(z* — ) + O([|lz" — ®||*). (+x)

V2 f(z*) nonsingular = V2 f(z*) nonsingular whenever z*

suff. close to z*. Then (**) implies

xk — x* = [V2f ()] 71V F(z*) + O(||l=* — =*||?). Letting

sk be the Newton direction, and =*+* = z*4s*, we deduce that,

* — x* = z® — T + O(||]z* — 2*||?), and SO z*t! — 2* = O(||=® — =*||?). O
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Local convergence for linesearch-Newton’s method

Theorem 8 Let f € c2(R") and V2 ¢ be Lipschitz continuous
and positive definite at the iterates.

Apply Newton’s method with bArmijo linesearch and the
choices g < 0.5 and «g) = 1. Assume the iterates z* — z* as
k — oo, Where Vf(z*) = 0 and V2f(z*) = 0.

Then o* = 1 for all & sufficiently large, and the rate of
convergence of z* to =* Is quadratic (asymptotically).
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Local convergence for Newton with bArmijo linesearch

f(x1,z2) = 10(x2 — w%)z + (1 — 1)2; x* = (1,1).
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Newton with bArmijo linesearch applied to the Rosenbrock function f.
m 3 < 0.5and o) = 1 in bArmijo; a* = 1 for suff. large k.

Lecture 6: Second-order methods: Newton’s method for unconstrained optimization — p. 8/11



Advantages of Newton’s method for optimization

m Newton’s method (with or without linesearch) is scale
invariant with respect to linear transformations of variables.

Let A € R™*™ nonsingular matrix and y = Ax
(A is constant, independent of z and y); let B = A1,

Let f(y) := f(xz(y)) = f(By); minimize f wrt y.

—> V7(y) = BTV f(z) and V2f(y) = BTV?f(z)B.
Newton direction at y: s, = —[BTV2f(z)B]"'BTV f(x)
—B7[V2f(z)] ' B~ B"V f(x)

—B7 V2 f(x)] 'V f(x)
= As,.

— Y+ asy, = A(x + asy).

Thus y + asy = y* =— = + as, = x*, Where y* = Ax*.
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Disadvantages of Newton’s method for optimization

B Newton’s method with/without linesearch: the Newton
direction s* is not well-defined if v2f(x*) singular; s* may
not be descent if vZf(x*) is not positive definite.

Lecture 6: Second-order methods: Newton’s method for unconstrained optimization — p. 10/11



Disadvantages of Newton’s method for optimization

B Newton’s method with/without linesearch: the Newton
direction s* is not well-defined if v2f(x*) singular; s* may
not be descent if vZf(x*) is not positive definite.

m Newton’s method ('pure’, without linesearch): iterates can
get attracted to local maxima or saddle points of 7 if
sufficiently close to them (in the conditions of local

convergence Theorem 7, vZf(z*) only required to be
nonsingular).
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Disadvantages of Newton’s method for optimization

B Newton’s method with/without linesearch: the Newton
direction s* is not well-defined if v2f(x*) singular; s* may
not be descent if vZf(x*) is not positive definite.

m Newton’s method ('pure’, without linesearch): iterates can
get attracted to local maxima or saddle points of 7 if
sufficiently close to them (in the conditions of local
convergence Theorem 7, vZf(z*) only required to be
nonsingular).

m Newton’s method (‘pure’, without linesearch): iterates
may fail to converge at all if z° ‘too far’ from solution
(outside neighbourhood of local convergence, failure may
occur). Thus linesearch is needed to make Newton'’s
method globally convergent.
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Disadvantages of Newton’s method for optimization

Example of failure of (pure) Newton’s method to converge
globally.

%
f:R%R, f(w):—g+z+2m2.

z* = 0 local minimizer; = = :I:\/(l ++/17)/2 ~ £1.6 global max.

10

Newton’s method applied s}
to £, with 2° = 1; o
= 2 =1 and

r2k+1 — 1 for all .

—1 and 1 are not (even)
stationary points of f.
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Note that s* descent bu1:
we have gone ‘too far’.
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