Lecture 9: Trust-region methods for
unconstrained optimization (continued)

Coralia Cartis, Mathematical Institute, University of Oxford
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The Cauchy point of the (TR) subproblem

e recall the steepest descent method has strong (theoretical)
global convergence properties; same will hold for TR method
with SD direction.

“minimal” condition of “sufficient decrease” in the model: require
my(s¥) < mi(sk) and ||s*|| < Ay,

where s* := —a*V f(z*), with
a¥ .= arg m;%mk(—an(wk)) subjectto ||aV f(z*)|| < Ag.

[i.e. a linesearch along steepest descent direction is applied
to my, at = and is restricted to the trust region.] Easy:

A
< .
— IV ()]

k
&

:= arg min my(—aV f(z*)) subjectto 0 < «

o y* := x* 4 s* is the Cauchy point.
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Computation of the Cauchy point

Computation of the Cauchy point: find «* global solution of

min m(—aV f(z*)) subjectto |[aV f(z")|| < Ay,
where mg(s) = f(zr) + sTVf(a*) + 2sTV2f(z*)s, & Vf(zF) # 0.
< Ak
— IVFE®)| .
B (@) i= mi(—aVf(a")) = £(a*) - al VF@")? + k",
where hF := V f(2F)TV2f(xF)V f(zF).

= .

B |aVFf(xR)|| <A, &a>0& 0<
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Computation of the Cauchy point

Computation of the Cauchy point: find «* global solution of

min m(—aV f(z*)) subjectto |[aV f(z")|| < Ay,
where mg(s) = f(zr) + sTVf(a*) + 2sTV2f(z*)s, & Vf(zF) # 0.
< Bk
— IVFE®)| .
B (@) i= mi(—aVf(a")) = £(a*) - al VF@")? + k",
where hF := V f(2F)TV2f(xF)V f(zF).

B |aVFf(xR)|| <A, &a>0& 0< —

W ' (0) = —||Vf(z*)||? < 0 SO v decreasing from a = 0 for suff.
small «; thus a® > 0.
k 2
B Ak > 0. agy = “Vf}(;j ) = arg ming~o ¥ ().

— cv’cc = min(amin, &).

B 1k < 0! y(a) unbounded below on IR and so of = @.
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Proof of global convergence of the GTR method

Lemma 12: (Cauchy model decrease) In GTR with Cauchy
decrease my(s*) < m(s¥) for all k, we have the model

decrease for each k,
f(@®) —mg(s®) > f(x*) — myp(sF)
> LIVF@*)] min { Ay, [TEEA

Proof of Lemma 12. (Recall Computation of the Cauchy point)
If h* < 0, then the definition of v implies
mp(sy) = mp(—aiVf(z*)) = ¢(af) < f(@*) — gl VF(")]2.

In this case, we also have o* = & = A"“k and so
IV f(xF)]]
F(ak) — ma(sk) > o[ V@R = o2 [VF@R)? = ApllVF (a8

Note that A.||Vf(z*)|| > ||V f(z¥)|| min{Ay,...}.
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Proof of global convergence of the GTR method

Proof of Lemma 12 (continued).

Else, n* > 0; then o* = min{amin, @} Where api, = ||V £ (z*)|?/h*.
Assume first that o* = @. Then o* < amim, Which from the
expression of amin, IMplies a*r* < ||V £(z*)||?. Now use this
bound in the expression of ¥ («), Nnamely,

F(@*) — my(sk) = f(ak) — p(ak) = ok||Vf(a?)]|2 — Llpk
o[V £ (%)) — % (ah¥)
(aF — )|V f()]|2 = 2 ||V £(2F)||2,

'V

and using the expression of &, we deduce
f(wk) — (Sk) > 2||Vf(:13’“)|| ”Vf(wk)”2 — %Akllvf(wk)”
Note that LA, ||V £(z*)| > 1|V Ff(2*)| min{Ay,...}.
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Proof of global convergence of the GTR method

Proof of Lemma 12 (continued).
Finally, when r* > 0, let of = amin = ||V £(2%)||?/R*. Replacing
this value in the model decrease we get
(af)? o _ IVF M)
2 2hk

and further, by Cauchy-Schwarz and Rayleigh quotient
inequalities (recall Pb 6, Sheet 2),

VDI _ |V f(=*)]|*
2h* 2(V f(z*))TV2f(aF)V f(xF)

IV £ (=)
2[|[V2 £ () [|-[[V f(zF)]|?

IV £ ()2
2| V2 f(z)||

f(@®) — my(sk) = o ||V F(2®)|? -

VvV

Vv

Thus

k k IV £ (=) 1 k . IV £ ()|
f(.’,U ) o mk,(Sc) 2 2||V2f(:13"’)|| 2 §||Vf($ )” mln{' © ||V2f(:13"’)|| }
(]
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A Generic Trust Region (GTR) method

Given Ag >0, 22 € R”?, € >0. while ||[Vf(z*)] > €, do:
1. Form the local quadratic model mg(s) of f(x® + s).

2. Solve (approximately) the (TR) subproblem for
s® with my(s®) < f(x®) (“sufficiently”).

Compute  pg = [f(2*) — f(z® + s*)]/[f(z*) — mr(s¥)].

