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Linesearch versus trust-region methods

(UP): minimize f(x) subject to x ∈ Rn.

Linesearch methods: ‘liberal’ in the choice of search direction,
keeping bad behaviour in control by choice of αk.
• choose descent direction sk,
• compute stepsize αk to reduce f(xk + αsk),
• update xk+1 := xk + αksk.
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Linesearch versus trust-region methods

(UP): minimize f(x) subject to x ∈ Rn.

Linesearch methods: ‘liberal’ in the choice of search direction,
keeping bad behaviour in control by choice of αk.
• choose descent direction sk,
• compute stepsize αk to reduce f(xk + αsk),
• update xk+1 := xk + αksk.

Trust region (TR) methods: ‘conservative’ in the choice of
search direction, so that a full stepsize along it may really
reduce the objective.
• pick direction sk to reduce a “local model” of f(xk + sk),
• accept xk+1 := xk + sk if decrease in the model is also
achieved by f(xk + sk),
• else set xk+1 := xk and “refine” the model.
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Trust-region models for unconstrained problems

Approximate f(xk + s) by:
• linear model lk(s) := f(xk) + s!∇f(xk) or
• quadratic model

qk(s) := f(xk) + s!∇f(xk) +
1

2
s!∇2f(xk)s.

Impediments:
models may not resemble f(xk + s) when s is large,
models may be unbounded from below,
∗ lk(s) always unbounded below (unless ∇f(xk) = 0)

∗ qk(s) is always unbounded below if ∇2f(xk) is negative
definite or indefinite, and sometimes if ∇2f(xk) is positive
semidefinite.
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Trust region models and subproblem

Prevent bad approximations by trusting the model only in a
trust region, defined by the trust region constraint

‖s‖ ≤ ∆k, (R)

for some “appropriate” radius ∆k > 0.
The constraint (R) also prevents lk, qk from unboundedness!
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Trust region models and subproblem

Prevent bad approximations by trusting the model only in a
trust region, defined by the trust region constraint

‖s‖ ≤ ∆k, (R)

for some “appropriate” radius ∆k > 0.
The constraint (R) also prevents lk, qk from unboundedness!
=⇒ the trust region subproblem

min
s∈Rn

mk(s) subject to ‖s‖ ≤ ∆k, (TR)

where mk := lk, k ≥ 0, or mk := qk, k ≥ 0.

• From now on, mk := qk.

(TR) easier to solve than (P). May even solve (TR) only
approximately.
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Trust region models and subproblem - an example
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quadratic TR model about x=(1,−0.5), ∆=1
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linear TR model about x=(1,−0.5), ∆=1
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quadratic TR model about x=(0,0), ∆=1
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quadratic TR model about x=(−0.25,0.5), ∆=1

Trust-region models of f(x) = x4
1 + x1x2 + (1 + x2)2.
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Generic trust-region method

Let sk be a(n approximate) solution of (TR). Then

• predicted model decrease:
mk(0) − mk(sk) = f(xk) − mk(sk).

• actual function decrease: f(xk) − f(xk + sk).

The trust region radius ∆k is chosen based on the value of

ρk :=
f(xk) − f(xk + sk)

f(xk) − mk(sk)
.

If ρk is not too smaller than 1, xk+1 := xk + sk, ∆k+1 ≥ ∆k.

If ρk close to or ≥ 1, ∆k is increased.

If ρk ) 1, xk+1 = xk and ∆k is reduced.
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A Generic Trust Region (GTR) method

Given ∆0 > 0, x0 ∈ Rn, ε > 0. While ‖∇f(xk)‖ ≥ ε, do:

1. Form the local quadratic model mk(s) of f(xk + s).

!
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A Generic Trust Region (GTR) method

Given ∆0 > 0, x0 ∈ Rn, ε > 0. While ‖∇f(xk)‖ ≥ ε, do:

1. Form the local quadratic model mk(s) of f(xk + s).

2. Solve (approximately) the (TR) subproblem for
sk with mk(sk) < f(xk) (“sufficiently”).

Compute ρk := [f(xk) − f(xk + sk)]/[f(xk) − mk(sk)].

!
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A Generic Trust Region (GTR) method

Given ∆0 > 0, x0 ∈ Rn, ε > 0. While ‖∇f(xk)‖ ≥ ε, do:

1. Form the local quadratic model mk(s) of f(xk + s).

2. Solve (approximately) the (TR) subproblem for
sk with mk(sk) < f(xk) (“sufficiently”).

Compute ρk := [f(xk) − f(xk + sk)]/[f(xk) − mk(sk)].

3. If ρk ≥ 0.9, then [very successful step]
set xk+1 := xk + sk and ∆k+1 := 2∆k.

!
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A Generic Trust Region (GTR) method

Given ∆0 > 0, x0 ∈ Rn, ε > 0. While ‖∇f(xk)‖ ≥ ε, do:

1. Form the local quadratic model mk(s) of f(xk + s).

2. Solve (approximately) the (TR) subproblem for
sk with mk(sk) < f(xk) (“sufficiently”).

Compute ρk := [f(xk) − f(xk + sk)]/[f(xk) − mk(sk)].

