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Solving the (TR) subproblem

On each TR iteration we compute or approximate the solution of

min my,(s) = f(2*) + 5" Vf(a") + %STV%(wk)s

subject to ||s|| < Ag.

B also, s must satisfy the Cauchy condition my(s*) < my(s*),
where sk := —a*V f(z¥), with
ak := arg m;r&mk(—an(wk)) subject to ||aV F(z®)|| < Ag.
[Cauchy condition ensures global convergence]

e solve (TR) exactly (i.e., compute global minimizer of TR)
— TR akin to Newton-like method.

e solve (TR) approximately (i.e., an approximate global
minimizer) = large-scale problems.
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Trust region models and subproblem - an example

quadratic TR model about x=(1,-0.5), A=1 linear TR model about x=(1,-0.5), A=1
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quadratic TR model about x=(0,0), A=1 quadratic TR model about x=(-0.25,0.5), A=1
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Trust-region models of f(x) = x] + z125 + (1 4 x2)>.
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Solving the (TR) subproblem exactly

Forh e R, A > 0,9 € R", Hn X nsSymm. matrix, consider

mﬂ%nm(s) = h + s g—l——sTHS,S’[ Is]|| < A. (TR)
SER™

Characterization result for the solution of (TR):

Theorem 15
Any global minimizer s* of (TR) satisfies the equation

(H + X' I)s™ = —g,
where H + A\*I is positive semidefinite, A* > 0,
A'(Is*l = A) =0 and [|s¥|| < A.
It H + \*I is positive definite, then s* Is unique.

e The above Theorem gives necessary and sufficient global
optimality conditions for a nonconvex optimization problem!
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Solving the (TR) subproblem exactly

Computing the global solution s* of (TR):

Case 1. If H is positive definite and Hs = —g satisfies ||s|| < A
— s* := s (Unique), \* := 0 (by Theorem 15).
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Solving the (TR) subproblem exactly

Computing the global solution s* of (TR):

Case 1. If H is positive definite and Hs = —g satisfies ||s|| < A
— s* := s (Unique), \* := 0 (by Theorem 15).

Case 2. If H is positive definite but ||s|| > A,
or H is not positive definite, Theorem 15 implies s* satisfies

(H+ Al)s=—g, |s||=A, (*)

for some A > max{0, —Anin(H)} := .
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Solving the (TR) subproblem exactly

Computing the global solution s* of (TR):

Case 1. If H is positive definite and Hs = —g satisfies ||s|| < A
— s* := s (Unique), \* := 0 (by Theorem 15).

Case 2. If H is positive definite but ||s|| > A,
or H is not positive definite, Theorem 15 implies s* satisfies

(H+ Al)s=—g, |s||=A, (*)

for some A > max{0, —Anin(H)} := A.
Let s(A\) = —(H + XI)"1g, forany X > A. Then s* = s(\*)
where A* > )\ solution of

sVl =4, A=A
— nonlinear equation in one variable A. Use Newton’s
method to solve it. We discuss the system (*) in detail next.
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Solving the (TR) subproblem exactly ...

(H4+ X)s=—g, s's=A2 (%)
H symmetric =— spectral decomposition: H = UT AU,
with U orthonormal matrix of the eigenvectors of H and A
diagonal mat. of eigenvalues of H, A\; < Xz < ... < Anj A1 = Amin(H)
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Solving the (TR) subproblem exactly ...

(H4+ X)s=—g, s's=A2 (%)
H symmetric =— spectral decomposition: H = UT AU,
with U orthonormal matrix of the eigenvectors of H and A
diagonal mat. of eigenvalues of H, A\; < Xz < ... < Anj A1 = Amin(H)

Th. 15 = H + XTI = U7 (A + A\I)U positive semidefinite —-
A +FA>0= > —\; = > max{0,—)\;}.
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Solving the (TR) subproblem exactly ...

(H4+ X)s=—g, s's=A2 (%)
H symmetric =— spectral decomposition: H = UT AU,
with U orthonormal matrix of the eigenvectors of H and A
diagonal mat. of eigenvalues of H, A\; < Xz < ... < Anj A1 = Amin(H)

Th. 15 = H + XTI = U7 (A + A\I)U positive semidefinite —-
AMFA>0= 2> —)\; = A >max{0,—)\;}.
A — s(\) := —(H + M\I)~1g, provided H + XI nonsingular.
P(A) == [lsN) |2 = [UT(A+A)"'Ug|I? =g ' U (A + AI)"?Ug
e g=U'"~,forsome~=(v1,...,7) ER". ASUUT =U U =1,
n 2

T —2_ Vi (*) 2
h(A) =7 (A + A) v—;(HW—A-
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The secular equation

Consider
2 - 24 2
P(A) == |[s(M)]* = ; teswrie
for A € (max{0, —\;}, c0). [see Pb Sheet 3]
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‘Easy’ cases: Plots of A vs. v(\); H = 0 (LHS) and H indef (RHS).
—Tn = 3 T theplots:
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The secular equation

DON'T solve ¥(X) := ||s(A)]|? = AZ.
Solve instead the secular equation
1 1
P(A) := TN N 0 for A € (max{0, —\1},00). (1)
e ¢ has no poles; it is analytic on (—X\;, o)
— ideal for Newton’s mthd (exc. in the ‘hard’ case).

[globally convergent and locally quadratic if A\° € [—X1, A«]; else safeguard with linesearch]

o(A) 1

: 102 1 o2 1
min —3s87 + 185 + 551 + S9

subject to||s||2 < 4

\ \ \ >
0 —A A A
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Solving the (TR) subproblem for large-scale problems

e Newton’s mthd for (}): Cholesky factorization of H + \I for
various A — expensive or impossible for large problems.

No computation of the complete eigenvalue decomposition of H'!
Solving the large-scale (TR) subproblem:

e Use iterative methods to approximate the global minimizer
of (TR).

Use the Cauchy point (i.e. steepest descent):
impractical.

Use conjugate-gradient or Lanczos method (as the first
step is a steepest descent, and thus our requirement of
“sufficient decrease” in my, will be satisfied).
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Linesearch vs. trust-region methods

Quasi-Newton methods/approximate derivatives also possible
In the trust-region framework; no need for positive definite
updates for the Hessian! Replace v2 f(z*) with approximation
B* In the quadratic local model m(s).

Conclusions: state-of-the-art software for unconstrained
problems implements linesearch or TR methods; both
approaches have been made competitive (more heuristics
needed by linesearch methods to deal with negative curvature).
Choosing between the two is mostly a matter of “taste”.

Information on existing software can be found at the NEOS
Center: http://www.neos—-guide.org

— look under Optimization Guide and Optimization Tree, etc.
State-of-the-art NLO software: KNITRO, IPOPT, GALAHAD,...
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