Lecture 8: Trust-region methods for unconstrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Linesearch versus trust-region methods

(UP): minimize f(x) subject to $x \in \mathbb{R}^n$.

Linesearch methods: 'liberal' in the choice of search direction, keeping bad behaviour in control by choice of α^k .

- choose descent direction s^k ,
- compute stepsize α^k to reduce $f(x^k + \alpha s^k)$,
- update $x^{k+1} := x^k + \alpha^k s^k$.

Linesearch versus trust-region methods

(UP): minimize f(x) subject to $x \in \mathbb{R}^n$.

Linesearch methods: 'liberal' in the choice of search direction, keeping bad behaviour in control by choice of α^k .

- choose descent direction s^k ,
- compute stepsize α^k to reduce $f(x^k + \alpha s^k)$,
- update $x^{k+1} := x^k + \alpha^k s^k$.

Trust region (TR) methods: 'conservative' in the choice of search direction, so that a full stepsize along it may really reduce the objective.

- pick direction s^k to reduce a "local model" of $f(x^k + s^k)$,
- accept $x^{k+1} := x^k + s^k$ if decrease in the model is also achieved by $f(x^k + s^k)$,
- else set $x^{k+1} := x^k$ and "refine" the model.

Trust-region models for unconstrained problems

Approximate $f(x^k + s)$ by:

- linear model $l_k(s) := f(x^k) + s^\top \nabla f(x^k)$ or
- quadratic model

$$q_k(s) := f(x^k) + s^\top \nabla f(x^k) + \frac{1}{2}s^\top \nabla^2 f(x^k)s.$$

Impediments:

models may not resemble $f(x^k + s)$ when s is large, models may be unbounded from below,

* $l_k(s)$ always unbounded below (unless $\nabla f(x^k) = 0$)

* $q_k(s)$ is <u>always</u> unbounded below if $\nabla^2 f(x^k)$ is negative definite or indefinite, and <u>sometimes</u> if $\nabla^2 f(x^k)$ is positive semidefinite.

Trust region models and subproblem

Prevent bad approximations by trusting the model only in a trust region, defined by the trust region constraint

$$\|s\| \le \Delta_k, \tag{R}$$

for some "appropriate" radius $\Delta_k > 0$.

The constraint (R) also prevents l_k , q_k from unboundedness!

Trust region models and subproblem

Prevent bad approximations by trusting the model only in a trust region, defined by the trust region constraint

$$\|s\| \le \Delta_k, \tag{R}$$

for some "appropriate" radius $\Delta_k > 0$.

The constraint (R) also prevents l_k , q_k from unboundedness!

 \implies the trust region subproblem

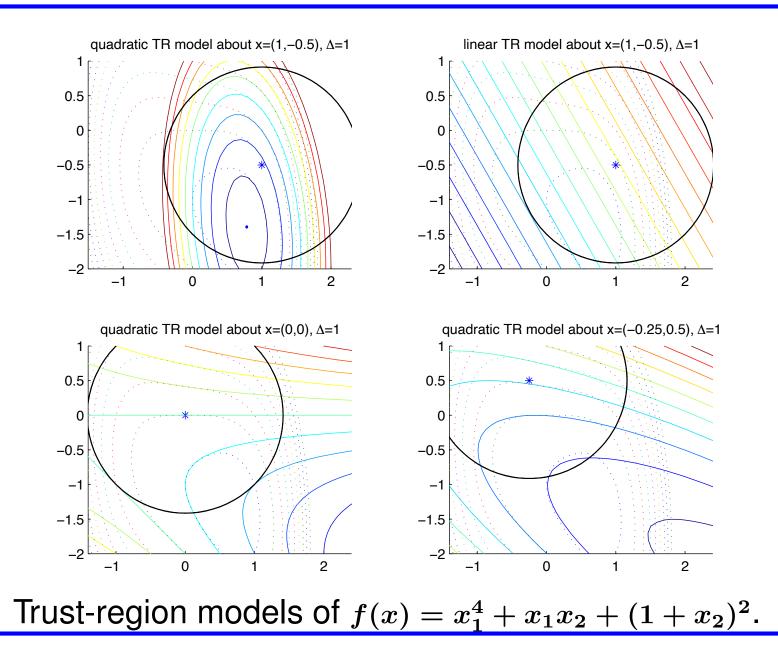
 $\min_{s \in \mathbb{R}^n} m_k(s) \quad \text{subject to} \quad \|s\| \le \Delta_k, \tag{TR}$

where $m_k:=l_k,\,k\geq 0,\,$ or $m_k:=q_k,\,k\geq 0.$

• From now on, $m_k := q_k$.