3. If pr > 0.9, then [very successful step]
set xFtl := k¥ 4+ ¥ and Apyq = 2Ag.
Else if pg > 0.1, then [successful step]
set xkt! := xk + s¥ ang Apy1 = Ag.

Else [unsuccessful step]

k41 k

set x = " and Agg41 = EAk'

4. et k:=k+ 1. []
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Proof of global convergence of the GTR method

Lemma 13: (Lower bound on TR radius) Let f € ¢?(R™) and
V f be Lipschitz continuous on R™ with Lipschitz constant L.
In GTR with Cauchy decrease my(s*) < my(s¥) for all &,
suppose that

there exists € > 0 such that ||V f(z*)|| > € for all k.
Then, there exists a constant c € (0,1) (independent of k)
such that

Ay > %e for allk > 0.

Remarks:
(1) The proof of Lemma 13 relies on first showing that if
Ay < 2¢¢, then iteration k is successful and A,4q > Ay.

(2) It GTR takes finitely many successful iterations, then we
can show that the last successful iterate has zero gradient.

[Ak, — 0 which contradicts L13 if gradient not zero.]
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Proof of global convergence of the GTR method

Theorem 14: (At least one limit point is stationary) Let

f € ¢2(R™) and and bounded below on R™. Let vr be Lipschitz
continuous on R™ with Lipschitz constant L. Let {«*} be
generated by the generic trust region (GTR) method, and let
the computation of s* be such that m,(s*) < m(s¥) for all «.
Then either there exists £ > o such that vf(z*) =0 or
liminfr,_, o ||V F(z®)|| = 0.
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Proof of global convergence of the GTR method

Theorem 14: (At least one limit point is stationary) Let

f € ¢2(®R™) and and bounded below on rR™. Let v be Lipschitz
continuous on R™ with Lipschitz constant L. Let {«*} be
generated by the generic trust region (GTR) method, and let
the computation of s* be such that m,(s*) < m.(s¥) for all k.
Then either there exists k¥ > o such that vf(z*) = o0 or
liminfx_, o | VF(2®)| = 0.

Proof of Theorem 14.

If there exists k such that vs(z*) = o, then GTR terminates
(this includes the case of having finitely many successful
iterations).

Assume there exists € > o such that || v (z*)| > e for all k.
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Proof of global convergence of the GTR method

Theorem 14: (At least one limit point is stationary) Let

f € ¢2(®R™) and and bounded below on rR™. Let v be Lipschitz
continuous on R™ with Lipschitz constant L. Let {«*} be
generated by the generic trust region (GTR) method, and let
the computation of s* be such that m,(s*) < m.(s¥) for all k.
Then either there exists k¥ > o such that vf(z*) = o0 or
liminfx_, o | VF(2®)| = 0.

Proof of Theorem 14.

If there exists k such that vs(z*) = o, then GTR terminates
(this includes the case of having finitely many successful
iterations).

Assume there exists € > 0 such that || v ()| > € for all k.
Then using that there are infinitely many successful iterations
k € 8, and definition GTR scheme (namely, of p;), we obtain
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).

f(@®) = f(&"T1) = 0.1(f(=") — mi(s"))

> "
> SV mln{||“vv2]}(<mk)>”|| ’ A’“}

for all k € 8, where we also used Lemma 12.
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).

f(@®) = f(&"T1) = 0.1(f(=") — mi(s"))

> "
> SV mln{||“vv2]}(<mk)>”|| ’ A’“}

for all k € 8, where we also used Lemma 12.
Vv f Lipschitz cont. with Lips const L — ||V2f(x)|| < L Vz.[Pbs,Sh2]
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).

f(@®) = f(&"T1) = 0.1(f(=") — mi(s"))

> "
> SV mln{||“vv2]}(<mk)>”|| ’ A’“}

for all k € s, where we also used Lemma 12.
Vv f Lipschitz cont. with Lips const L — ||V2f(x)|| < L Vz.[Pbs,Sh2]
Thus since |V f(z*)|| > € for all k, we have for all £ € s that

C
f(x*) — f(«*t1) > 0.05e¢ min {% Ak} > 0.05€ min {f, —e} :

L L

where we also used Lemma 13.
Thus, using c € (0,1)

forall k e 81 f(a*) — f(ak+t) > 9ee2. (*)
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Proof of global convergence of the GTR method

Proof of Theorem 14 (continued).
Since f(x*) > fiow for all &, we deduce for all & > o,

F(@°) — fiow > f(2°) — f(x*)
= Y80 (f (@) — f(atth)) = Yicg (F(af) — fF(xtD))

where we used f(z*) = f(z**1) on all unsuccessful .
Let K — co. Then

f(mo) - flow 2 Zzo(f(mz) _ f(mz_l_l))
=Y ies(f(@?) = f(x*1h)) > [S]ZP%€?  (%%)
we used (*) and |S| = no. of successful iterations. But LHS of

(**) is finite while RHS of (**) is infinite since |S| = co. Thus
there must exist k£ such that |V f(z*)|| < e.O
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