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Global convergence of linesearch-Newton’s method

Theorem 9 Let f ∈ C2(Rn) be bounded below on Rn.
Let ∇f be Lipschitz continuous. Apply Newton’s method to
minimizing f with bArmijo linesearch and ε := 0. For all k ≥ 0,
let the eigenvalues of ∇2f(xk) at the iterates xk be positive
and uniformly bounded below, away from zero, independently
of k. Then

either
there exists l ≥ 0 such that ∇f(xl) = 0

or
‖∇f(xk)‖ → 0 as k → ∞. !
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Global convergence of linesearch-Newton’s method

Theorem 9 Let f ∈ C2(Rn) be bounded below on Rn.
Let ∇f be Lipschitz continuous. Apply Newton’s method to
minimizing f with bArmijo linesearch and ε := 0. For all k ≥ 0,
let the eigenvalues of ∇2f(xk) at the iterates xk be positive
and uniformly bounded below, away from zero, independently
of k. Then

either
there exists l ≥ 0 such that ∇f(xl) = 0

or
‖∇f(xk)‖ → 0 as k → ∞. !

• Theorem 9 is satisfied if f ∈ C2 with ∇f Lipschitz continuous
is also strongly convex (i.e., the eigenvalues of ∇2f(x) for all
x are positive, bounded below, away from zero). Then sk is
descent for all k. [Much stronger conditions than for SD methods.]
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either ∃ l ≥ 0 such that ∇f(xl) = 0 or

Ek := min

{
|∇f(xk)T sk|

‖sk‖
, |∇f(xk)T sk|

}
−→ 0 as k → ∞. (†)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either ∃ l ≥ 0 such that ∇f(xl) = 0 or

Ek := min

{
|∇f(xk)T sk|

‖sk‖
, |∇f(xk)T sk|

}
−→ 0 as k → ∞. (†)

Assume now that ∇f(xk) )= 0 for all k ≥ 0. We are left with
showing that (†) implies that ∇f(xk) −→ 0 as k → ∞. For
this, we are going to express the terms in (†) in terms of ∇f(xk).
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either ∃ l ≥ 0 such that ∇f(xl) = 0 or

Ek := min

{
|∇f(xk)T sk|

‖sk‖
, |∇f(xk)T sk|

}
−→ 0 as k → ∞. (†)

Assume now that ∇f(xk) )= 0 for all k ≥ 0. We are left with
showing that (†) implies that ∇f(xk) −→ 0 as k → ∞. For
this, we are going to express the terms in (†) in terms of ∇f(xk).

Let ∇2f(xk) := Hk. The eigenvalues of ∇2f(xk) = Hk are
positive and uniformly bounded below, away from zero (for all
k) =⇒ the smallest eigenvalue of Hk, λmin(Hk) > 0 and
bounded away from zero, namely, there exists λmin > 0,
independent of k, such that

λmin(Hk) ≥ λmin for all k ≥ 0. (1)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued).
Problem 6, Sheet 2 =⇒ ∀s ∈ Rn, s )= 0, and any symmetric
n × n matrix M , λmin(M) ≤ sTMs

‖s‖2 ≤ λmax(M). (2)
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Proof of Theorem 9 (continued).
Problem 6, Sheet 2 =⇒ ∀s ∈ Rn, s )= 0, and any symmetric
n × n matrix M , λmin(M) ≤ sTMs

‖s‖2 ≤ λmax(M). (2)

Problem 6, Sheet 2: f ∈ C2 and ∇f Lipschitz continuous ⇔
∇2f is uniformly bounded above, which implies that all its
eigenvalues are bounded above, and so there exists λmax > 0

independent of k such that
λmax(Hk) ≤ λmax, for all k ≥ 0. (3)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued).
Problem 6, Sheet 2 =⇒ ∀s ∈ Rn, s )= 0, and any symmetric
n × n matrix M , λmin(M) ≤ sTMs

‖s‖2 ≤ λmax(M). (2)

Problem 6, Sheet 2: f ∈ C2 and ∇f Lipschitz continuous ⇔
∇2f is uniformly bounded above, which implies that all its
eigenvalues are bounded above, and so there exists λmax > 0

independent of k such that
λmax(Hk) ≤ λmax, for all k ≥ 0. (3)

