Lecture 7: Quasi-Newton methods. Nonlinear least-squares problems and the Gauss-Newton method

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Practical comments: calculating derivatives

How to compute/provide derivatives to a solver?

- Calculate derivatives by hand when easy/simple objective and constraints; user provides code that computes them.
- Calculate or approximate derivatives automatically:
 - Automatic differentiation: breaks down computer code for evaluating *f* into elementary arithmetic operations + differentiate by chain rule. Software: ADIFOR, ADOL-C.
 - Symbolic differentiation: manipulate the algebraic expression of *f* (if available). Software: symbolic packages of MAPLE, MATHEMATICA, MATLAB.
 - Finite differencing \longrightarrow approximate derivatives.

See Nocedal & Wright, Numerical Optimization (2nd edition, 2006) for more details of the above procedures.

Approximating the Hessian from gradient vals: $i \in \{1, ..., n\}$;

$$[\nabla^2 f(x)]e^i \approx \frac{1}{h} [\nabla f(x + he^i) - \nabla f(x)]$$

Cost of approximating $\nabla^2 f(x)$ is n + 1 gradient evaluations.

For all finite-differencing, careful with the choice of *h* in computations:

- "too large" $h \rightarrow$ inaccurate approximations,
- "too small" $h \rightarrow$ numerical cancellation errors.

But successful techniques exist for smooth noiseless problems when sufficient function and/or gradient values can be computed.

For noisy problems, use derivative-free optimization methods (if problem size is not too large).

At the start of the GLM, choose B^0 (say, $B^0 := I$). After computing $s^k = -(B^k)^{-1} \nabla f(x^k)$ and $x^{k+1} = x^k + \alpha^k s^k$, compute update B^{k+1} of B^k .

Wish list:

At the start of the GLM, choose B^0 (say, $B^0 := I$). After computing $s^k = -(B^k)^{-1} \nabla f(x^k)$ and $x^{k+1} = x^k + \alpha^k s^k$, compute update B^{k+1} of B^k .

Wish list:

Compute B^{k+1} as a function of already-computed quantities $\nabla f(x^{k+1}), \nabla f(x^k), \ldots, \nabla f(x^0), B^k, s^k$,

At the start of the GLM, choose B^0 (say, $B^0 := I$). After computing $s^k = -(B^k)^{-1} \nabla f(x^k)$ and $x^{k+1} = x^k + \alpha^k s^k$, compute update B^{k+1} of B^k .

Wish list:

Compute B^{k+1} as a function of already-computed quantities $\nabla f(x^{k+1}), \nabla f(x^k), \ldots, \nabla f(x^0), B^k, s^k$,

 B^{k+1} should be symmetric, nonsingular (pos. def.),

At the start of the GLM, choose B^0 (say, $B^0 := I$). After computing $s^k = -(B^k)^{-1} \nabla f(x^k)$ and $x^{k+1} = x^k + \alpha^k s^k$, compute update B^{k+1} of B^k .

Wish list:

Compute B^{k+1} as a function of already-computed quantities $\nabla f(x^{k+1}), \nabla f(x^k), \ldots, \nabla f(x^0), B^k, s^k$,

 B^{k+1} should be symmetric, nonsingular (pos. def.),

 B^{k+1} "close" to B^k , a "cheap" update of B^k , $B^k \to \nabla^2 f(x^k)$, etc.

At the start of the GLM, choose B^0 (say, $B^0 := I$). After computing $s^k = -(B^k)^{-1} \nabla f(x^k)$ and $x^{k+1} = x^k + \alpha^k s^k$, compute update B^{k+1} of B^k .

Wish list:

Compute B^{k+1} as a function of already-computed quantities $\nabla f(x^{k+1}), \nabla f(x^k), \ldots, \nabla f(x^0), B^k, s^k$,

 B^{k+1} should be symmetric, nonsingular (pos. def.),

 B^{k+1} "close" to B^k , a "cheap" update of B^k , $B^k \to \nabla^2 f(x^k)$, etc.

 \implies a new class of methods: faster than steepest descent method, cheaper to compute per iteration than Newton's.

At the start of the GLM, choose B^0 (say, $B^0 := I$). After computing $s^k = -(B^k)^{-1} \nabla f(x^k)$ and $x^{k+1} = x^k + \alpha^k s^k$, compute update B^{k+1} of B^k .

