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Practical comments: calculating derivatives

How to compute/provide derivatives to a solver?

m Calculate derivatives by hand when easy/simple objective
and constraints; user provides code that computes them.

m Calculate or approximate derivatives automatically:

m Automatic differentiation: breaks down computer code for
evaluating f into elementary arithmetic operations +
differentiate by chain rule. Software: ADIFOR, ADOL-C.

m Symbolic differentiation: manipulate the algebraic
expression of f (if available). Software: symbolic
packages of MAPLE, MATHEMATICA, MATLAB.

m Finite differencing — approximate derivatives.

See Nocedal & Wright, Numerical Optimization (2nd edition,
2006) for more details of the above procedures.

Lecture 7: Quasi-Newton methods. Nonlinear least-squares problems and the Gauss-Newton method — p. 2/19



Approximating the Hessian matrix by finite differences

Approximating the Hessian from gradient vals: ¢ € {1,...,n};
: 1 :
[V2f(x)]e* ~ E[Vf(w + he') — Vf(x)]

Cost of approximating v2f(x) is n + 1 gradient evaluations.

For all finite-differencing, careful with the choice of A in
computations:

“too large” h — Inaccurate approximations,
“too small” h — numerical cancellation errors.

But successful techniques exist for smooth noiseless
problems when sufficient function and/or gradient values can
be computed.

For noisy problems, use derivative-free optimization methods
(if problem size is not too large).
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Quasi-Newton methods

Secant approximations for computing B* ~ V2 f(x*)

At the start of the GLM, choose B° (say, B° := I). After
computing s* = —(B*)~1v f(zF) and =F+! = z*F 4 oFs*,
compute update B*+! of B~.

Wish list:

Lecture 7: Quasi-Newton methods. Nonlinear least-squares problems and the Gauss-Newton method — p. 4/19



Quasi-Newton methods

Secant approximations for computing B* ~ V2 f(x*)

At the start of the GLM, choose B° (say, B° := I). After
computing s* = —(B*)~1v f(zF) and =F+! = z*F 4 oFs*,
compute update B*+! of B~.

Wish list:

Compute B*t1 as a function of already-computed quantities
Vf(zcTY), VF(z*), ..., Vf(z?), Bk, sk,
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Quasi-Newton methods

Secant approximations for computing B* ~ V2 f(x*)

At the start of the GLM, choose B° (say, B° := I). After
computing s* = —(B*)~1v f(zF) and =F+! = z*F 4 oFs*,
compute update B*+! of B~.

Wish list:

Compute B*t1 as a function of already-computed quantities
Vf(zcTY), VF(z*), ..., Vf(z?), Bk, sk,

Bk+1 should be symmetric, nonsingular (pos. def.),
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Quasi-Newton methods

Secant approximations for computing B* ~ V2 f(x*)

At the start of the GLM, choose B° (say, B° := I). After
computing s* = —(B*)~1v f(zF) and =F+! = z*F 4 oFs*,
compute update B*+! of B~.

Wish list:

Compute B*t1 as a function of already-computed quantities
Vf(zcTY), VF(z*), ..., Vf(z?), Bk, sk,

Bk+1 should be symmetric, nonsingular (pos. def.),
BFt+1 “close” to B*, a “cheap” update of B*, Bx — V2 f(z*), etc.
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Quasi-Newton methods

Secant approximations for computing B* ~ V2 f(x*)

At the start of the GLM, choose B° (say, B° := I). After
computing s* = —(B*)~1v f(zF) and =F+! = z*F 4 oFs*,
compute update B*+! of B~.

Wish list:

Compute B*t1 as a function of already-computed quantities
Vf(zcTY), VF(z*), ..., Vf(z?), Bk, sk,

Bk+1 should be symmetric, nonsingular (pos. def.),
BFt+1 “close” to B*, a “cheap” update of B*, Bx — V2 f(z*), etc.

— a hew class of methods: faster than steepest descent
method, cheaper to compute per iteration than Newton’s.
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Quasi-Newton methods

Secant approximations for computing B* ~ V2 f(x*)

At the start of the GLM, choose B° (say, B° := I). After
computing s* = —(B*)~1v f(zF) and =F+! = z*F 4 oFs*,
compute update B*+! of B~.

