
Lecture 7: Quasi-Newton methods. Nonlinear
least-squares problems and the Gauss-Newton

method

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Lecture 7: Quasi-Newton methods. Nonlinear least-squares problems and the Gauss-Newton method – p. 1/19



Practical comments: calculating derivatives

How to compute/provide derivatives to a solver?
Calculate derivatives by hand when easy/simple objective
and constraints; user provides code that computes them.
Calculate or approximate derivatives automatically:

Automatic differentiation: breaks down computer code for
evaluating f into elementary arithmetic operations +
differentiate by chain rule. Software: ADIFOR, ADOL-C.
Symbolic differentiation: manipulate the algebraic
expression of f (if available). Software: symbolic
packages of MAPLE, MATHEMATICA, MATLAB.
Finite differencing −→ approximate derivatives.

See Nocedal & Wright, Numerical Optimization (2nd edition,
2006) for more details of the above procedures.
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Approximating the Hessian matrix by finite differences

Approximating the Hessian from gradient vals: i ∈ {1, . . . , n};

[∇2f(x)]ei ≈
1

h
[∇f(x + hei) − ∇f(x)]

Cost of approximating ∇2f(x) is n + 1 gradient evaluations.

For all finite-differencing, careful with the choice of h in
computations:
• “too large” h → inaccurate approximations,
• “too small” h → numerical cancellation errors.
But successful techniques exist for smooth noiseless
problems when sufficient function and/or gradient values can
be computed.
For noisy problems, use derivative-free optimization methods
(if problem size is not too large).

Lecture 7: Quasi-Newton methods. Nonlinear least-squares problems and the Gauss-Newton method – p. 3/19



Quasi-Newton methods

Secant approximations for computing Bk ≈ ∇2f(xk)

At the start of the GLM, choose B0 (say, B0 := I). After
computing sk = −(Bk)−1∇f(xk) and xk+1 = xk + αksk,
compute update Bk+1 of Bk.

Wish list:
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Quasi-Newton methods

Secant approximations for computing Bk ≈ ∇2f(xk)

At the start of the GLM, choose B0 (say, B0 := I). After
computing sk = −(Bk)−1∇f(xk) and xk+1 = xk + αksk,
compute update Bk+1 of Bk.

Wish list:
Compute Bk+1 as a function of already-computed quantities
∇f(xk+1), ∇f(xk), . . ., ∇f(x0), Bk, sk,
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Quasi-Newton methods

Secant approximations for computing Bk ≈ ∇2f(xk)
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Wish list:
Compute Bk+1 as a function of already-computed quantities
∇f(xk+1), ∇f(xk), . . ., ∇f(x0), Bk, sk,
Bk+1 should be symmetric, nonsingular (pos. def.),
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Quasi-Newton methods

Secant approximations for computing Bk ≈ ∇2f(xk)
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Compute Bk+1 as a function of already-computed quantities
∇f(xk+1), ∇f(xk), . . ., ∇f(x0), Bk, sk,
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Quasi-Newton methods

Secant approximations for computing Bk ≈ ∇2f(xk)

At the start of the GLM, choose B0 (say, B0 := I). After
computing sk = −(Bk)−1∇f(xk) and xk+1 = xk + αksk,
compute update Bk+1 of Bk.

Wish list:
Compute Bk+1 as a function of already-computed quantities
∇f(xk+1), ∇f(xk), . . ., ∇f(x0), Bk, sk,
Bk+1 should be symmetric, nonsingular (pos. def.),
Bk+1 “close” to Bk, a “cheap” update of Bk, Bk → ∇2f(xk), etc.
=⇒ a new class of methods: faster than steepest descent
method, cheaper to compute per iteration than Newton’s.
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Quasi-Newton methods

Secant approximations for computing Bk ≈ ∇2f(xk)

At the start of the GLM, choose B0 (say, B0 := I). After
computing sk = −(Bk)−1∇f(xk) and xk+1 = xk + αksk,
compute update Bk+1 of Bk.

Wish list:
Compute Bk+1 as a function of already-computed quantities
∇f(xk+1), ∇f(xk), . . ., ∇f(x0), Bk, sk,
Bk+1 should be symmetric, nonsingular (pos. def.),
Bk+1 “close” to Bk, a “cheap” update of Bk, Bk → ∇2f(xk), etc.
=⇒ a new class of methods: faster than steepest descent
method, cheaper to compute per iteration than Newton’s.
For the first wish, choose Bk+1 to satisfy the secant equation:

γk := ∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1αksk.
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Quasi-Newton methods ...