(TR) easier to solve than (P). May even solve (TR) only approximately.

Trust region models and subproblem - an example



Let s^k be a(n approximate) solution of (TR). Then

• predicted model decrease:

 $m_k(0) - m_k(s^k) = f(x^k) - m_k(s^k).$

• actual function decrease: $f(x^k) - f(x^k + s^k)$.

The trust region radius Δ_k is chosen based on the value of

$$ho_k := rac{f(x^k) - f(x^k + s^k)}{f(x^k) - m_k(s^k)}$$

If ρ_k is not too smaller than 1, $x^{k+1} := x^k + s^k$, $\Delta_{k+1} \ge \Delta_k$. If ρ_k close to or ≥ 1 , Δ_k is increased. If $\rho_k \ll 1$, $x^{k+1} = x^k$ and Δ_k is reduced.

Given $\Delta_0 > 0$, $x^0 \in \mathbb{R}^n$, $\epsilon > 0$. While $\|
abla f(x^k) \| \ge \epsilon$, do: 1. Form the local quadratic model $m_k(s)$ of $f(x^k + s)$.

Given $\Delta_0>0,\ x^0\in \mathbb{R}^n,\ \epsilon>0.$ While $\|
abla f(x^k)\|\geq \epsilon,$ do:

1. Form the local quadratic model $m_k(s)$ of $f(x^k+s)$.

2. Solve (approximately) the (TR) subproblem for s^k with $m_k(s^k) < f(x^k)$ ("sufficiently").

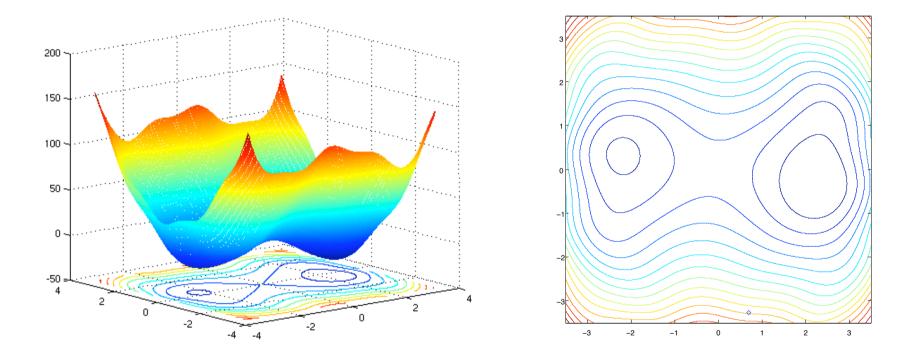
Compute $ho_k := [f(x^k) - f(x^k + s^k)]/[f(x^k) - m_k(s^k)].$

Given $\Delta_0 > 0$, $x^0 \in \mathbb{R}^n$, $\epsilon > 0$. While $\|\nabla f(x^k)\| \ge \epsilon$, do: 1. Form the local quadratic model $m_k(s)$ of $f(x^k + s)$. 2. Solve (approximately) the (TR) subproblem for s^k with $m_k(s^k) < f(x^k)$ ("sufficiently"). Compute $\rho_k := [f(x^k) - f(x^k + s^k)]/[f(x^k) - m_k(s^k)].$ 3. If $\rho_k \ge 0.9$, then [very successful step] set $x^{k+1} := x^k + s^k$ and $\Delta_{k+1} := 2\Delta_k$.

Given $\Delta_0 > 0$, $x^0 \in \mathbb{R}^n$, $\epsilon > 0$. While $\|
abla f(x^k)\| \ge \epsilon$, do: 1. Form the local quadratic model $m_k(s)$ of $f(x^k+s)$. 2. Solve (approximately) the (TR) subproblem for s^k with $m_k(s^k) < f(x^k)$ ("sufficiently"). Compute $ho_k := [f(x^k) - f(x^k + s^k)] / [f(x^k) - m_k(s^k)].$ 3. If $ho_k \geq 0.9$, then [very successful step] set $x^{k+1}:=x^k+s^k$ and $\Delta_{k+1}:=2\Delta_k$. Else if $ho_k \geq 0.1$, then [successful step] set $x^{k+1}:=x^k+s^k$ and $\Delta_{k+1}:=\Delta_k$.