Wish list:

Compute B*t1 as a function of already-computed quantities
Vf(zcTY), VF(z*), ..., Vf(z?), Bk, sk,

Bk+1 should be symmetric, nonsingular (pos. def.),
BFt+1 “close” to B*, a “cheap” update of B*, Bx — V2 f(z*), etc.

— a hew class of methods: faster than steepest descent
method, cheaper to compute per iteration than Newton’s.

For the first wish, choose B*+! to satisfy the secant equation:

’)’k . — Vf(wk:—l—l) L Vf(wk) — Bk+1(wk+1 L iIZk) — Bk"i'laksk.
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Quasi-Newton methods ...

Interpretation of the secant equation:

")’k . — Vf(mk—l_l) . Vf(a’:k) — Bk+1($k+1 . mk:) — Bk'l'lak’sk’.

m [t is satisfied by B**+! := v2f when f is a quadratic
function:
Let f(x) = g7z + %wTHw; then vf(z) = Hz + g and
V2f = H. Thus Vf(z*t1) — Vf(z*) = H(=*+! — 2F) and
so the secant equation holds with B*+1 .= vz ¢,
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Quasi-Newton methods ...

Interpretation of the secant equation:

")’k . — Vf(mk—l_l) . Vf(a’:k) — Bk+1($k+1 . mk) — Bk'l'lak’sk.

m [t is satisfied by B**+! := v2f when f is a quadratic
function:
Let f(x) = g7z + %wTHw; then vf(z) = Hz + g and
V2f = H. Thus Vf(z*t1) — Vf(z*) = H(=*+! — 2F) and
so the secant equation holds with B*+1 .= vz ¢,

m In general (not just in the quadratic case), the change in

gradient contains information about the Hessian (recall
finite differences).
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Quasi-Newton methods ...

Interpretation of the secant equation:

")’k . — Vf(mk—l_l) . Vf(a’:k) — Bk+1($k+1 . mk) — Bk'l'lak’sk.

m [t is satisfied by B**+! := v2f when f is a quadratic
function:
Let f(x) = g7z + %wTHw; then vf(z) = Hz + g and
V2f = H. Thus Vf(z*t1) — Vf(z*) = H(=*+! — 2F) and
so the secant equation holds with B*+1 .= vz ¢,

m In general (not just in the quadratic case), the change in

gradient contains information about the Hessian (recall
finite differences).

®m The new model must predict correctly the change in
gradient (see next slide for detalls).
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Quasi-Newton methods ...

Interpretation of the secant equation: (continued)

The gradient change predicted by the current quadratic model is
Vf(zkt1l) — Vf(zF) = Vm(zk + a*sk) — Vm(zF) = —aFV f(xF),
where m(z* + s) = f(=F) + Vf(=F) Ts + %STBkS

and s = —(BF)1Vf(zF).
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Quasi-Newton methods ...

Interpretation of the secant equation: (continued)
The gradient change predicted by the current quadratic model is
Vf(zkt1l) — Vf(zF) = Vm(zk + a*sk) — Vm(zF) = —aFV f(xF),

where m(z* + s) = f(z*) + Vf(a*) s+ ;s B*s
and sk = —(B*)"1V f(zF).
Want the new quadratic model
my (z* 4 5) := f(a®) + VF(z*)Ts + LsT B*+1s
to predict correctly the change in gradient v* at s := ¢+ — ¥
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Quasi-Newton methods ...

Interpretation of the secant equation: (continued)

The gradient change predicted by the current quadratic model is
Vf(zkt1l) — Vf(zF) = Vm(zk + a*sk) — Vm(zF) = —aFV f(xF),
where m(z* + s) = f(=F) + Vf(=F) Ts + %STBkS

and s = —(BF)1Vf(zF).

Want the new quadratic model
my (z* 4 5) := f(a®) + VF(z*)Ts + LsT B*+1s
to predict correctly the change in gradient v* at s := ¢+ — ¥
v = Vf(@*t) - V(=)
= Vmg(zFt!) — Vmy (aF)

= BFF(aFt! —aF) + Vf(z*) — Vf(¥)
—_ Bk'l'l(a?k'l'l . :Bk)
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Quasi-Newton methods ...

