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The Cauchy point of the (TR) subproblem

• recall the steepest descent method has strong (theoretical)
global convergence properties; same will hold for TR method
with SD direction.
“minimal” condition of “sufficient decrease” in the model: require

mk(sk) ≤ mk(skc) and ‖sk‖ ≤ ∆k,

where skc := −αk
c∇f(xk), with

αk
c := arg min

α>0
mk(−α∇f(xk)) subject to ‖α∇f(xk)‖ ≤ ∆k.

[i.e. a linesearch along steepest descent direction is applied
to mk at xk and is restricted to the trust region.] Easy:

αk
c := arg min

α
mk(−α∇f(xk)) subject to 0 < α ≤

∆k

‖∇f(xk)‖
.

• yk
c := xk + skc is the Cauchy point.
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Computation of the Cauchy point

Computation of the Cauchy point: find αk
c global solution of

min
α>0

mk(−α∇f(xk)) subject to ‖α∇f(xk)‖ ≤ ∆k,

where mk(s) = f(xk) + sT∇f(xk) + 1
2
sT∇2f(xk)s, & ∇f(xk) %= 0.

‖α∇f(xk)‖ ≤ ∆k & α > 0⇔ 0 < α ≤
∆k

‖∇f(xk)‖
:= α.

ψ(α) := mk(−α∇f(xk)) = f(xk) − α‖∇f(xk)‖2 +
α2

2
hk,

where hk := ∇f(xk)T∇2f(xk)∇f(xk).
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Computation of the Cauchy point

Computation of the Cauchy point: find αk
c global solution of

min
α>0

mk(−α∇f(xk)) subject to ‖α∇f(xk)‖ ≤ ∆k,

where mk(s) = f(xk) + sT∇f(xk) + 1
2
sT∇2f(xk)s, & ∇f(xk) %= 0.

‖α∇f(xk)‖ ≤ ∆k & α > 0⇔ 0 < α ≤
∆k

‖∇f(xk)‖
:= α.

ψ(α) := mk(−α∇f(xk)) = f(xk) − α‖∇f(xk)‖2 +
α2

2
hk,

where hk := ∇f(xk)T∇2f(xk)∇f(xk).

ψ′(0) = −‖∇f(xk)‖2 < 0 so ψ decreasing from α = 0 for suff.
small α; thus αk

c > 0.
hk > 0: αmin :=

‖∇f(xk)‖2

hk
= argminα>0 ψ(α).

=⇒ αk
c = min(αmin,α).

hk ≤ 0: ψ(α) unbounded below on IR and so αk
c = α.
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Proof of global convergence of the GTR method

Lemma 12: (Cauchy model decrease) In GTR with Cauchy
decrease mk(sk) ≤ mk(skc) for all k, we have the model
decrease for each k,

f(xk) − mk(sk) ≥ f(xk) − mk(skc)

≥ 1
2‖∇f(xk)‖min

{
∆k,

‖∇f(xk)‖
‖∇2f(xk)‖

}

Proof of Lemma 12. (Recall Computation of the Cauchy point)
If hk ≤ 0, then the definition of ψ implies
mk(skc) = mk(−αk

c∇f(xk)) = ψ(αk
c) ≤ f(xk) − αk

c‖∇f(xk)‖2.

In this case, we also have αk
c = α =

∆k

‖∇f(xk)‖
and so

f(xk) − mk(skc) ≥ αk
c‖∇f(xk)‖2 = ∆k

‖∇f(xk)‖‖∇f(xk)‖2 = ∆k‖∇f(xk)‖.
Note that ∆k‖∇f(xk)‖ ≥ 1

2‖∇f(xk)‖min{∆k, . . .}.
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Proof of global convergence of the GTR method

Proof of Lemma 12 (continued).
Else, hk > 0; then αk

c = min{αmin,α} where αmin = ‖∇f(xk)‖2/hk.
Assume first that αk

c = α. Then αk
c ≤ αmin, which from the

expression of αmin, implies αk
ch

k ≤ ‖∇f(xk)‖2. Now use this
bound in the expression of ψ(α), namely,

f(xk) − mk(skc) = f(xk) − ψ(αk
c) = αk

c‖∇f(xk)‖2 − (αk
c )