Interpretation of the secant equation:

γk := ∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1αksk.

It is satisfied by Bk+1 := ∇2f when f is a quadratic
function:
Let f(x) = gTx + 1

2
xTHx; then ∇f(x) = Hx + g and

∇2f = H. Thus ∇f(xk+1) − ∇f(xk) = H(xk+1 − xk) and
so the secant equation holds with Bk+1 := ∇2f .
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Quasi-Newton methods ...

Interpretation of the secant equation:

γk := ∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1αksk.

It is satisfied by Bk+1 := ∇2f when f is a quadratic
function:
Let f(x) = gTx + 1

2
xTHx; then ∇f(x) = Hx + g and

∇2f = H. Thus ∇f(xk+1) − ∇f(xk) = H(xk+1 − xk) and
so the secant equation holds with Bk+1 := ∇2f .
In general (not just in the quadratic case), the change in
gradient contains information about the Hessian (recall
finite differences).
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Quasi-Newton methods ...

Interpretation of the secant equation:

γk := ∇f(xk+1) − ∇f(xk) = Bk+1(xk+1 − xk) = Bk+1αksk.

It is satisfied by Bk+1 := ∇2f when f is a quadratic
function:
Let f(x) = gTx + 1

2
xTHx; then ∇f(x) = Hx + g and

∇2f = H. Thus ∇f(xk+1) − ∇f(xk) = H(xk+1 − xk) and
so the secant equation holds with Bk+1 := ∇2f .
In general (not just in the quadratic case), the change in
gradient contains information about the Hessian (recall
finite differences).

The new model must predict correctly the change in
gradient (see next slide for details).
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Quasi-Newton methods ...

Interpretation of the secant equation: (continued)
The gradient change predicted by the current quadratic model is
∇f(xk+1) − ∇f(xk) ≈ ∇m(xk + αksk) − ∇m(xk) = −αk∇f(xk),
where m(xk + s) = f(xk) + ∇f(xk)"s + 1

2
s"Bks

and sk = −(Bk)−1∇f(xk).
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Quasi-Newton methods ...

Interpretation of the secant equation: (continued)
The gradient change predicted by the current quadratic model is
∇f(xk+1) − ∇f(xk) ≈ ∇m(xk + αksk) − ∇m(xk) = −αk∇f(xk),
where m(xk + s) = f(xk) + ∇f(xk)"s + 1

2
s"Bks

and sk = −(Bk)−1∇f(xk).

Want the new quadratic model
m+(xk + s) := f(xk) + ∇f(xk)"s + 1

2s
"Bk+1s

to predict correctly the change in gradient γk at s := xk+1 − xk
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Quasi-Newton methods ...

Interpretation of the secant equation: (continued)
The gradient change predicted by the current quadratic model is
∇f(xk+1) − ∇f(xk) ≈ ∇m(xk + αksk) − ∇m(xk) = −αk∇f(xk),
where m(xk + s) = f(xk) + ∇f(xk)"s + 1

2
s"Bks

and sk = −(Bk)−1∇f(xk).

Want the new quadratic model
m+(xk + s) := f(xk) + ∇f(xk)"s + 1

2s
"Bk+1s

to predict correctly the change in gradient γk at s := xk+1 − xk

γk = ∇f(xk+1) − ∇f(xk)

= ∇m+(xk+1) − ∇m+(xk)

= Bk+1(xk+1 − xk) + ∇f(xk) − ∇f(xk)

= Bk+1(xk+1 − xk)
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Quasi-Newton methods ...

Many ways to compute Bk+1 to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.
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Quasi-Newton methods ...

Many ways to compute Bk+1 to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]

Set Bk+1 := Bk + uk(uk)", for some uk ∈ Rn, and all k ≥ 0.
• Bk+1 symmetric, “close” to Bk.
• Work per iteration: O(n2) (as opposed to the O(n3) of
Newton), due to Sherman-Morrison-Woodbury formula!
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Quasi-Newton methods ...

Many ways to compute Bk+1 to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]

Set Bk+1 := Bk + uk(uk)", for some uk ∈ Rn, and all k ≥ 0.
• Bk+1 symmetric, “close” to Bk.
• Work per iteration: O(n2) (as opposed to the O(n3) of
Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation =⇒ uk = (γk − Bkδk)/ρk,
where δk := xk+1 − xk = αksk, (ρk)2 := (γk − Bkδk)"δk > 0.
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Quasi-Newton methods ...