Given $\Delta_0 > 0$, $x^0 \in \mathbb{R}^n$, $\epsilon > 0$. While $\|
abla f(x^k)\| \ge \epsilon$, do: 1. Form the local quadratic model $m_k(s)$ of $f(x^k+s)$. 2. Solve (approximately) the (TR) subproblem for s^k with $m_k(s^k) < f(x^k)$ ("sufficiently"). Compute $ho_k := [f(x^k) - f(x^k + s^k)] / [f(x^k) - m_k(s^k)].$ 3. If $ho_k \geq 0.9$, then [very successful step] set $x^{k+1}:=x^k+s^k$ and $\Delta_{k+1}:=2\Delta_k$. Else if $ho_k \geq 0.1$, then [successful step] set $x^{k+1}:=x^k+s^k$ and $\Delta_{k+1}:=\Delta_k$. Else [unsuccessful step] set $x^{k+1} = x^k$ and $\Delta_{k+1} := \frac{1}{2} \Delta_k$. 4. Let k := k + 1.

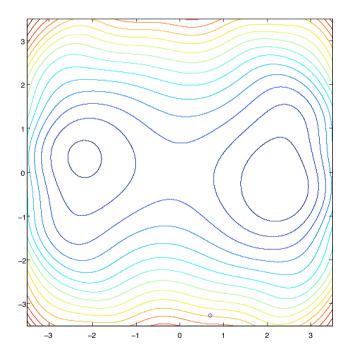
minimize: $f(\alpha, \beta) = -10\alpha^2 + 10\beta^2 + 4\sin(\alpha\beta) - 2\alpha + \alpha^4$



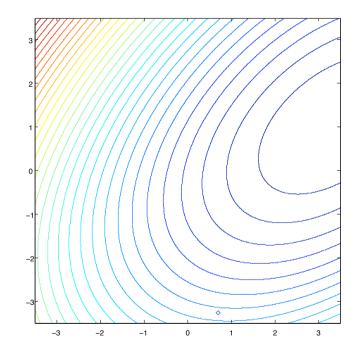
Two local minima: (-2.20, 0.32) and (2.30, -0.34)

$$x_0 = (0.71, -3.27)$$
 and $f(x_0) = 97.630$

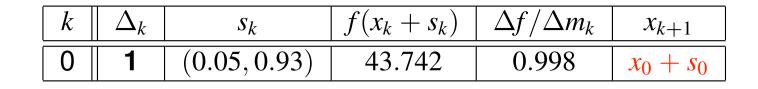
Contours of f

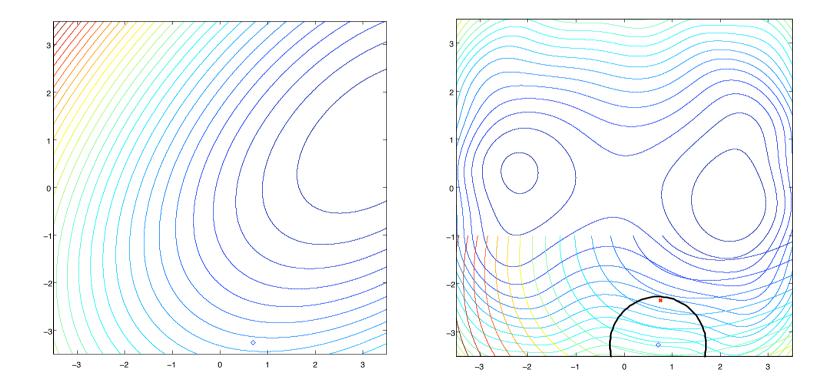


Contours of m_0 around x_0 (quadratic model)