2

2
hk

= αk
c‖∇f(xk)‖2 − αk

c

2 (αk
ch

k)

≥ (αk
c − αk

c

2
)‖∇f(xk)‖2 = αk

c

2
‖∇f(xk)‖2,

and using the expression of α, we deduce
f(xk) − mk(skc) ≥ ∆k

2‖∇f(xk)‖‖∇f(xk)‖2 = 1
2
∆k‖∇f(xk)‖.

Note that 1
2
∆k‖∇f(xk)‖ ≥ 1

2
‖∇f(xk)‖min{∆k, . . .}.
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Proof of global convergence of the GTR method

Proof of Lemma 12 (continued).
Finally, when hk > 0, let αk

c = αmin = ‖∇f(xk)‖2/hk. Replacing
this value in the model decrease we get

f(xk) − mk(s
k
c) = αk

c‖∇f(xk)‖2 −
(αk

c)
2

2
hk =

‖∇f(xk)‖4

2hk
,

and further, by Cauchy-Schwarz and Rayleigh quotient
inequalities (recall Pb 6, Sheet 2),

‖∇f(xk)‖4

2hk = ‖∇f(xk)‖4

2(∇f(xk))T∇2f(xk)∇f(xk)

≥ ‖∇f(xk)‖4

2‖∇2f(xk)‖·‖∇f(xk)‖2

≥ ‖∇f(xk)‖2

2‖∇2f(xk)‖

Thus
f(xk) − mk(skc) ≥ ‖∇f(xk)‖2

2‖∇2f(xk)‖ ≥ 1
2‖∇f(xk)‖min{. . . , ‖∇f(xk)‖

‖∇2f(xk)‖}.
!
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A Generic Trust Region (GTR) method

Given ∆0 > 0, x0 ∈ Rn, ε > 0. While ‖∇f(xk)‖ ≥ ε, do:

1. Form the local quadratic model mk(s) of f(xk + s).

2. Solve (approximately) the (TR) subproblem for
sk with mk(sk) < f(xk) (“sufficiently”).

Compute ρk := [f(xk) − f(xk + sk)]/[f(xk) − mk(sk)].

3. If ρk ≥ 0.9, then [very successful step]
set xk+1 := xk + sk and ∆k+1 := 2∆k.

Else if ρk ≥ 0.1, then [successful step]
set xk+1 := xk + sk and ∆k+1 := ∆k.

Else [unsuccessful step]
set xk+1 = xk and ∆k+1 := 1

2∆k.

4. Let k := k + 1. !
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Proof of global convergence of the GTR method

Lemma 13: (Lower bound on TR radius) Let f ∈ C2(Rn) and
∇f be Lipschitz continuous on Rn with Lipschitz constant L.
In GTR with Cauchy decrease mk(sk) ≤ mk(skc) for all k,
suppose that

there exists ε > 0 such that ‖∇f(xk)‖ ≥ ε for all k.
Then, there exists a constant c ∈ (0, 1) (independent of k)
such that

∆k ≥
c

L
ε for all k ≥ 0.

Remarks:
(1) The proof of Lemma 13 relies on first showing that if
∆k ≤ 2c

L
ε, then iteration k is successful and ∆k+1 ≥ ∆k.

(2) If GTR takes finitely many successful iterations, then we
can show that the last successful iterate has zero gradient.
[∆k → 0 which contradicts L13 if gradient not zero.]
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Proof of global convergence of the GTR method

Theorem 14: (At least one limit point is stationary) Let
f ∈ C2(Rn) and and bounded below on Rn. Let ∇f be Lipschitz
continuous on Rn with Lipschitz constant L. Let {xk} be
generated by the generic trust region (GTR) method, and let
the computation of sk be such that mk(s

k) ≤ mk(s
k
c ) for all k.

