Lecture 9: Trust-region methods for unconstrained optimization (continued)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Solving the (TR) subproblem

On each TR iteration we compute or approximate the solution of

$$\min_{s \in \mathbb{R}^n} m_k(s) = f(x^k) + s^{ op}
abla f(x^k) + rac{1}{2} s^{ op}
abla^2 f(x^k) s$$

subject to $\|s\| \leq \Delta$

also, s^k must satisfy the Cauchy condition $m_k(s^k) \leq m_k(s^k_c)$, where $s^k_c := -\alpha^k_c \nabla f(x^k)$, with

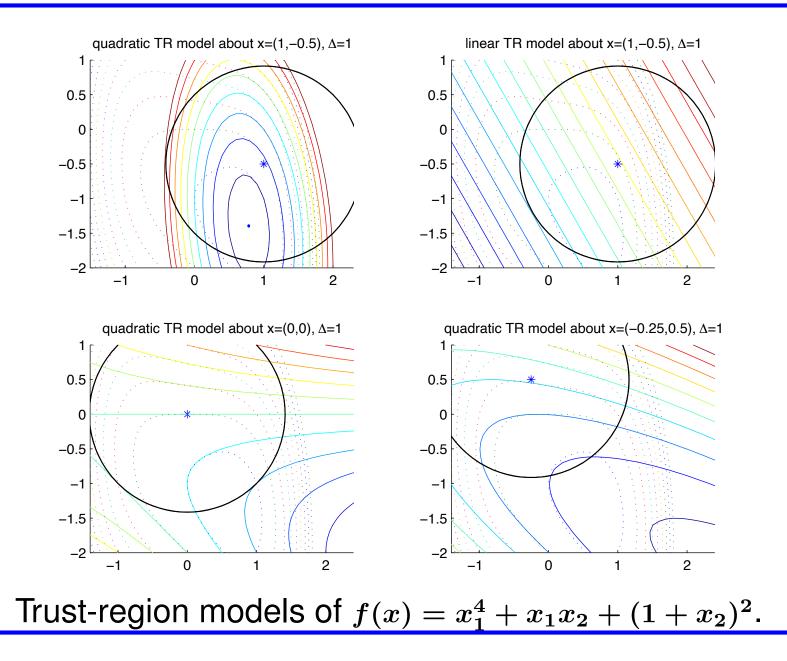
 $lpha_c^k := \arg \min_{\alpha > 0} m_k(-\alpha \nabla f(x^k))$ subject to $\|\alpha \nabla f(x^k)\| \le \Delta_k$. [Cauchy condition ensures global convergence]

• solve (TR) exactly (i.e., compute global minimizer of TR) \implies TR akin to Newton-like method.

• solve (TR) approximately (i.e., an approximate global minimizer) \implies large-scale problems.

k -

Trust region models and subproblem - an example



For $h \in \mathbb{R}$, $\Delta > 0$, $g \in \mathbb{R}^n$, $H \ n \times n$ symm. matrix, consider $\min_{s \in \mathbb{R}^n} m(s) := h + s^\top g + \frac{1}{2} s^\top H s$, s. t. $||s|| \le \Delta$. (TR)

Characterization result for the solution of (TR):

Theorem 15 Any global minimizer s^* of (TR) satisfies the equation

$$(H+\lambda^*I)s^*=-g,$$

where $H + \lambda^* I$ is positive semidefinite, $\lambda^* \ge 0$,

 $\lambda^*(\|s^*\|-\Delta)=0 \quad ext{and} \quad \|s^*\|\leq \Delta.$

If $H + \lambda^* I$ is positive definite, then s^* is unique.

• The above Theorem gives necessary and sufficient global optimality conditions for a nonconvex optimization problem!

Computing the global solution s^* of (TR):

Case 1. If *H* is positive definite and Hs = -g satisfies $||s|| \le \Delta$ $\implies s^* := s$ (unique), $\lambda^* := 0$ (by Theorem 15).

Computing the global solution s^* of (TR):

Case 1. If *H* is positive definite and Hs = -g satisfies $||s|| \le \Delta \implies s^* := s$ (unique), $\lambda^* := 0$ (by Theorem 15).