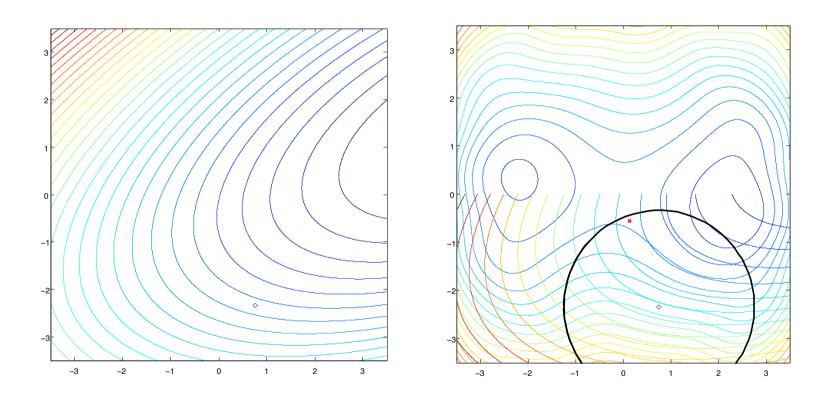


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



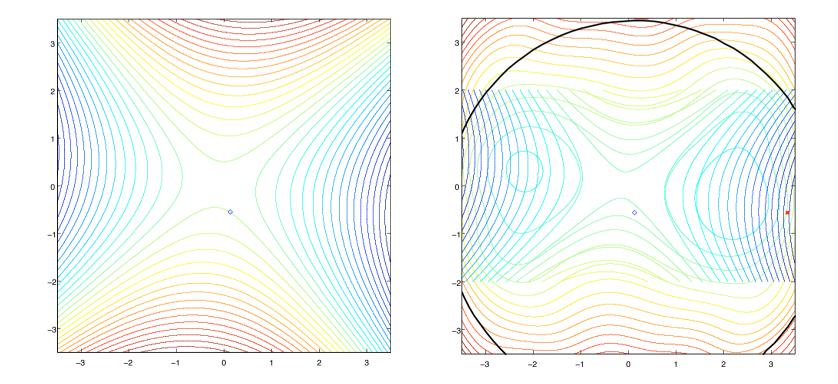


k	Δ_k	Sk	$f(x_k+s_k)$	$\Delta f/\Delta m_k$	x_{k+1}
0	1	(0.05, 0.93)	43.742	0.998	$x_0 + s_0$
1	2	(-0.62, 1.78)	2.306	1.354	$x_1 + s_1$



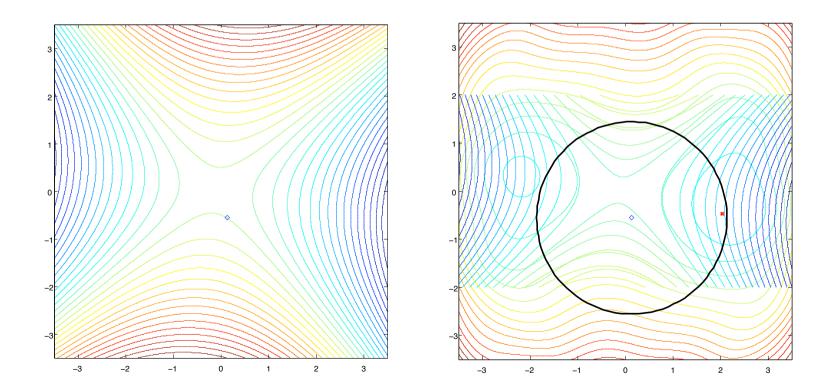
< ロ > < 団 > < 三 > < 三 > < 三 > の < ?

k	Δ_k	Sk	$f(x_k+s_k)$	$\Delta f/\Delta m_k$	x_{k+1}
0	1	(0.05, 0.93)	43.742	0.998	$x_0 + s_0$
1	2	(-0.62, 1.78)	2.306	1.354	$x_1 + s_1$
2	4	(3.21, 0.00)	6.295	-0.004	<i>x</i> ₂



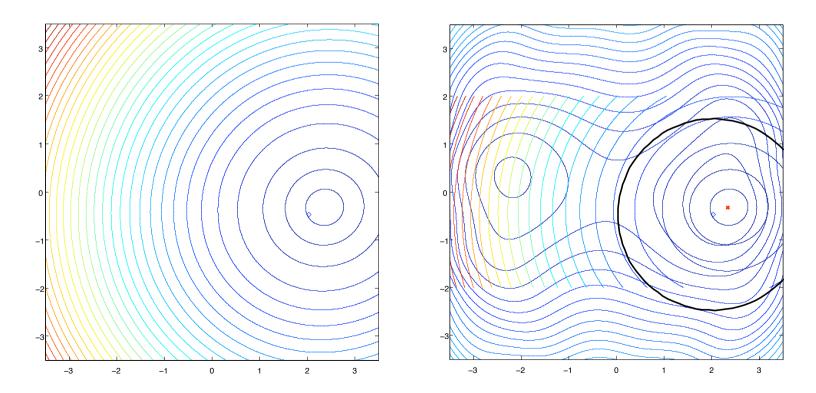
▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