Many ways to compute Bk+1 to satisfy the secant equation.
Trade-off between “wishes” on the list for some of the methods.

Symmetric rank 1 updates. [see Prob Sheet 3]

Set Bk+1 := Bk + uk(uk)", for some uk ∈ Rn, and all k ≥ 0.
• Bk+1 symmetric, “close” to Bk.
• Work per iteration: O(n2) (as opposed to the O(n3) of
Newton), due to Sherman-Morrison-Woodbury formula!

The secant equation =⇒ uk = (γk − Bkδk)/ρk,
where δk := xk+1 − xk = αksk, (ρk)2 := (γk − Bkδk)"δk > 0.

• Bk may not be positive definite, sk may not be descent.
• ρk may be close to zero leading to large updates.

Other updates: BFGS, DFP, Broyden family, etc.
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Quasi-Newton methods ...

BFGS updates. [see Prob Sheet 3]

• Broyden-Fletcher-Goldfarb-Shanno (independently).

Set Bk+1 := Bk + uku"
k + vkv"

k , for some uk ∈ Rn, vk ∈ Rn.
• It is a rank 2 update (if uk and vk are linearly independent).
• SWM formula yields O(n2) operations/iteration.
• In practice, update the Cholesky factors of Bk (still O(n2)).
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Quasi-Newton methods ...

BFGS updates. [see Prob Sheet 3]

• Broyden-Fletcher-Goldfarb-Shanno (independently).

Set Bk+1 := Bk + uku"
k + vkv"

k , for some uk ∈ Rn, vk ∈ Rn.
• It is a rank 2 update (if uk and vk are linearly independent).
• SWM formula yields O(n2) operations/iteration.
• In practice, update the Cholesky factors of Bk (still O(n2)).

Given Bk = JkJ"
k , where Jk arbitrary nonsingular, and ‖ · ‖F

Frobenius norm, let Jk+1 solve
min
J

‖J − Jk‖F subject to Jδk = γk.

⇒ Bk+1 := Jk+1J"
k+1 = Bk + uku"

k + vkv"
k ,

where uku"
k = −Bkδkδ"

k Bk/(δ"
k Bkδk), vkv"

k = γkγ"
k /(γ"

k δk).

• Let Jk := Lk the lower triangular Cholesky factor of Bk.
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Quasi-Newton methods ...

BFGS updates. (continued)
• Thus Bk+1 is “close” to Bk.
• Bk symmetric pos. def. ⇒ Bk+1 symmetric pos. def. (provided
(δk)Tγk > 0, ensured by say, Wolfe linesearch)
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Quasi-Newton methods ...

BFGS updates. (continued)
• Thus Bk+1 is “close” to Bk.
• Bk symmetric pos. def. ⇒ Bk+1 symmetric pos. def. (provided
(δk)Tγk > 0, ensured by say, Wolfe linesearch)
• BFGS method: GLM with sk := −B−1

k ∇f(xk), with Bk

updated by BFGS formula on each iteration.
• For global convergence of BFGS method, must use Wolfe
linesearch to compute stepsize instead of bArmijo linesearch.
• The BFGS method has local Q-superlinear convergence!
• When applying the BFGS method with exact linesearches,
to a strictly convex quadratic function f , then Bk = ∇2f after n

iterations.
• Satisfies all the wishes on the wish list! Has been very
popular when second derivatives of f are not available.
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Nonlinear least-squares problems

a way to solve overdetermined (linear and nonlinear)
systems of equations:
r : Rn → Rm with m ≥ n; r(x) = 0 or r(x) ≈ 0.

⇓
minx∈Rn f(x) := 1

2

∑m
j=1[rj(x)]

2 = 1
2‖r(x)‖

2. (L/N LS)

=⇒ unconstrained optimization problems with special
structure.

often, computationally cheaper to solve if structure is
exploited:
−→ “simplify” damped Newton’s method to exploit this
structure.

many applications: data fitting, data assimilation for
weather forecasting, climate modelling, etc.
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Data fitting application

Times tj −→ yj , j = 1,m, measurements.
Model: Φ(x, t), continuous in t; parameters x ∈ Rn, n < m.
Find x: Φ(x, tj) “close to” yj , j = 1,m;
Choice of model: Φ(x, t) = x1 + x2t + e−x3t, where
x = (x1, x2, x3) ∈ R3.

min
x∈R3

1

2

m∑

j=1

(Φ(x, tj) − yj)
2.