Case 2. If *H* is positive definite but $||s|| > \Delta$, or *H* is not positive definite, Theorem 15 implies s^* satisfies

$$(H + \lambda I)s = -g, \quad \|s\| = \Delta, \qquad (*)$$

for some $\lambda \geq \max\{0, -\lambda_{\min}(H)\} := \underline{\lambda}.$

Computing the global solution s^* of (TR):

Case 1. If *H* is positive definite and Hs = -g satisfies $||s|| \le \Delta \implies s^* := s$ (unique), $\lambda^* := 0$ (by Theorem 15).

Case 2. If *H* is positive definite but $||s|| > \Delta$, or *H* is not positive definite, Theorem 15 implies s^* satisfies

$$(H + \lambda I)s = -g, \quad \|s\| = \Delta, \qquad (*)$$

for some $\lambda \geq \max\{0, -\lambda_{\min}(H)\} := \underline{\lambda}$. Let $s(\lambda) = -(H + \lambda I)^{-1}g$, for any $\lambda > \underline{\lambda}$. Then $s^* = s(\lambda^*)$ where $\lambda^* \geq \underline{\lambda}$ solution of

$$\|s(\lambda)\| = \Delta, \quad \lambda \geq \underline{\lambda}.$$

 \rightarrow nonlinear equation in one variable λ . Use Newton's method to solve it. We discuss the system (*) in detail next.

$$(H + \lambda I)s = -g, \quad s^{\top}s = \Delta^2.$$
 (*)

H symmetric \implies spectral decomposition: $H = U^{\top} \Lambda U$, with *U* orthonormal matrix of the eigenvectors of *H* and Λ diagonal mat. of eigenvalues of *H*, $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$; $\lambda_1 = \lambda_{\min}(H)$

$$(H + \lambda I)s = -g, \quad s^{\top}s = \Delta^2.$$
 (*)

H symmetric \implies spectral decomposition: $H = U^{\top} \Lambda U$, with *U* orthonormal matrix of the eigenvectors of *H* and Λ diagonal mat. of eigenvalues of *H*, $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$; $\lambda_1 = \lambda_{\min}(H)$

Th. 15 \Longrightarrow $H + \lambda I = U^{\top} (\Lambda + \lambda I) U$ positive semidefinite \Longrightarrow $\lambda_1 + \lambda \ge 0 \Longrightarrow \lambda \ge -\lambda_1 \implies \lambda \ge \max\{0, -\lambda_1\}.$

$$(H + \lambda I)s = -g, \quad s^{\top}s = \Delta^2.$$
 (*)

H symmetric \implies spectral decomposition: $H = U^{\top} \Lambda U$, with U orthonormal matrix of the eigenvectors of H and Λ diagonal mat. of eigenvalues of $H, \lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n; \lambda_1 = \lambda_{\min}(H)$ Th. 15 \implies $H + \lambda I = U^{\top} (\Lambda + \lambda I) U$ positive semidefinite \implies $\lambda_1 + \lambda \geq 0 \Longrightarrow \lambda \geq -\lambda_1 \implies \lambda \geq \max\{0, -\lambda_1\}.$ $\lambda \longrightarrow s(\lambda) := -(H + \lambda I)^{-1}g$, provided $H + \lambda I$ nonsingular. $|\psi(\lambda) := \|s(\lambda)\|^2 = \|U^{ op}(\Lambda + \lambda I)^{-1}Ug\|^2 = g^{ op}U^{ op}(\Lambda + \lambda I)^{-2}Ug\|^2$ • $g = U^{\top}\gamma$, for some $\gamma = (\gamma_1, \ldots, \gamma_n) \in \mathbb{R}^n$. As $UU^{\top} = U^{\top}U = I$,