Wish list:

Compute B^{k+1} as a function of already-computed quantities $\nabla f(x^{k+1}), \nabla f(x^k), \ldots, \nabla f(x^0), B^k, s^k$,

 B^{k+1} should be symmetric, nonsingular (pos. def.),

 B^{k+1} "close" to B^k , a "cheap" update of B^k , $B^k \to \nabla^2 f(x^k)$, etc.

 \implies a new class of methods: faster than steepest descent method, cheaper to compute per iteration than Newton's.

For the first wish, choose B^{k+1} to satisfy the secant equation:

 $\gamma^k := \nabla f(x^{k+1}) - \nabla f(x^k) = B^{k+1}(x^{k+1} - x^k) = B^{k+1}\alpha^k s^k.$

Interpretation of the secant equation:

$$\gamma^k := \nabla f(x^{k+1}) - \nabla f(x^k) = B^{k+1}(x^{k+1} - x^k) = B^{k+1}\alpha^k s^k.$$

It is satisfied by B^{k+1} := ∇²f when f is a quadratic function:
 Let f(x) = g^Tx + ¹/₂x^THx; then ∇f(x) = Hx + g and

 $\nabla^2 f = H$. Thus $\nabla f(x^{k+1}) - \nabla f(x^k) = H(x^{k+1} - x^k)$ and so the secant equation holds with $B^{k+1} := \nabla^2 f$.

Interpretation of the secant equation:

$$\gamma^k := \nabla f(x^{k+1}) - \nabla f(x^k) = B^{k+1}(x^{k+1} - x^k) = B^{k+1}\alpha^k s^k.$$

It is satisfied by $B^{k+1} := \nabla^2 f$ when f is a quadratic function:

Let $f(x) = g^T x + \frac{1}{2}x^T H x$; then $\nabla f(x) = Hx + g$ and $\nabla^2 f = H$. Thus $\nabla f(x^{k+1}) - \nabla f(x^k) = H(x^{k+1} - x^k)$ and so the secant equation holds with $B^{k+1} := \nabla^2 f$.

In general (not just in the quadratic case), the change in gradient contains information about the Hessian (recall finite differences). Interpretation of the secant equation:

$$\gamma^k := \nabla f(x^{k+1}) - \nabla f(x^k) = B^{k+1}(x^{k+1} - x^k) = B^{k+1}\alpha^k s^k.$$

It is satisfied by $B^{k+1} := \nabla^2 f$ when f is a quadratic function:

Let $f(x) = g^T x + \frac{1}{2}x^T H x$; then $\nabla f(x) = Hx + g$ and $\nabla^2 f = H$. Thus $\nabla f(x^{k+1}) - \nabla f(x^k) = H(x^{k+1} - x^k)$ and so the secant equation holds with $B^{k+1} := \nabla^2 f$.

- In general (not just in the quadratic case), the change in gradient contains information about the Hessian (recall finite differences).
- The new model must predict correctly the change in gradient (see next slide for details).

Interpretation of the secant equation: (continued) The gradient change predicted by the current quadratic model is $\nabla f(x^{k+1}) - \nabla f(x^k) \approx \nabla m(x^k + \alpha^k s^k) - \nabla m(x^k) = -\alpha^k \nabla f(x^k),$ where $m(x^k + s) = f(x^k) + \nabla f(x^k)^\top s + \frac{1}{2}s^\top B^k s$ and $s^k = -(B^k)^{-1} \nabla f(x^k).$

Interpretation of the secant equation: (continued) The gradient change predicted by the current quadratic model is $\nabla f(x^{k+1}) - \nabla f(x^k) \approx \nabla m(x^k + \alpha^k s^k) - \nabla m(x^k) = -\alpha^k \nabla f(x^k),$ where $m(x^k + s) = f(x^k) + \nabla f(x^k)^\top s + \frac{1}{2}s^\top B^k s$ and $s^k = -(B^k)^{-1} \nabla f(x^k).$

Want the new quadratic model

$$m_{+}(x^{k}+s) := f(x^{k}) + \nabla f(x^{k})^{\top}s + \frac{1}{2}s^{\top}B^{k+1}s$$

to predict correctly the change in gradient γ^k at $s := x^{k+1} - x^k$

Interpretation of the secant equation: (continued) The gradient change predicted by the current quadratic model is $\nabla f(x^{k+1}) - \nabla f(x^k) \approx \nabla m(x^k + \alpha^k s^k) - \nabla m(x^k) = -\alpha^k \nabla f(x^k),$ where $m(x^k + s) = f(x^k) + \nabla f(x^k)^\top s + \frac{1}{2}s^\top B^k s$ and $s^k = -(B^k)^{-1} \nabla f(x^k).$

