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Global convergence of linesearch-Newton’s method

Theorem 9 Let f € c2(R™) be bounded below on R™.

Let v £ be Lipschitz continuous. Apply Newton’s method to
minimizing f with bArmijo linesearch and ¢ := 0. For all ¥ > o,
let the eigenvalues of V2 f(z*) at the iterates z* be positive

and uniformly bounded below, away from zero, independently
of k. Then

either

there exists 1 > 0 such that vf(z!) =0
or

IVf(xz®)|| >0aSk —oco. O
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Global convergence of linesearch-Newton’s method

Theorem 9 Let f € c2(R™) be bounded below on R™.

Let v £ be Lipschitz continuous. Apply Newton’s method to
minimizing f with bArmijo linesearch and ¢ := 0. For all ¥ > o,
let the eigenvalues of V2 f(z*) at the iterates z* be positive
and uniformly bounded below, away from zero, independently
of k. Then

either

there exists 1 > 0 such that vf(z!) =0
or

IVf(xz®)|| >0aSk —oco. O

e Theorem 9 is satisfied if f € ¢2 with v £ Lipschitz continuous
IS also strongly convex (i.e., the eigenvalues of v2 () for all
x are positive, bounded below, away from zero). Then s* is
descent for all k. [Much stronger conditions than for SD methods. |
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either 31 > o0 such that vf(z!) = 0 or

IV f(2F)Ts"]
FEi := min 155
S

] |Vf(:13k)Tsk|} —~0as k — oo. (1)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either 31 > o0 such that vf(z!) = 0 or

ENT Kk

E, := min { |Vf|(|wk|)| i |, |Vf(a:"’)Ts"’|} —s 0as k — oo. (1)
S

Assume now that v f(z*) # o for all £ > 0. We are left with

showing that (1) implies that v f(=*) — 0 as k£ — oco. For

this, we are going to express the terms in () in terms of v f(z*).
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9. The conditions of Theorem 4 (Global
convergence of GLM with bArmijo linesearch) are satisfied.
Thus Th 4 gives that either 31 > o0 such that vf(z!) = 0 or

. IV (") s
FEi := min 15|
S

] |Vf(a:k)Tsk|} —s0ask — oo. (1)

Assume now that v f(z*) # o for all £ > 0. We are left with
showing that (1) implies that v f(=*) — 0 as k£ — oco. For
this, we are going to express the terms in () in terms of v f(z*).

Let V2 f(z*) := H,. The eigenvalues of V2 f(z*) = H,, are
positive and uniformly bounded below, away from zero (for all
k) —> the smallest eigenvalue of Hy, A (Hi) > 0 and
bounded away from zero, namely, there exists A > 0,
independent of k, such that

Amin (Hi) > Amin fOr all & > o. (1)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued).
Problem 6, Sheet 2 — vs € R™, s # 0, and any symmetric

n X n MatriX M, Amin(M) < £ < X (M).  (2)

5112
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued).
Problem 6, Sheet 2 — vs € R™, s # 0, and any symmetric

n X n MatriX M, Amin(M) < £ < X (M).  (2)

5112

Problem 6, Sheet 2: f € ¢2 and v f Lipschitz continuous <
V2 £ is uniformly bounded above, which implies that all its
eigenvalues are bounded above, and so there exists Apax > 0
independent of & such that

Amax (Hi) < Amax, fOr all & > o. (3)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued).
Problem 6, Sheet 2 — vs € R™, s # 0, and any symmetric

n X n Matrix M, Amin(M) < 502 < Amax(M). (2)

Problem 6, Sheet 2: f € ¢2 and v f Lipschitz continuous <
V2 £ is uniformly bounded above, which implies that all its
eigenvalues are bounded above, and so there exists Apax > 0
independent of & such that

Amax (Hi) < Amax, fOr all & > o. (3)
Returning to (1), we have from the definition of s* (Newton
direction), and v f(z*) # o, for all &, o
2
IV f(@*)Ts* = |V (@) Hy 'V ()| > Amin(H DIV (@)

VI @ IV
Amax(lqk') >\max
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued). ?k)z —H,_ 'V f(z*) implies
2
‘1P = VIEM)THV(@) < Anax(Hy IV (29)]?

vtz D Iveeh)?
[)‘min(I_Ikz)]2 _ A?nin ’

Is

1 )\min
k 2 k
|s®]| = [[Vf(z*)]]

— forall k. (5)
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Global convergence of linesearch-Newton’s method ...

Proof of Theorem 9 (continued). s* = —H,_ 'V f(z*) implies

_ (2) _
Is*1> = VF(@)TH*V(@*) < Amax(Hy )V ()]
_vsenE D ivrene
[)‘min(I_Ikz)]2 — A?nin ’
1 A
> it forall k. (5)
IIS"’II IV F(@*)|

(4), (5) = Ey, > min { 3o ||V ("),

max A

)2 } > 0 for all &

Thisand () = Vf(z*) — 0ask — co. O
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Global convergence for general second-order GLMs

In GLM, for all &, let B* be symmetric, positive definite matrix
and sk given by Bksk = —v f(zF). ()

Theorem 10 Let f € ¢*(R™) be bounded below on R™.

Let v £ be Lipschitz continuous. Apply GLM to minimizing f
with s* in (*), bArmijo linesearch and e := 0. For all &, let the
eigenvalues of B* be uniformly bounded above and below,
away from zero, independently of k. Then

either

there exists 1 > 0 such that vf(z!) =0
or

IVFf(x®)|| > 0aSk — co. O

e Theorem requires locally strongly convex quadratic models
of £ for all £ (but the Hessian of f may not be pos. def.).
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Modified damped Newton methods

If V2 £(z*) is not positive definite, it is usual to solve instead
(V2f(a*) + M*) 5" = —v f(a¥),

where

e M* chosen such that V2 f(z*) + M* is “sufficiently”
positive definite.

e M* := 0 when V2 f(z¥) is “sufficiently” positive definite.
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Modified damped Newton methods

If V2 £(z*) is not positive definite, it is usual to solve instead
(V2f(a*) + M*) 5" = —v f(a¥),

where

e M* chosen such that V2 f(z*) + M* is “sufficiently”
positive definite.

e MF* := 0 when V2f(x*) is “sufficiently” positive definite.
Options:
1. As V2 f(x¥) is symmetric, we can factor V2 f(z*) = Q*D*(Q*) T,
where QF is orthogonal and D¥ is diagonal, and set
V2f(a*) + M* := Q" max(eI, |D*|)(Q%)",

for some “small” e > 0. Expensive approach for large problems.
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Modified damped Newton methods

2. Estimate Amin (V2 f(2*)) and set
MP* := max (0, € — Amin (V2 f(x")))I.

Cheaper. Often tried in practice but “biased” (may

overemphasize a large negative eigval at the expense of
small, positive ones).
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Modified damped Newton methods

2. Estimate Amin (V2 f(2*)) and set
MP* := max(0, € — Amin (V2 f(x*)))I.

Cheaper. Often tried in practice but “biased” (may

overemphasize a large negative eigval at the expense of
small, positive ones).

3. Modified Cholesky: compute Cholesky factorization
Vaf(a®) = L*(ILF) ",

where L* is lower triangular matrix. Modify the generated L*
If the factorization is in danger of failing (modify small or
negative diagonal pivots, etc.).

Popular in computations.
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