3. If ρk ≥ 0.9, then [very successful step]
set xk+1 := xk + sk and ∆k+1 := 2∆k.

Else if ρk ≥ 0.1, then [successful step]
set xk+1 := xk + sk and ∆k+1 := ∆k.

!
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A Generic Trust Region (GTR) method

Given ∆0 > 0, x0 ∈ Rn, ε > 0. While ‖∇f(xk)‖ ≥ ε, do:

1. Form the local quadratic model mk(s) of f(xk + s).

2. Solve (approximately) the (TR) subproblem for
sk with mk(sk) < f(xk) (“sufficiently”).

Compute ρk := [f(xk) − f(xk + sk)]/[f(xk) − mk(sk)].

3. If ρk ≥ 0.9, then [very successful step]
set xk+1 := xk + sk and ∆k+1 := 2∆k.

Else if ρk ≥ 0.1, then [successful step]
set xk+1 := xk + sk and ∆k+1 := ∆k.

Else [unsuccessful step]
set xk+1 = xk and ∆k+1 := 1

2∆k.

4. Let k := k + 1. !
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minimize : f (�,⇥) = �10�2 + 10⇥2 + 4 sin(�⇥)� 2� + �4
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Two local minima: (�2.20, 0.32) and (2.30,�0.34)



x0 = (0.71,�3.27) and f (x0) = 97.630

Contours of f
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Contours of m0 around x0
(quadratic model)
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k �k sk f (xk + sk) �f /�mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
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k �k sk f (xk + sk) �f /�mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
1 2 (�0.62, 1.78) 2.306 1.354 x1 + s1
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k �k sk f (xk + sk) �f /�mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
1 2 (�0.62, 1.78) 2.306 1.354 x1 + s1
2 4 (3.21, 0.00) 6.295 �0.004 x2
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k �k sk f (xk + sk) �f /�mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
1 2 (�0.62, 1.78) 2.306 1.354 x1 + s1
2 4 (3.21, 0.00) 6.295 �0.004 x2
3 2 (1.90, 0.08) �29.392 0.649 x2 + s2
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k �k sk f (xk + sk) �f /�mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
1 2 (�0.62, 1.78) 2.306 1.354 x1 + s1
2 4 (3.21, 0.00) 6.295 �0.004 x2
3 2 (1.90, 0.08) �29.392 0.649 x2 + s2
4 2 (0.32, 0.15) �31.131 0.857 x3 + s3
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k �k sk f (xk + sk) �f /�mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
1 2 (�0.62, 1.78) 2.306 1.354 x1 + s1
2 4 (3.21, 0.00) 6.295 �0.004 x2
3 2 (1.90, 0.08) �29.392 0.649 x2 + s2
4 2 (0.32, 0.15) �31.131 0.857 x3 + s3
5 4 (�0.03,�0.02) �31.176 1.009 x4 + s4
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k �k sk f (xk + sk) �f /�mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
1 2 (�0.62, 1.78) 2.306 1.354 x1 + s1
2 4 (3.21, 0.00) 6.295 �0.004 x2
3 2 (1.90, 0.08) �29.392 0.649 x2 + s2
4 2 (0.32, 0.15) �31.131 0.857 x3 + s3
5 4 (�0.03,�0.02) �31.176 1.009 x4 + s4
6 8 (�0.02, 0.00) �31.179 1.013 x5 + s5
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Path of iterates:
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From another x0:
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Trust-region methods

• Other sensible values of the parameters of the GTR are possible.

“Solving” the (TR) subproblem

min
s∈Rn

mk(s) subject to ‖s‖ ≤ ∆k, (TR)

... exactly or even approximately may imply work.
Want “minimal” condition of “sufficient decrease” in the model that
ensures global convergence of the TR method (the Cauchy cond.).
In practice, we (usually) do much better than this condition!

Example of applying a trust-region method: [Sartenaer, 2008].

approximate solution of (TR) subproblem: better than
Cauchy, but not exact.

notation: ∆f/∆mk ≡ ρk.
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The Cauchy point of the (TR) subproblem

• recall the steepest descent method has strong (theoretical)
global convergence properties; same will hold for TR method
with SD direction.
“minimal” condition of “sufficient decrease” in the model: require

mk(sk) ≤ mk(skc) and ‖sk‖ ≤ ∆k,

where skc := −αk
c∇f(xk), with

αk
c := arg min

α>0
mk(−α∇f(xk)) subject to ‖α∇f(xk)‖ ≤ ∆k.

[i.e. a linesearch along steepest descent direction is applied
to mk at xk and is restricted to the trust region.] Easy:

αk
c := arg min

α
mk(−α∇f(xk)) subject to 0 < α ≤

∆k

‖∇f(xk)‖
.

• yk
c := xk + skc is the Cauchy point.
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Global convergence of the GTR method

Theorem 11 (GTR global convergence)
Let f ∈ C2(Rn) and bounded below on Rn. Let ∇f be
Lipschitz continuous on Rn. Let {xk} be generated by the
generic trust region (GTR) method, and let the computation of
sk be such that mk(sk) ≤ mk(skc) for all k. Then either

there exists k ≥ 0 such that ∇f(xk) = 0

or
limk→∞ ‖∇f(xk)‖ = 0.

We (only) sketch the proof of lim infk→∞ ‖∇f(xk)‖ = 0
(which also implies finite termination of GTR) next.
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