Want the new quadratic model

$$m_{+}(x^{k}+s) := f(x^{k}) + \nabla f(x^{k})^{\top}s + \frac{1}{2}s^{\top}B^{k+1}s$$

to predict correctly the change in gradient γ^k at $s := x^{k+1} - x^k$

$$egin{array}{rcl} \gamma^k &=&
abla f(x^{k+1}) -
abla f(x^k) \ &=&
abla m_+(x^{k+1}) -
abla m_+(x^k) \ &=& B^{k+1}(x^{k+1} - x^k) +
abla f(x^k) -
abla f(x^k) \ &=& B^{k+1}(x^{k+1} - x^k) \end{array}$$

Many ways to compute B^{k+1} to satisfy the secant equation. Trade-off between "wishes" on the list for some of the methods.

Many ways to compute B^{k+1} to satisfy the secant equation. Trade-off between "wishes" on the list for some of the methods.

Symmetric rank 1 updates.

[see Prob Sheet 3]

Set $B^{k+1} := B^k + u^k (u^k)^\top$, for some $u^k \in \mathbb{R}^n$, and all $k \ge 0$.

- B^{k+1} symmetric, "close" to B^k .
- Work per iteration: $\mathcal{O}(n^2)$ (as opposed to the $\mathcal{O}(n^3)$ of Newton), due to Sherman-Morrison-Woodbury formula!

Many ways to compute B^{k+1} to satisfy the secant equation. Trade-off between "wishes" on the list for some of the methods.

Symmetric rank 1 updates.

[see Prob Sheet 3]

Set $B^{k+1} := B^k + u^k (u^k)^\top$, for some $u^k \in \mathbb{R}^n$, and all $k \ge 0$.

• B^{k+1} symmetric, "close" to B^k .

• Work per iteration: $\mathcal{O}(n^2)$ (as opposed to the $\mathcal{O}(n^3)$ of Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation $\implies u^k = (\gamma^k - B^k \delta^k) / \rho^k$, where $\delta^k := x^{k+1} - x^k = \alpha^k s^k$, $(\rho^k)^2 := (\gamma^k - B^k \delta^k)^\top \delta^k > 0$.

Many ways to compute B^{k+1} to satisfy the secant equation. Trade-off between "wishes" on the list for some of the methods.

Symmetric rank 1 updates.

[see Prob Sheet 3]

Set $B^{k+1} := B^k + u^k (u^k)^\top$, for some $u^k \in \mathbb{R}^n$, and all $k \ge 0$.

• B^{k+1} symmetric, "close" to B^k .

• Work per iteration: $\mathcal{O}(n^2)$ (as opposed to the $\mathcal{O}(n^3)$ of Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation $\implies u^k = (\gamma^k - B^k \delta^k) / \rho^k$, where $\delta^k := x^{k+1} - x^k = \alpha^k s^k$, $(\rho^k)^2 := (\gamma^k - B^k \delta^k)^\top \delta^k > 0$.

- B^k may not be positive definite, s^k may not be descent.
- ρ^k may be close to zero leading to large updates.

Other updates: **BFGS**, **DFP**, Broyden family, etc.

BFGS updates.

[see Prob Sheet 3]

• Broyden-Fletcher-Goldfarb-Shanno (independently).

Set $B_{k+1} := B_k + u_k u_k^\top + v_k v_k^\top$, for some $u_k \in \mathbb{R}^n$, $v_k \in \mathbb{R}^n$.

- It is a rank 2 update (if u_k and v_k are linearly independent).
- SWM formula yields $\mathcal{O}(n^2)$ operations/iteration.
- In practice, update the Cholesky factors of B_k (still $\mathcal{O}(n^2)$).

BFGS updates.

[see Prob Sheet 3]

• Broyden-Fletcher-Goldfarb-Shanno (independently).

Set $B_{k+1} := B_k + u_k u_k^\top + v_k v_k^\top$, for some $u_k \in \mathbb{R}^n$, $v_k \in \mathbb{R}^n$.

- It is a rank 2 update (if u_k and v_k are linearly independent).
- SWM formula yields $\mathcal{O}(n^2)$ operations/iteration.
- In practice, update the Cholesky factors of B_k (still $\mathcal{O}(n^2)$).