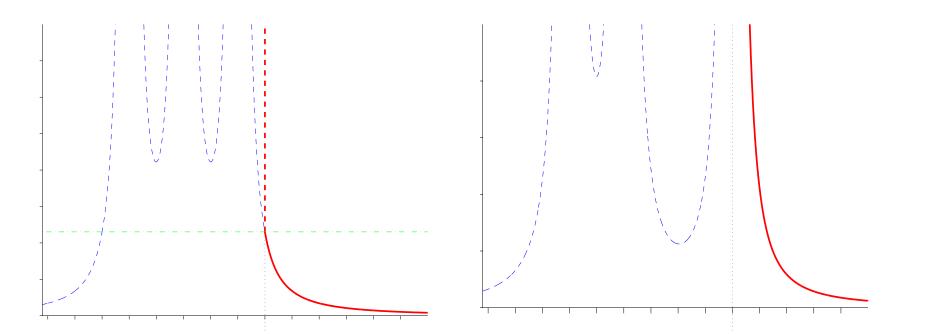
$$\psi(\lambda) = \gamma^{\top} (\Lambda + \lambda I)^{-2} \gamma = \sum_{i=1}^{n} \frac{\gamma_i^2}{(\lambda + \lambda_i)^2} \stackrel{(*)}{=} \Delta^2.$$

The secular equation

Consider

$$\psi(\lambda) := \|s(\lambda)\|^2 = \sum_{i=1}^n rac{\gamma_i^2}{(\lambda+\lambda_i)^2} = \Delta^2$$

for $\lambda \in (\max\{0, -\lambda_1\}, \infty)$.



'Easy' cases: Plots of λ vs. $\psi(\lambda)$; $H \succ 0$ (LHS) and H indef (RHS). n = 3 in the plots.

[see Pb Sheet 3]

The secular equation

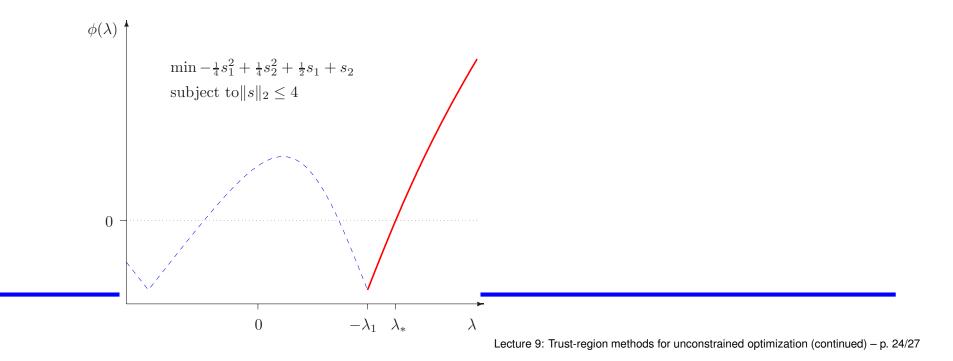
DON'T solve $\psi(\lambda) := \|s(\lambda)\|^2 = \Delta^2$.

Solve instead the secular equation

$$\phi(\lambda) := rac{1}{\|s(\lambda)\|} - rac{1}{\Delta} = 0 ext{ for } \lambda \in (\max\{0, -\lambda_1\}, \infty).$$
 (†)

• ϕ has no poles; it is analytic on $(-\lambda_1, \infty)$ \implies ideal for Newton's mthd (exc. in the 'hard' case).

[globally convergent and locally quadratic if $\lambda^0 \in [-\lambda_1, \lambda_*]$; else safeguard with linesearch]



Solving the (TR) subproblem for large-scale problems

• Newton's mthd for (†): Cholesky factorization of $H + \lambda I$ for various $\lambda \longrightarrow$ expensive or impossible for large problems.

No computation of the complete eigenvalue decomposition of *H*! Solving the large-scale (TR) subproblem:

• Use iterative methods to approximate the global minimizer of (TR).

Use the Cauchy point (i.e. steepest descent): impractical.

Use conjugate-gradient or Lanczos method (as the first step is a steepest descent, and thus our requirement of "sufficient decrease" in m_k will be satisfied).

Linesearch vs. trust-region methods

Quasi-Newton methods/approximate derivatives also possible in the trust-region framework; no need for positive definite updates for the Hessian! Replace $\nabla^2 f(x^k)$ with approximation B^k in the quadratic local model $m_k(s)$.

Conclusions: state-of-the-art software for unconstrained problems implements linesearch or TR methods; both approaches have been made competitive (more heuristics needed by linesearch methods to deal with negative curvature). Choosing between the two is mostly a matter of "taste".

Information on existing software can be found at the NEOS Center: http://www.neos-guide.org

 \rightarrow look under Optimization Guide and Optimization Tree, etc. State-of-the-art NLO software: KNITRO, IPOPT, GALAHAD,...