k	Δ_k	Sk	$f(x_k+s_k)$	$\Delta f/\Delta m_k$	x_{k+1}
0	1	(0.05, 0.93)	43.742	0.998	$x_0 + s_0$
1	2	(-0.62, 1.78)	2.306	1.354	$x_1 + s_1$
2	4	(3.21, 0.00)	6.295	-0.004	<i>x</i> ₂
3	2	(1.90, 0.08)	-29.392	0.649	$x_2 + s_2$



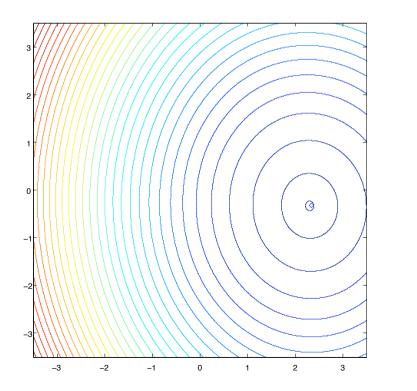
▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

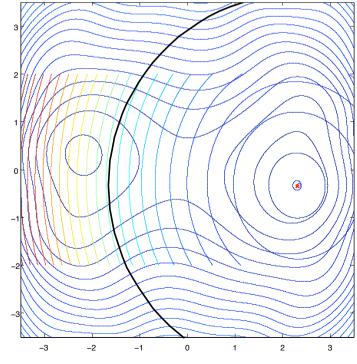
k	Δ_k	Sk	$f(x_k+s_k)$	$\Delta f/\Delta m_k$	x_{k+1}
0	1	(0.05, 0.93)	43.742	0.998	$x_0 + s_0$
1	2	(-0.62, 1.78)	2.306	1.354	$x_1 + s_1$
2	4	(3.21, 0.00)	6.295	-0.004	<i>x</i> ₂
3	2	(1.90, 0.08)	-29.392	0.649	$x_2 + s_2$
4	2	(0.32, 0.15)	-31.131	0.857	$x_3 + s_3$



▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

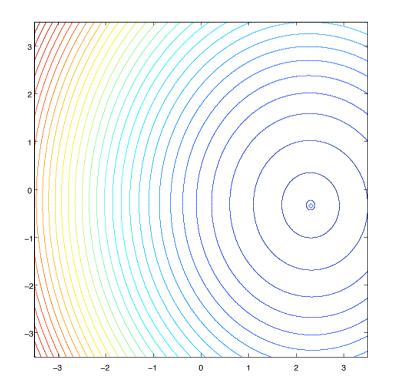
k	Δ_k	Sk	$f(x_k+s_k)$	$\Delta f/\Delta m_k$	x_{k+1}
0	1	(0.05, 0.93)	43.742	0.998	$x_0 + s_0$
1	2	(-0.62, 1.78)	2.306	1.354	$x_1 + s_1$
2	4	(3.21, 0.00)	6.295	-0.004	<i>x</i> ₂
3	2	(1.90, 0.08)	-29.392	0.649	$x_2 + s_2$
4	2	(0.32, 0.15)	-31.131	0.857	$x_3 + s_3$
5	4	(-0.03, -0.02)	-31.176	1.009	$x_4 + s_4$