Given $B_k = J_k J_k^{\top}$, where J_k arbitrary nonsingular, and $\|\cdot\|_F$ Frobenius norm, let J_{k+1} solve

 $\min_{I} \|J - J_k\|_F$ subject to $J\delta_k = \gamma_k$.

 $\Rightarrow B_{k+1} := J_{k+1}J_{k+1}^{\top} = B_k + u_k u_k^{\top} + v_k v_k^{\top},$ where $u_k u_k^{\top} = -B_k \delta_k \delta_k^{\top} B_k / (\delta_k^{\top} B_k \delta_k), v_k v_k^{\top} = \gamma_k \gamma_k^{\top} / (\gamma_k^{\top} \delta_k).$ • Let $J_k := L_k$ the lower triangular Cholesky factor of B_k .

BFGS updates. (continued)

- Thus B_{k+1} is "close" to B_k .
- B_k symmetric pos. def. $\Rightarrow B_{k+1}$ symmetric pos. def. (provided $(\delta^k)^T \gamma^k > 0$, ensured by say, Wolfe linesearch)

BFGS updates. (continued)

- Thus B_{k+1} is "close" to B_k .
- B_k symmetric pos. def. $\Rightarrow B_{k+1}$ symmetric pos. def. (provided $(\delta^k)^T \gamma^k > 0$, ensured by say, Wolfe linesearch)
- BFGS method: GLM with $s_k := -B_k^{-1} \nabla f(x_k)$, with B_k updated by BFGS formula on each iteration.
- For global convergence of BFGS method, must use Wolfe linesearch to compute stepsize instead of bArmijo linesearch.
- The BFGS method has local Q-superlinear convergence!
- When applying the BFGS method with exact linesearches, to a strictly convex quadratic function f, then $B_k = \nabla^2 f$ after n iterations.

• Satisfies all the wishes on the wish list! Has been very popular when second derivatives of f are not available.

Nonlinear least-squares problems

a way to solve overdetermined (linear and nonlinear) systems of equations:

$$r: \mathbb{R}^n o \mathbb{R}^m$$
 with $m \geq n$; $r(x) = 0$ or $r(x) pprox 0$.

 $\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{2} \sum_{j=1}^m [r_j(x)]^2 = \frac{1}{2} \|r(x)\|^2. \quad (L/N LS)$

 \implies unconstrained optimization problems with special structure.

often, computationally cheaper to solve if structure is exploited:

 \longrightarrow "simplify" damped Newton's method to exploit this structure.

many applications: data fitting, data assimilation for weather forecasting, climate modelling, etc.

Data fitting application

Times $t_j \longrightarrow y_j, j = \overline{1, m}$, measurements. Model: $\Phi(x, t)$, continuous in t; parameters $x \in \mathbb{R}^n$, n < m. Find x: $\Phi(x, t_i)$ "close to" $y_j, j = \overline{1, m}$; Choice of model: $\Phi(x,t) = x_1 + x_2t + e^{-x_3t}$, where $x = (x_1, x_2, x_3) \in \mathbb{R}^3.$ $\Phi(x,t)$ $\min_{x\in\mathbb{R}^3}rac{1}{2}\sum_{i=1}^m(\Phi(x,t_j)-y_j)^2.$ $\longrightarrow x^*$. Optimal model: $\Phi(x^*, t)$. 2.8 2.6 02 0.4 0.6 1.2 1.4 1.6 1.8 In (NLS), let $r_j(x) := \Phi(x, t_j) - y_j$, $j = \overline{1, m}$: residuals.

The Linear Least-Squares (LLS) problem

ullet $r(x):=Jx+r, orall x\in \mathbb{R}^n; J\in \mathbb{R}^{m imes n}, r\in \mathbb{R}^m, m\geq n.$

(LLS) $\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{2} \|Jx + r\|^2 = \frac{1}{2} x^T J^T J x + x^T J^T r + \frac{1}{2} \|r\|^2$

■ f convex quadratic; (global) minimizer x^* of f == solution of linear system (normal equations)

$$J^T(Jx^*+r) = 0 \iff J^TJx^* = -J^Tr.$$

Geometrical interpretation:

■ r(x) = Ax - b. LLS: find orthogonal projection of *b* onto the subspace/plane determined by the columns of *A*.

• computing x^* : Cholesky factorization of $J^T J$; QR or SVD of J.