Then either there exists k ≥ 0 such that ∇f(xk) = 0 or
lim infk→∞ ‖∇f(xk)‖ = 0.
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Proof of global convergence of the GTR method

Theorem 14: (At least one limit point is stationary) Let
f ∈ C2(Rn) and and bounded below on Rn. Let ∇f be Lipschitz
continuous on Rn with Lipschitz constant L. Let {xk} be
generated by the generic trust region (GTR) method, and let
the computation of sk be such that mk(s

k) ≤ mk(s
k
c ) for all k.

Then either there exists k ≥ 0 such that ∇f(xk) = 0 or
lim infk→∞ ‖∇f(xk)‖ = 0.

Proof of Theorem 14.
If there exists k such that ∇f(xk) = 0, then GTR terminates
(this includes the case of having finitely many successful
iterations).
Assume there exists ε > 0 such that ‖∇f(xk)‖ ≥ ε for all k.
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Theorem 14: (At least one limit point is stationary) Let
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generated by the generic trust region (GTR) method, and let
the computation of sk be such that mk(s

k) ≤ mk(s
k
c ) for all k.

Then either there exists k ≥ 0 such that ∇f(xk) = 0 or
lim infk→∞ ‖∇f(xk)‖ = 0.

Proof of Theorem 14.
If there exists k such that ∇f(xk) = 0, then GTR terminates
(this includes the case of having finitely many successful
iterations).
Assume there exists ε > 0 such that ‖∇f(xk)‖ ≥ ε for all k.
Then using that there are infinitely many successful iterations
k ∈ S, and definition GTR scheme (namely, of ρk), we obtain
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).

f(xk) − f(xk+1) ≥ 0.1(f(xk) − mk(sk))

≥ 0.1
2
‖∇f(xk)‖min

{
‖∇f(xk)‖
‖∇2f(xk)‖ ,∆k

}

for all k ∈ S, where we also used Lemma 12.
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).

f(xk) − f(xk+1) ≥ 0.1(f(xk) − mk(sk))

≥ 0.1
2
‖∇f(xk)‖min

{
‖∇f(xk)‖
‖∇2f(xk)‖ ,∆k

}

for all k ∈ S, where we also used Lemma 12.
∇f Lipschitz cont. with Lips const L =⇒ ‖∇2f(x)‖ ≤ L ∀x.[Pb6,Sh2]
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).

f(xk) − f(xk+1) ≥ 0.1(f(xk) − mk(sk))

≥ 0.1
2
‖∇f(xk)‖min

{
‖∇f(xk)‖
‖∇2f(xk)‖ ,∆k

}

for all k ∈ S, where we also used Lemma 12.
∇f Lipschitz cont. with Lips const L =⇒ ‖∇2f(x)‖ ≤ L ∀x.[Pb6,Sh2]
Thus since ‖∇f(xk)‖ ≥ ε for all k, we have for all k ∈ S that

f(xk) − f(xk+1) ≥ 0.05εmin

{
ε

L
,∆k

}
≥ 0.05εmin

{
ε

L
,
c

L
ε

}
,

where we also used Lemma 13.
Thus, using c ∈ (0, 1)

for all k ∈ S: f(xk) − f(xk+1) ≥ 0.05c
L ε2. (*)
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).
Since f(xk) ≥ flow for all k, we deduce for all k ≥ 0,

f(x0) − flow ≥ f(x0) − f(xk)

=
∑k−1

i=0 (f(x
i) − f(xi+1)) =

∑k−1
i∈S (f(xi) − f(xi+1))

where we used f(xk) = f(xk+1) on all unsuccessful k.
Let k → ∞. Then

f(x0) − flow ≥
∑∞

i=0(f(x
i) − f(xi+1))

=
∑

i∈S(f(x
i) − f(xi+1)) ≥ |S|0.05c

L
ε2 (∗∗)

we used (*) and |S| = no. of successful iterations. But LHS of
(**) is finite while RHS of (**) is infinite since |S| = ∞. Thus
there must exist k such that ‖∇f(xk)‖ < ε.!
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