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Solving the (TR) subproblem

On each TR iteration we compute or approximate the solution of

min
s∈Rn

mk(s) = f(xk) + s"∇f(xk) +
1

2
s"∇2f(xk)s

subject to ‖s‖ ≤ ∆k.

also, sk must satisfy the Cauchy condition mk(sk) ≤ mk(skc),
where skc := −αk

c∇f(xk), with

αk
c := arg min

α>0
mk(−α∇f(xk)) subject to ‖α∇f(xk)‖ ≤ ∆k.

[Cauchy condition ensures global convergence]

• solve (TR) exactly (i.e., compute global minimizer of TR)
=⇒ TR akin to Newton-like method.

• solve (TR) approximately (i.e., an approximate global
minimizer) =⇒ large-scale problems.
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Trust region models and subproblem - an example
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quadratic TR model about x=(1,−0.5), ∆=1
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linear TR model about x=(1,−0.5), ∆=1
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quadratic TR model about x=(0,0), ∆=1
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quadratic TR model about x=(−0.25,0.5), ∆=1

Trust-region models of f(x) = x4
1 + x1x2 + (1 + x2)2.
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Solving the (TR) subproblem exactly

For h ∈ R, ∆ > 0, g ∈ Rn, H n × n symm. matrix, consider

min
s∈Rn

m(s) := h + s"g +
1

2
s"Hs, s. t. ‖s‖ ≤ ∆. (TR)

Characterization result for the solution of (TR):
Theorem 15
Any global minimizer s∗ of (TR) satisfies the equation

(H + λ∗I)s∗ = −g,

where H + λ∗I is positive semidefinite, λ∗ ≥ 0,
λ∗(‖s∗‖ − ∆) = 0 and ‖s∗‖ ≤ ∆.

If H + λ∗I is positive definite, then s∗ is unique.

• The above Theorem gives necessary and sufficient global
optimality conditions for a nonconvex optimization problem!
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Solving the (TR) subproblem exactly

Computing the global solution s∗ of (TR):

Case 1. If H is positive definite and Hs = −g satisfies ‖s‖ ≤ ∆

=⇒ s∗ := s (unique), λ∗ := 0 (by Theorem 15).
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Solving the (TR) subproblem exactly

Computing the global solution s∗ of (TR):

Case 1. If H is positive definite and Hs = −g satisfies ‖s‖ ≤ ∆

=⇒ s∗ := s (unique), λ∗ := 0 (by Theorem 15).

Case 2. If H is positive definite but ‖s‖ > ∆,
or H is not positive definite, Theorem 15 implies s∗ satisfies

(H + λI)s = −g, ‖s‖ = ∆, (∗)

for some λ ≥ max{0,−λmin(H)} := λ.
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Solving the (TR) subproblem exactly

Computing the global solution s∗ of (TR):

Case 1. If H is positive definite and Hs = −g satisfies ‖s‖ ≤ ∆

=⇒ s∗ := s (unique), λ∗ := 0 (by Theorem 15).

Case 2. If H is positive definite but ‖s‖ > ∆,
or H is not positive definite, Theorem 15 implies s∗ satisfies

(H + λI)s = −g, ‖s‖ = ∆, (∗)

for some λ ≥ max{0,−λmin(H)} := λ.
Let s(λ) = −(H + λI)−1g, for any λ > λ. Then s∗ = s(λ∗)
where λ∗ ≥ λ solution of

‖s(λ)‖ = ∆, λ ≥ λ.
−→ nonlinear equation in one variable λ. Use Newton’s
method to solve it. We discuss the system (*) in detail next.
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Solving the (TR) subproblem exactly ...

(H + λI)s = −g, s!s = ∆2. (∗)

H symmetric =⇒ spectral decomposition: H = U!ΛU ,
with U orthonormal matrix of the eigenvectors of H and Λ

diagonal mat. of eigenvalues of H, λ1 ≤ λ2 ≤ ... ≤ λn; λ1 = λmin(H)
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Solving the (TR) subproblem exactly ...