Many ways to compute B*+! to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.
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Quasi-Newton methods ...

Many ways to compute B*+! to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]

Set B*t! .= B* + u*(u*) T, for some «* € R?, and all £ > o.
e B*t1 symmetric, “close” to B*.

e Work per iteration: ©(n?) (as opposed to the O(n2) of
Newton), due to Sherman-Morrison-Woodbury formula!
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Quasi-Newton methods ...

Many ways to compute B*+! to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]
Set B*t! .= B* + u*(u*) T, for some «* € R?, and all £ > o.
e B*t1 symmetric, “close” to B*.

e Work per iteration: ©(n?) (as opposed to the O(n2) of
Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation = u* = (v* — B*§*)/pF,
where 6% := zF+t1 — 2k = aksk, (p*)? := (v* — B*6*)T6* > 0.
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Quasi-Newton methods ...

Many ways to compute B*+! to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]

Set B*t! .= B* + u*(u*) T, for some «* € R?, and all £ > o.
e B*t1 symmetric, “close” to B*.

e Work per iteration: ©(n?) (as opposed to the O(n2) of
Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation = u* = (v* — B*§*)/pF,
where 6% := zF+t1 — 2k = aksk, (p*)? := (v* — B*6*)T6* > 0.

e B* may not be positive definite, s* may not be descent.
e p* may be close to zero leading to large updates.

Other updates: BFGS, DFP, Broyden family, etc.
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Quasi-Newton methods ...

BFGS updates. [see Prob Sheet 3]
e Broyden-Fletcher-Goldfarb-Shanno (independently).

Set Byi1 := By + upu, + vgv, , for some ug € R™, v, € R™.

e It is a rank 2 update (if u, and v, are linearly independent).
o SWM formula yields ©(n?) operations/iteration.

e In practice, update the Cholesky factors of B, (still ©(n?)).
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Quasi-Newton methods ...

BFGS updates. [see Prob Sheet 3]

e Broyden-Fletcher-Goldfarb-Shanno (independently).

Set Byi1 := By + upu, + vgv, , for some ug € R™, v, € R™.

e It is a rank 2 update (if u, and v, are linearly independent).
o SWM formula yields ©(n?) operations/iteration.

e In practice, update the Cholesky factors of B, (still ©(n?)).

Given B, = J.J, , where J, arbitrary nonsingular, and || - ||»
Frobenius norm, let J,, solve

mJin |J — Jg||Fr subjectto Jdor = i.

=  Bpgy1:= Jk:—|—1Jk_|_1 = By + ugu, + vgv,,
where ukuk = —BkédeBk/(éTBkék) kavk = YKV /(’Y;_(sk.)

o Let J, := L, the lower triangular Cholesky factor of B,.
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Quasi-Newton methods ...

BFGS updates. (continued)

e Thus B, IS “close” to B,.

e B, symmetric pos. def. = B,, symmetric pos. def. (provided
(6*)T~* > 0, ensured by say, Wolfe linesearch)
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Quasi-Newton methods ...

BFGS updates. (continued)

e Thus B, IS “close” to B,.
e B, symmetric pos. def. = B,, symmetric pos. def. (provided
(6*)T~* > 0, ensured by say, Wolfe linesearch)

updated by BFGS formula on each iteration.

e For global convergence of BFGS method, must use Wolfe
linesearch to compute stepsize instead of bArmijo linesearch.

e The BFGS method has local Q-superlinear convergence!

e When applying the BFGS method with exact linesearches,
to a strictly convex quadratic function £, then B, = v2f after n
iterations.

e Satisfies all the wishes on the wish list! Has been very
popular when second derivatives of £ are not available.

Lecture 7: Quasi-Newton methods. Nonlinear least-squares problems and the Gauss-Newton method — p. 9/19



Nonlinear least-squares problems

B a way to solve overdetermined (linear and nonlinear)
systems of equations:

r:R™ — R™ with m > n; r(x) =0 or r(x) = 0.

U

mingern f(x) == 3 37, [rj(@)]* = gllr ()12 (UNLS)

— unconstrained optimization problems with special
structure.

m often, computationally cheaper to solve if structure is
exploited:

— “simplify” damped Newton’s method to exploit this
structure.