−→ x∗.

Optimal model: Φ(x∗, t).
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

t

Φ(x,t)

In (NLS), let rj(x) := Φ(x, tj) − yj , j = 1,m: residuals.
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The Linear Least-Squares (LLS) problem

r(x) := Jx + r, ∀x ∈ Rn; J ∈ Rm×n, r ∈ Rm, m ≥ n.
(LLS) minx∈Rn f(x) := 1

2‖Jx + r‖2 = 1
2x

TJTJx + xTJT r + 1
2‖r‖

2

f convex quadratic; (global) minimizer x∗ of f == solution
of linear system (normal equations)

JT (Jx∗ + r) = 0 ⇐⇒ JTJx∗ = −JT r.

Geometrical interpretation:
r(x) = Ax − b.

LLS: find orthogonal
projection of b onto the
subspace/plane deter-
mined by the columns
of A. 1

a2

Ax*

a1

a

2

Ax*

a

=b r*−

Span{ , }

b

O

computing x∗: Cholesky factorization of JTJ ; QR or SVD of J .
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A simple LLS example

Fit a line to the data (ti, yi) ∈ {(−1, 3), (0, 2), (1, 0), (2, 4)}.

• for some x = (x1 x2)T ∈ R2, Φ(x, t) := x1 + x2t, t ∈ R,
defines a line.

• determine x = (x1 x2)T as solution of (LLS)

min
x∈R2

4∑

i=1

‖Φ(x, ti) − yi‖2.

Φ(x, ti) − yi = 0, i = 1, 4 ⇔






x1 −x2 = 3

x1 = 2

x1 +x2 = 0

x1 +2x2 = 4.
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A simple LLS example ...

Let J matrix of system; x∗ LLS solution iff JTJx∗ = JTy.


 4 2

2 6







 x∗
1

x∗
2



 =



 9

5



 ,

⇔ x∗ = (2.2, 0.1) and Φ(x∗, t) = 2.2 + 0.1t.
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Nonlinear Least-Squares (NLS)

r : Rn → Rm with m ≥ n; r smooth.
minx∈Rn f(x) := 1

2

∑m
j=1[rj(x)]

2 = 1
2‖r(x)‖

2. (NLS)

r(x∗) = 0: zero-residual pb.; r(x∗) -= 0: nonzero-residual pb.
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Nonlinear Least-Squares (NLS)

r : Rn → Rm with m ≥ n; r smooth.
minx∈Rn f(x) := 1

2

∑m
j=1[rj(x)]

2 = 1
2‖r(x)‖

2. (NLS)

r(x∗) = 0: zero-residual pb.; r(x∗) -= 0: nonzero-residual pb.

∇f(x) = J(x)T r(x), where J(x) Jacobian of r at x:

(NLS) and chain rule ⇒ for i ∈ {1, . . . , n},

∂f

∂xi
(x) =

m∑

j=1

rj(x)
∂rj

∂xi
(x) = r(x)T





∂r1
∂xi

(x)

. . .
∂rm
∂xi

(x)



.

The formula follows by using that the vector
(∂r1/∂xi . . . ∂rm/∂xi)T is the ith column of J(x).
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Nonlinear Least-Squares (NLS)

r : Rn → Rm with m ≥ n; r smooth.
minx∈Rn f(x) := 1

2

∑m
j=1[rj(x)]

2 = 1
2‖r(x)‖

2. (NLS)

r(x∗) = 0: zero-residual pb.; r(x∗) -= 0: nonzero-residual pb.

∇f(x) = J(x)T r(x), where J(x) Jacobian of r at x:

(NLS) and chain rule ⇒ for i ∈ {1, . . . , n},

∂f

∂xi
(x) =

m∑

j=1

rj(x)
∂rj

∂xi
(x) = r(x)T





∂r1
∂xi

(x)

. . .
∂rm
∂xi

(x)



.

The formula follows by using that the vector
(∂r1/∂xi . . . ∂rm/∂xi)T is the ith column of J(x).
∇2f(x) = J(x)TJ(x)+

∑m
j=1 rj(x)∇2rj(x).
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Gauss-Newton method for nonlinear least-squares

∇2f(x) = J(x)TJ(x)+
∑m

j=1 rj(x)∇2rj(x).

rj(x∗) ≈ 0 or ∇2rj(x∗) small =⇒ rj(x)∇2rj(x) small
when x close to x∗ =⇒ ∇2f(x) ≈ J(x)TJ(x) := ∇̃2f(x).
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Gauss-Newton method for nonlinear least-squares

∇2f(x) = J(x)TJ(x)+
∑m

j=1 rj(x)∇2rj(x).

rj(x∗) ≈ 0 or ∇2rj(x∗) small =⇒ rj(x)∇2rj(x) small
when x close to x∗ =⇒ ∇2f(x) ≈ J(x)TJ(x) := ∇̃2f(x).