Fit a line to the data $(t_i, y_i) \in \{(-1, 3), (0, 2), (1, 0), (2, 4)\}.$

- for some $x = (x_1 \ x_2)^T \in \mathbb{R}^2$, $\Phi(x,t) := x_1 + x_2 t$, $t \in \mathbb{R}$, defines a line.
- determine $x = (x_1 \ x_2)^T$ as solution of (LLS)

$$\min_{x\in\mathbb{R}^2}\sum_{i=1}^4 \|\Phi(x,t_i)-y_i\|^2.$$

$$\Phi(x,t_i)-y_i=0,\ i=\overline{1,4} \quad \Leftrightarrow \quad \left\{ egin{array}{cccc} x_1 & -x_2 & = & 3 \ x_1 & = & 2 \ x_1 & +x_2 & = & 0 \ x_1 & +x_2 & = & 0 \ x_1 & +2x_2 & = & 4. \end{array}
ight.$$

A simple LLS example ...

Let J matrix of system; x^* LLS solution iff $J^T J x^* = J^T y$.

$$\left(egin{array}{cc} 4 & 2 \ 2 & 6 \end{array}
ight) \left(egin{array}{cc} x_1^* \ x_2^* \end{array}
ight) = \left(egin{array}{cc} 9 \ 5 \end{array}
ight),$$

 $\Leftrightarrow x^* = (2.2, 0.1) \text{ and } \Phi(x^*, t) = 2.2 + 0.1t.$

Nonlinear Least-Squares (NLS)

•
$$r : \mathbb{R}^n \to \mathbb{R}^m$$
 with $m \ge n$; r smooth.
 $\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{2} \sum_{j=1}^m [r_j(x)]^2 = \frac{1}{2} ||r(x)||^2$. (NLS)

■ $r(x^*) = 0$: zero-residual pb.; $r(x^*) \neq 0$: nonzero-residual pb.

Nonlinear Least-Squares (NLS)

r: Rⁿ → R^m with m ≥ n; r smooth.
min_{x∈Rⁿ} f(x) := ½ ∑_{j=1}^m [r_j(x)]² = ½ ||r(x)||². (NLS)
r(x*) = 0: zero-residual pb.; r(x*) ≠ 0: nonzero-residual pb.
∇f(x) = J(x)^Tr(x), where J(x) Jacobian of r at x:
(NLS) and chain rule ⇒ for i ∈ {1,...,n},

$$\frac{\partial f}{\partial x_i}(x) = \sum_{j=1}^m r_j(x) \frac{\partial r_j}{\partial x_i}(x) = r(x)^T \begin{pmatrix} \frac{\partial r_1}{\partial x_i}(x) \\ \dots \\ \frac{\partial r_m}{\partial x_i}(x) \end{pmatrix}$$
.
The formula follows by using that the vector

 $(\partial r_1/\partial x_i \dots \partial r_m/\partial x_i)^T$ is the *i*th column of J(x).

Nonlinear Least-Squares (NLS)

$$\quad \blacksquare \ \nabla^2 f(x) = J(x)^T J(x) + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x).$$

 $\nabla^2 f(x) = J(x)^T J(x) + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x).$ $r_j(x^*) \approx 0 \quad \text{or} \quad \nabla^2 r_j(x^*) \text{ small} \implies r_j(x) \nabla^2 r_j(x) \text{ small}$ when $x \text{ close to } x^* \implies \nabla^2 f(x) \approx J(x)^T J(x) := \widetilde{\nabla^2 f(x)}.$

 $\nabla^2 f(x) = J(x)^T J(x) + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x).$ $r_j(x^*) \approx 0 \quad \text{or} \quad \nabla^2 r_j(x^*) \text{ small} \implies r_j(x) \nabla^2 r_j(x) \text{ small}$ when x close to $x^* \implies \nabla^2 f(x) \approx J(x)^T J(x) := \widetilde{\nabla^2 f(x)}.$

Gauss-Newton (GN) direction:

$$\widetilde{\nabla^2 f}(x^k) s^k = -\nabla f(x^k) \Longleftrightarrow J(x^k)^T J(x^k) s^k = -J(x^k)^T r(x^k),$$