B many applications: data fitting, data assimilation for
weather forecasting, climate modelling. etc.
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Data fitting application

Timest; — y;, j =1, m, measurements.

Model: ®(x, t), continuous in ¢; parameters ¢ € R®, n < m.
Find z: ®(«,t;) “close to” y;, 7 = 1, m;

Choice of model: ®(x,t) = x1 + x2t + e~ *3t, where

r = (x1, T2, T3) € R,

min — Z(fb(w ti) — y;)°.

x€ER3 2

— x*.

Optimal model: ®(x*,t).

18
t

m n (NLS), let rj(x) := ®(x,t;) — y;, 7 = 1, m: residuals.

Lecture 7: Quasi-Newton methods. Nonlinear least-squares problems and the Gauss-Newton method — p. 11/19



The Linear Least-Squares (LLS) problem

Br(r):=Je+r,Ve eR*,; J € R™*" r € R™, m > n.
(LLS) mingcrn f(x) := %HJ:B +7|? = %CBTJTJZB +atJglr 4+ %||fr||2
B f convex quadratic; (global) minimizer =* of f == solution

of linear system (normal equations)

JT(Ja:* +7r) =0 < JT Jx* = —JTy,

Geometrical interpretation:
W r(x) = Ax —b.

LLS: find orthogonal

Y Ax*-b=r*

projection of b onto the
subspace/plane deter-
mined by the columns
of A.

Span{a, a, }

m computing =*: Cholesky factorization of JT.J; QR or SVD of J.

Lecture 7: Quasi-Newton methods. Nonlinear least-squares problems and the Gauss-Newton method — p. 12/19



A simple LLS example

Fit a line to the data (¢;,y;) € {(—1,3),(0,2),(1,0),(2,4)}.

o for some = = (z1 z2)T € R?, ®(x,t) := 21 + x2t, t € R,
defines a line.

e determine = = (x1 z2)T as solution of (LLS)

mmz | (@, t:) — il

xrER2

rry —I2 = 3

(I)(w,ti)—inO,i:1,4 = < 1 = 2
Ir1 —|—LB2 = 0

L Ir1 —|—2$2 = 4
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A simple LLS example ...

Let J matrix of system; z* LLS solution iff JTJz* = JTy.

4 2 ] 9

k
T 5

& ¥ = (2.2,0.1) and ®(z*,t) = 2.2 + 0.1t.
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Nonlinear Least-Squares (NLS)

mr:R?” — R™ with m > n; r smooth.
mingern f(z) 1= 3 Y7, [rj(2)]2 = 2Ir(2)2.  (NLS)
m r(z*) = 0: zero-residual pb.; »(x*) # 0: nonzero-residual pb.
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Nonlinear Least-Squares (NLS)

mr:R?” — R™ with m > n; r smooth.

mingern f(z) := 5> 5, [rj(@)]* = gllr@)[*.  (NLS)
m r(z*) = 0: zero-residual pb.; »(x*) # 0: nonzero-residual pb.
B Vf(x) =J(x)'r(x), where J(x) Jacobian of r at z:

(NLS) and chain rule = for i € {1,...,n},

or1 ()
0 m T L
Ty =Y @@ =r@"| ..
¢ =1 ¢ or
J a—g(ff)

The formula follows by using that the vector
(0r1/0x; ... 0r,, /0x;)T is the ith column of J(x).
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Nonlinear Least-Squares (NLS)

mr:R?” — R™ with m > n; r smooth.

mingern f(z) := 5> 5, [rj(@)]* = gllr@)[*.  (NLS)
m r(z*) = 0: zero-residual pb.; »(x*) # 0: nonzero-residual pb.
B Vf(x) =J(x)'r(x), where J(x) Jacobian of r at z:

(NLS) and chain rule = for i € {1,...,n},

or1 ()
0 m T L
@)=Y ri@) o (@) = r(@)”
¢ =1 ¢ or
J a—ﬁ(w)

The formula follows by using that the vector
(0r1/0x; ... 0r,, /0x;)T is the ith column of J(x).