(H + λI)s = −g, s!s = ∆2. (∗)

H symmetric =⇒ spectral decomposition: H = U!ΛU ,
with U orthonormal matrix of the eigenvectors of H and Λ

diagonal mat. of eigenvalues of H, λ1 ≤ λ2 ≤ ... ≤ λn; λ1 = λmin(H)

Th. 15 =⇒ H + λI = U!(Λ + λI)U positive semidefinite =⇒
λ1 + λ ≥ 0 =⇒ λ ≥ −λ1 =⇒ λ ≥ max{0,−λ1}.
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Solving the (TR) subproblem exactly ...

(H + λI)s = −g, s!s = ∆2. (∗)

H symmetric =⇒ spectral decomposition: H = U!ΛU ,
with U orthonormal matrix of the eigenvectors of H and Λ

diagonal mat. of eigenvalues of H, λ1 ≤ λ2 ≤ ... ≤ λn; λ1 = λmin(H)

Th. 15 =⇒ H + λI = U!(Λ + λI)U positive semidefinite =⇒
λ1 + λ ≥ 0 =⇒ λ ≥ −λ1 =⇒ λ ≥ max{0,−λ1}.

λ −→ s(λ) := −(H + λI)−1g, provided H + λI nonsingular.
ψ(λ) := ‖s(λ)‖2 = ‖U!(Λ + λI)−1Ug‖2 = g!U!(Λ + λI)−2Ug

• g = U!γ, for some γ = (γ1, . . . , γn) ∈ Rn. As UU! = U!U = I,

ψ(λ) =γ!(Λ + λI)−2γ =
n∑

i=1

γ2
i

(λ+ λi)2
(∗)
= ∆2.

Lecture 9: Trust-region methods for unconstrained optimization (continued) – p. 22/27



The secular equation

Consider

ψ(λ) := ‖s(λ)‖2 =
n∑

i=1

γ2
i

(λ+ λi)2
= ∆2

for λ ∈ (max{0,−λ1},∞). [see Pb Sheet 3]

‘Easy’ cases: Plots of λ vs. ψ(λ); H * 0 (LHS) and H indef (RHS).
n = 3 in the plots.
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The secular equation

DON’T solve ψ(λ) := ‖s(λ)‖2 = ∆2.
Solve instead the secular equation

φ(λ) :=
1

‖s(λ)‖
−

1

∆
= 0 for λ ∈ (max{0,−λ1},∞). (†)

• φ has no poles; it is analytic on (−λ1,∞)

=⇒ ideal for Newton’s mthd (exc. in the ‘hard’ case).
[globally convergent and locally quadratic if λ0 ∈ [−λ1,λ∗]; else safeguard with linesearch]

0

φ(λ)

0 −λ1 λ∗ λ

!

"

min− 1
4s

2
1 + 1

4s
2
2 + 1

2s1 + s2

subject to‖s‖2 ≤ 4
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Solving the (TR) subproblem for large-scale problems

• Newton’s mthd for (†): Cholesky factorization of H + λI for
various λ −→ expensive or impossible for large problems.

No computation of the complete eigenvalue decomposition of H!

Solving the large-scale (TR) subproblem:

• Use iterative methods to approximate the global minimizer
of (TR).

Use the Cauchy point (i.e. steepest descent):
impractical.

Use conjugate-gradient or Lanczos method (as the first
step is a steepest descent, and thus our requirement of
“sufficient decrease” in mk will be satisfied).
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Linesearch vs. trust-region methods

Quasi-Newton methods/approximate derivatives also possible
in the trust-region framework; no need for positive definite
updates for the Hessian! Replace ∇2f(xk) with approximation
Bk in the quadratic local model mk(s).

Conclusions: state-of-the-art software for unconstrained
problems implements linesearch or TR methods; both
approaches have been made competitive (more heuristics
needed by linesearch methods to deal with negative curvature).
Choosing between the two is mostly a matter of “taste”.

Information on existing software can be found at the NEOS
Center: http://www.neos-guide.org
−→ look under Optimization Guide and Optimization Tree, etc.
State-of-the-art NLO software: KNITRO, IPOPT, GALAHAD,...
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