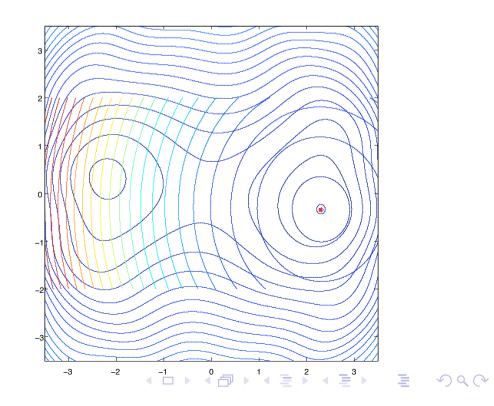




▲□▶▲@▶▲≧▶▲≧▶ ≧ めぬぐ

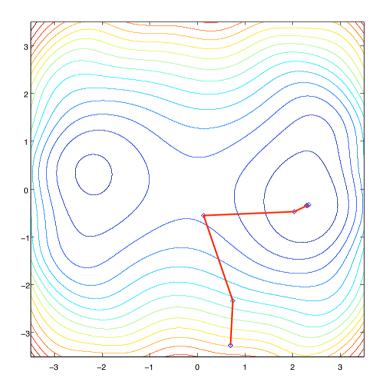
k	Δ_k	Sk	$f(x_k+s_k)$	$\Delta f/\Delta m_k$	x_{k+1}
0	1	(0.05, 0.93)	43.742	0.998	$x_0 + s_0$
1	2	(-0.62, 1.78)	2.306	1.354	$x_1 + s_1$
2	4	(3.21, 0.00)	6.295	-0.004	<i>x</i> ₂
3	2	(1.90, 0.08)	-29.392	0.649	$x_2 + s_2$
4	2	(0.32, 0.15)	-31.131	0.857	$x_3 + s_3$
5	4	(-0.03, -0.02)	-31.176	1.009	$x_4 + s_4$
6	8	(-0.02, 0.00)	-31.179	1.013	$x_5 + s_5$

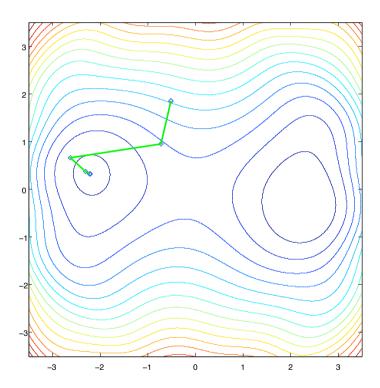




Path of iterates:

From another x_0 :





▲□▶ ▲□▶ ▲ = ▶ ▲ = ● ●

Other sensible values of the parameters of the GTR are possible.
 "Solving" the (TR) subproblem

 $\min_{s\in\mathbb{R}^n}m_k(s)$ subject to $\|s\|\leq\Delta_k,$ (TR)

... exactly or even approximately may imply work.

Want "minimal" condition of "sufficient decrease" in the model that ensures global convergence of the TR method (the Cauchy cond.). In practice, we (usually) do much better than this condition!

Example of applying a trust-region method: [Sartena

[Sartenaer, 2008].

approximate solution of (TR) subproblem: better than Cauchy, but not exact.

notation: $\Delta f/\Delta m_k \equiv
ho_k$.

The Cauchy point of the (TR) subproblem

 recall the steepest descent method has strong (theoretical) global convergence properties; same will hold for TR method with SD direction.

"minimal" condition of "sufficient decrease" in the model: require

 $m_k(s^k) \leq m_k(s^k_c)$ and $||s^k|| \leq \Delta_k$,

where $s_c^k := -\alpha_c^k \nabla f(x^k)$, with

 $lpha_c^k := rg \min_{lpha>0} m_k(-lpha
abla f(x^k)) ext{ subject to } \|lpha
abla f(x^k)\| \leq \Delta_k.$

[i.e. a linesearch along steepest descent direction is applied to m_k at x^k and is restricted to the trust region.] Easy:

$$\begin{aligned} &\alpha_c^k := \arg\min_{\alpha} \, m_k(-\alpha \nabla f(x^k)) \text{ subject to } \, 0 < \alpha \leq \frac{\Delta_k}{\|\nabla f(x^k)\|}. \\ &\bullet \, y_c^k := x^k + s_c^k \text{ is the Cauchy point.} \end{aligned}$$

A

Global convergence of the GTR method

<u>Theorem 11</u> (GTR global convergence)

Let $f \in C^2(\mathbb{R}^n)$ and bounded below on \mathbb{R}^n . Let ∇f be Lipschitz continuous on \mathbb{R}^n . Let $\{x^k\}$ be generated by the generic trust region (GTR) method, and let the computation of s^k be such that $m_k(s^k) \leq m_k(s^k_c)$ for all k. Then either

there exists $k \ge 0$ such that $\nabla f(x^k) = 0$

or

$$\lim_{k o\infty} \|
abla f(x^k)\| = 0.$$

We (only) sketch the proof of $\liminf_{k\to\infty} \|\nabla f(x^k)\| = 0$ (which also implies finite termination of GTR) next.