B V2f(z) = J(x)' J(®)+3 7, 7 (x) Virs(z).
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Gauss-Newton method for nonlinear least-squares

Vif(z) = J(x) ' J(2)+3 072, mi(2) Viri ().
rj(z*) =0 or V?r;j(z*)small — r;(x)V?3r;(z) small
when z close to z* =— V2f(z) = J(z)1J(x) := @/f(a:)
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Gauss-Newton method for nonlinear least-squares

Vif(z) = J(x) ' J(2)+3 072, mi(2) Viri ().

rj(z*) =0 or V?r;j(z*)small — r;(x)V?3r;(z) small
when z close to z* =— V2f(z) = J(z)1J(x) := @/f(a:)
m Gauss-Newton (GN) direction:

V2f(ak)sk = —V f(zk) <= J(2*)TI(2%)sk = —J (z*)Tr(z*),
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Gauss-Newton method for nonlinear least-squares

Vif(z) = J(x)' J(x)+> 7L, rj(x) Virj(z).
rj(z*) =0 or V?r;j(z*)small — r;(x)V?3r;(z) small
when z close to z* =— V2f(z) = J(z)1J(x) := @/f(a:)
m Gauss-Newton (GN) direction:
V2f(zF)sk = —V f(zF) < J(2*)TJ(z*)sk = —J(z*)Tr(zk),
and so s”* solves the (LLS):
mingegn 3| J(x*)s 4 7(a*)||?
= %STJ(wk)TJ(wk)S + sTV f(zF) + %Hr(azk)ﬂz = my(z® + s).

— f approximated by local convex quadratic model as
J(=*)T J(=*) positive semi-definite for each k. Note that
Vsmi(xFf 4+ s%) = J(2*)TJ(z*)sk + J(=F)Tr(zF) = 0.
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Gauss-Newton method for nonlinear least-squares

m GN direction: J(z*)TJ(x*)s* = —J(x®)Tr(z*)

m s* descent provided J(z*) full column rank! since if J(z*)
full column rank = J(z*)TJ(x*) positive definite.
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Gauss-Newton method for nonlinear least-squares

m GN direction: J(z*)TJ(x*)s* = —J(x®)Tr(z*)

m s* descent provided J(z*) full column rank! since if J(z*)
full column rank = J(z*)TJ(x*) positive definite.

Gauss-Newton (GN) method for nonlinear least-squares: (with linesearch)

Choose € >0 and z° € R™.
While ||V f(x*)]| > €, REPEAT:

B solve the linear system 55}‘(:1;%)3’4 = —Vf(z*).
B set zFtl = 2k + aksk, with af € (0,1]; k:=k+1.
END.

m for example, calculate o* by bArmijo linesearch, with
o) =1 and 3 < 0.5.

m GN method is a GLM if J(«*) is full column rank.
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Convergence properties of Gauss-Newton method

B Vf(x) =0maynotimply r(x) =0

m (global convergence) J(x*) uniformly full-rank for all z* (and
Vf Lips cont;see Th4) —
IV£(@9)] = 1J(@*) r ()| — 0, k — oo.

m (local convergence) if r(z*) = 0, J(=*) full-rank, o* = 1 for
all k (+ condsin Th7) = xz* — x* quadratically.
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Convergence properties of Gauss-Newton method

B Vf(x) =0maynotimply r(x) =0

m (global convergence) J(x*) uniformly full-rank for all z* (and
Vf Lips cont;see Th4) —
IV£(@9)] = 1J(@*) r ()| — 0, k — oo.

m (local convergence) if r(z*) = 0, J(=*) full-rank, o* = 1 for
all k (+ condsin Th7) = xz* — x* quadratically.

Gauss-Newton vs. Newton method:

m computational cost per iteration: N > GN.
m N direction may be ascent.
m only linear rate for GN when r(x*) # 0.

® N & GN mthds unreliable without a linesearch (or other
safeguards). Use bArmijo linesearch for example.
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Gauss-Newton vs. Newton: an example

Br:R—->R%r(x)i=(x+1 01z2+z—1)T

mr(z*) = (1, —1) £0 — nonzero residuals problem: only
linear convergence asymptotically for GN.

1 2 3 4 5 6
N 1.0/ 0.14|0.003 | 1.5-107° | 4.3-1071% | 3.1-1072¢
GN | 1.0|0.13 | 0.014 | 0.0014 0.00014 0.000014
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