Gauss-Newton (GN) direction:

∇̃2f(xk)sk = −∇f(xk) ⇐⇒ J(xk)TJ(xk)sk = −J(xk)T r(xk),
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Gauss-Newton method for nonlinear least-squares

∇2f(x) = J(x)TJ(x)+
∑m

j=1 rj(x)∇2rj(x).

rj(x∗) ≈ 0 or ∇2rj(x∗) small =⇒ rj(x)∇2rj(x) small
when x close to x∗ =⇒ ∇2f(x) ≈ J(x)TJ(x) := ∇̃2f(x).

Gauss-Newton (GN) direction:

∇̃2f(xk)sk = −∇f(xk) ⇐⇒ J(xk)TJ(xk)sk = −J(xk)T r(xk),

and so sk solves the (LLS):

mins∈Rn
1
2‖J(x

k)s + r(xk)‖2

= 1
2s

TJ(xk)TJ(xk)s + sT∇f(xk) + 1
2‖r(x

k)‖2 := mk(xk + s).

−→ f approximated by local convex quadratic model as
J(xk)TJ(xk) positive semi-definite for each k. Note that
∇smk(xk + sk) = J(xk)TJ(xk)sk + J(xk)T r(xk) = 0.
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Gauss-Newton method for nonlinear least-squares

GN direction: J(xk)TJ(xk)sk = −J(xk)T r(xk)

sk descent provided J(xk) full column rank! since if J(xk)

full column rank ⇒ J(xk)TJ(xk) positive definite.
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Gauss-Newton method for nonlinear least-squares

GN direction: J(xk)TJ(xk)sk = −J(xk)T r(xk)

sk descent provided J(xk) full column rank! since if J(xk)

full column rank ⇒ J(xk)TJ(xk) positive definite.

Gauss-Newton (GN) method for nonlinear least-squares: (with linesearch)

Choose ε > 0 and x0 ∈ Rn.
While ‖∇f(xk)‖ > ε, REPEAT:

solve the linear system ∇̃2f(xk)sk = −∇f(xk).
set xk+1 = xk + αksk, with αk ∈ (0, 1]; k := k + 1.

END.

for example, calculate αk by bArmijo linesearch, with
α(0) = 1 and β ≤ 0.5.

GN method is a GLM if J(xk) is full column rank.
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Convergence properties of Gauss-Newton method

∇f(x) = 0 may not imply r(x) = 0

(global convergence) J(xk) uniformly full-rank for all xk (and
∇f Lips cont; see Th 4) =⇒
‖∇f(xk)‖ = ‖J(xk)T r(xk)‖ → 0, k → ∞.

(local convergence) if r(x∗) = 0, J(x∗) full-rank, αk = 1 for
all k (+ conds in Th 7) =⇒ xk → x∗ quadratically.
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Convergence properties of Gauss-Newton method

∇f(x) = 0 may not imply r(x) = 0

(global convergence) J(xk) uniformly full-rank for all xk (and
∇f Lips cont; see Th 4) =⇒
‖∇f(xk)‖ = ‖J(xk)T r(xk)‖ → 0, k → ∞.

(local convergence) if r(x∗) = 0, J(x∗) full-rank, αk = 1 for
all k (+ conds in Th 7) =⇒ xk → x∗ quadratically.

Gauss-Newton vs. Newton method:

computational cost per iteration: N > GN.
N direction may be ascent.
only linear rate for GN when r(x∗) -= 0.
N & GN mthds unreliable without a linesearch (or other

safeguards). Use bArmijo linesearch for example.
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Gauss-Newton vs. Newton: an example

r : R → R2; r(x) := (x + 1 0.1x2 + x − 1)T

r(x∗) = (1, −1)T -= 0 −→ nonzero residuals problem: only
linear convergence asymptotically for GN.

1 2 3 4 5 6

N 1.0 0.14 0.003 1.5 · 10−6 4.3 · 10−13 3.1 · 10−26

GN 1.0 0.13 0.014 0.0014 0.00014 0.000014
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