Returning to (†), we have from the definition of sk (Newton
direction), and ∇f(xk) )= 0, for all k,
|∇f(xk)T sk| = |∇f(xk)TH−1

k ∇f(xk)|
(2)

≥ λmin(H
−1
k )‖∇f(xk)‖2

=
‖∇f(xk)‖2

λmax(Hk)

(3)

≥
‖∇f(xk)‖2

λmax
. (4)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued). sk = −H−1
k ∇f(xk) implies

‖sk‖2 = ∇f(xk)TH−2
k ∇f(xk)

(2)

≤ λmax(H
−2
k )‖∇f(xk)‖2

= ‖∇f(xk)‖2

[λmin(Hk)]2

(1)

≤ ‖∇f(xk)‖2

λ2
min

,

=⇒
1

‖sk‖
≥

λmin

‖∇f(xk)‖
for all k. (5)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued). sk = −H−1
k ∇f(xk) implies

‖sk‖2 = ∇f(xk)TH−2
k ∇f(xk)

(2)

≤ λmax(H
−2
k )‖∇f(xk)‖2

= ‖∇f(xk)‖2

[λmin(Hk)]2

(1)

≤ ‖∇f(xk)‖2

λ2
min

,

=⇒
1

‖sk‖
≥

λmin

‖∇f(xk)‖
for all k. (5)

(4), (5) =⇒ Ek ≥ min
{

λmin

λmax
‖∇f(xk)‖, 1

λmax
‖∇f(xk)‖2

}
> 0 for all k

This and (†) =⇒ ∇f(xk) −→ 0 as k → ∞. !
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Global convergence for general second-order GLMs

In GLM, for all k, let Bk be symmetric, positive definite matrix
and sk given by Bksk = −∇f(xk). (*)

Theorem 10 Let f ∈ C1(Rn) be bounded below on Rn.
Let ∇f be Lipschitz continuous. Apply GLM to minimizing f

with sk in (*), bArmijo linesearch and ε := 0. For all k, let the
eigenvalues of Bk be uniformly bounded above and below,
away from zero, independently of k. Then

either
there exists l ≥ 0 such that ∇f(xl) = 0

or
‖∇f(xk)‖ → 0 as k → ∞. !

• Theorem requires locally strongly convex quadratic models
of f for all k (but the Hessian of f may not be pos. def.).
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Modified damped Newton methods

If ∇2f(xk) is not positive definite, it is usual to solve instead
(
∇2f(xk) + Mk

)
sk = −∇f(xk),

where
• Mk chosen such that ∇2f(xk) + Mk is “sufficiently”
positive definite.
• Mk := 0 when ∇2f(xk) is “sufficiently” positive definite.
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Modified damped Newton methods

If ∇2f(xk) is not positive definite, it is usual to solve instead
(
∇2f(xk) + Mk

)
sk = −∇f(xk),

where
• Mk chosen such that ∇2f(xk) + Mk is “sufficiently”
positive definite.
• Mk := 0 when ∇2f(xk) is “sufficiently” positive definite.

Options:
1. As ∇2f(xk) is symmetric, we can factor ∇2f(xk) = QkDk(Qk)!,
where Qk is orthogonal and Dk is diagonal, and set

∇2f(xk) + Mk := Qk max(εI, |Dk|)(Qk)!,

for some “small” ε > 0. Expensive approach for large problems.
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Modified damped Newton methods

2. Estimate λmin(∇2f(xk)) and set

Mk := max(0, ε − λmin(∇2f(xk)))I.

Cheaper. Often tried in practice but “biased” (may
overemphasize a large negative eigval at the expense of
small, positive ones).
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Modified damped Newton methods

2. Estimate λmin(∇2f(xk)) and set

Mk := max(0, ε − λmin(∇2f(xk)))I.

Cheaper. Often tried in practice but “biased” (may
overemphasize a large negative eigval at the expense of
small, positive ones).

3. Modified Cholesky: compute Cholesky factorization

∇2f(xk) = Lk(Lk)!,

where Lk is lower triangular matrix. Modify the generated Lk

if the factorization is in danger of failing (modify small or
negative diagonal pivots, etc.).

Popular in computations.
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