 $\nabla^2 f(x) = J(x)^T J(x) + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x).$ $I r_j(x^*) \approx 0 \quad \text{or} \quad \nabla^2 r_j(x^*) \text{ small} \implies r_j(x) \nabla^2 r_j(x) \text{ small}$ when x close to $x^* \implies \nabla^2 f(x) \approx J(x)^T J(x) := \widetilde{\nabla^2 f(x)}.$ I Gauss-Newton (GN) direction:

$$\widetilde{\nabla^2 f}(x^k) s^k = -\nabla f(x^k) \Longleftrightarrow J(x^k)^T J(x^k) s^k = -J(x^k)^T r(x^k),$$

and so s^k solves the (LLS):

 $\min_{s \in \mathbb{R}^n} \frac{1}{2} \|J(x^k)s + r(x^k)\|^2$

 $= \frac{1}{2}s^T J(x^k)^T J(x^k)s + s^T \nabla f(x^k) + \frac{1}{2} \|r(x^k)\|^2 := m_k(x^k + s).$

 $\longrightarrow f$ approximated by local convex quadratic model as $J(x^k)^T J(x^k)$ positive semi-definite for each k. Note that $\nabla_s m_k(x^k + s^k) = J(x^k)^T J(x^k) s^k + J(x^k)^T r(x^k) = 0.$

- GN direction: $J(x^k)^T J(x^k) s^k = -J(x^k)^T r(x^k)$
- s^k descent provided $J(x^k)$ full column rank! since if $J(x^k)$ full column rank $\Rightarrow J(x^k)^T J(x^k)$ positive definite.

GN direction:
$$J(x^k)^T J(x^k) s^k = -J(x^k)^T r(x^k)$$

■ s^k descent provided $J(x^k)$ full column rank! since if $J(x^k)$ full column rank $\Rightarrow J(x^k)^T J(x^k)$ positive definite.

Gauss-Newton (GN) method for nonlinear least-squares: (with linesearch) Choose $\epsilon > 0$ and $x^0 \in \mathbb{R}^n$. While $\|\nabla f(x^k)\| > \epsilon$, REPEAT: solve the linear system $\overline{\nabla^2 f(x^k)s^k} = -\nabla f(x^k)$. set $x^{k+1} = x^k + \alpha^k s^k$, with $\alpha^k \in (0, 1]$; k := k + 1. END.

- for example, calculate α^k by bArmijo linesearch, with $\alpha_{(0)} = 1$ and $\beta \le 0.5$.
- GN method is a GLM if $J(x^k)$ is full column rank.

Convergence properties of Gauss-Newton method

 $\Box \nabla f(x) = 0 \text{ may not imply } r(x) = 0$

■ (global convergence) $J(x^k)$ uniformly full-rank for all x^k (and ∇f Lips cont; see Th 4) \implies $\|\nabla f(x^k)\| = \|J(x^k)^T r(x^k)\| \to 0, k \to \infty.$

■ (local convergence) if $r(x^*) = 0$, $J(x^*)$ full-rank, $\alpha^k = 1$ for all k (+ conds in Th 7) $\implies x^k \rightarrow x^*$ quadratically.

Convergence properties of Gauss-Newton method

 $\Box \nabla f(x) = 0 \text{ may not imply } r(x) = 0$

■ (global convergence) $J(x^k)$ uniformly full-rank for all x^k (and ∇f Lips cont; see Th 4) \implies $\|\nabla f(x^k)\| = \|J(x^k)^T r(x^k)\| \to 0, k \to \infty.$

■ (local convergence) if $r(x^*) = 0$, $J(x^*)$ full-rank, $\alpha^k = 1$ for all k (+ conds in Th 7) $\implies x^k \rightarrow x^*$ quadratically.

Gauss-Newton vs. Newton method:

- computational cost per iteration: N > GN.
- N direction may be ascent.
- only linear rate for GN when $r(x^*) \neq 0$.
- N & GN mthds unreliable without a linesearch (or other safeguards). Use bArmijo linesearch for example.

Gauss-Newton vs. Newton: an example

 $\square r: \mathbb{R}
ightarrow \mathbb{R}^2; r(x):= (x+1 \quad 0.1x^2+x-1)^T$

■ $r(x^*) = (1, -1)^T \neq 0 \longrightarrow$ nonzero residuals problem: only linear convergence asymptotically for GN.

	1	2	3	4	5	6
Ν	1.0	0.14	0.003	$1.5\cdot 10^{-6}$	$4.3\cdot10^{-13}$	$3.1\cdot10^{-26}$
GN	1.0	0.13	0.014	0.0014	0.00014	0.000014