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Problems and solutions

minimize f(x) subject to x ∈ Ω ⊆ Rn.

f : Ω→ R is (sufficiently) smooth.

f objective; x variables.

Ω feasible set determined by finitely many (equality and/or
inequality) constraints.

x∗ global minimizer of f over Ω =⇒ f(x) ≥ f(x∗), ∀x ∈ Ω.

x∗ local minimizer of f over Ω =⇒
∃N(x∗, δ) such that f(x) ≥ f(x∗), for all x ∈ Ω ∩N(x∗, δ).
• N(x∗, δ) := {x ∈ Rn : ‖x− x∗‖ ≤ δ}.
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Example problem in one dimension

Example : min f(x) subject to a ≤ x ≤ b.

x 1x 2x 

f(x)

ba
The feasible region Ω is the interval [a, b].
The point x1 is the global minimizer; x2 is a local

(non-global) minimizer; x = a is a constrained local minimizer.
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An example of a nonlinear constrained problem

min
x∈R2

(x1 − 2)2 + (x2 − 0.5(3−
√
5))2 subject to

−x1 − x2 + 1 ≥ 0, x2 − x2
1 ≥ 0.
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x∗ = 0.5(−1 +
√
5, 3−

√
5); Ω feasible set.
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Optimality conditions for constrained problems

== algebraic characterizations of solutions −→ suitable for
computations.

provide a way to guarantee that a candidate point is optimal
(sufficient conditions)

indicate when a point is not optimal
(necessary conditions)

minimizex∈Rn f(x) subject to cE(x) = 0, cI(x) ≥ 0.
(CP)

f : Rn → R, cE : Rn → Rm and cI : Rn → Rp (suff.) smooth;
• cI(x) ≥ 0⇔ ci(x) ≥ 0, i ∈ I.
• Ω := {x : cE(x) = 0, cI(x) ≥ 0} feasible set of the problem.
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Optimality conditions for constrained problems

unconstrained problem −→ x̂ stationary point (∇f(x̂) = 0).
constrained problem −→ x̂ Karush-Kuhn-Tucker (KKT) point.

Definition: x̂ KKT point of (CP) if there exist ŷ ∈ Rm and
λ̂ ∈ Rp such that (x̂, ŷ, λ̂) satisfies

∇f(x̂) =
∑

j∈E

ŷj∇cj(x̂) +
∑

i∈I

λ̂i∇ci(x̂),

cE(x̂) = 0, cI(x̂) ≥ 0,

λ̂i ≥ 0, λ̂ici(x̂) = 0, for all i ∈ I.
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Optimality conditions for constrained problems

unconstrained problem −→ x̂ stationary point (∇f(x̂) = 0).
constrained problem −→ x̂ Karush-Kuhn-Tucker (KKT) point.

Definition: x̂ KKT point of (CP) if there exist ŷ ∈ Rm and
λ̂ ∈ Rp such that (x̂, ŷ, λ̂) satisfies

∇f(x̂) =
∑

j∈E

ŷj∇cj(x̂) +
∑

i∈I

λ̂i∇ci(x̂),

cE(x̂) = 0, cI(x̂) ≥ 0,

λ̂i ≥ 0, λ̂ici(x̂) = 0, for all i ∈ I.

• Let A := E∪{i ∈ I : ci(x̂) = 0} index set of active constraints
at x̂; cj(x̂) > 0 inactive constraint at x̂⇒ λ̂j = 0. Then
∑

i∈I λ̂i∇ci(x̂) =
∑

i∈I∩A λ̂i∇ci(x̂).
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Optimality conditions for constrained problems

unconstrained problem −→ x̂ stationary point (∇f(x̂) = 0).
constrained problem −→ x̂ Karush-Kuhn-Tucker (KKT) point.

Definition: x̂ KKT point of (CP) if there exist ŷ ∈ Rm and
λ̂ ∈ Rp such that (x̂, ŷ, λ̂) satisfies

∇f(x̂) =
∑

j∈E

ŷj∇cj(x̂) +
∑

i∈I

λ̂i∇ci(x̂),

cE(x̂) = 0, cI(x̂) ≥ 0,

λ̂i ≥ 0, λ̂ici(x̂) = 0, for all i ∈ I.

• Let A := E∪{i ∈ I : ci(x̂) = 0} index set of active constraints
at x̂; cj(x̂) > 0 inactive constraint at x̂⇒ λ̂j = 0. Then
∑

i∈I λ̂i∇ci(x̂) =
∑

i∈I∩A λ̂i∇ci(x̂).
• J(x) =

(
∇ci(x)T

)
i

Jacobian matrix of constraints c. Thus
∑

j∈E ŷj∇cj(x̂) = JE(x)T ŷ and ∑
i∈I λ̂i∇ci(x̂) = JI(x)T λ̂.

Lectures 10 and 11: Constrained optimization problems and their optimality conditions – p. 6/25



Optimality conditions for constrained problems ...

x̂ KKT point −→ ŷ and λ̂ Lagrange multipliers of the equality
and inequality constraints, respectively.
ŷ and λ̂ −→ sensitivity analysis.

L : Rn × Rm × Rp → R Lagrangian function of (CP),

L(x, y,λ) := f(x)− y#cE(x)− λ#cI(x), x ∈ Rn.

Thus ∇xL(x, y,λ) = ∇f(x)− JE(x)#y − JI(x)#λ,

and x̂ KKT point of (CP) =⇒ ∇xL(x̂, ŷ, λ̂) = 0

(i. e., x̂ is a stationary point of L(·, ŷ, λ̂)).

• duality theory...
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An illustration of the KKT conditions

min
x∈R2

(x1 − 2)2 + (x2 − 0.5(3−
√
5))2 subject to

−x1 − x2 + 1 ≥ 0, x2 − x2
1 ≥ 0. (∗)

x∗ = 1
2(−1 +

√
5, 3−

√
5)$:

• global solution of (∗),
• KKT point of (∗).
∇f(x∗) = (−5 +

√
5, 0)$,

∇c1(x∗) = (1−
√
5, 1)$,

∇c2(x∗) = (−1,−1)$.
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c1(x∗) = c2(x∗) = 0: constraints are active at x∗.
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An illustration of the KKT conditions ...

min
x∈R2

(x1 − 2)2 + (x2 − 0.5(3−
√
5))2 subject to

−x1 − x2 + 1 ≥ 0, x2 − x2
1 ≥ 0. (∗)

x := (0, 0)$

is NOT a KKT point of (∗)!
c1(x) = 0: active at x.
c2(x) = 1: inactive at x.
=⇒ λ2 = 0 and
∇f(x) = λ1∇c1(x),
with λ1 ≥ 0.

⇓
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Contradiction with ∇f(x) = (−4,
√
5− 3)$ and

∇c1(x) = (0, 1)$.
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Optimality conditions for constrained problems ...

In general, need constraints/feasible set of (CP) to satisfy
regularity assumption called constraint qualification in order
to derive optimality conditions.
Theorem 16 (First order necessary conditions) Under
suitable constraint qualifications,
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).
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Optimality conditions for constrained problems ...

In general, need constraints/feasible set of (CP) to satisfy
regularity assumption called constraint qualification in order
to derive optimality conditions.
Theorem 16 (First order necessary conditions) Under
suitable constraint qualifications,
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).

Proof of Theorem 16 (for equality constraints only): Let I = ∅.
Then the KKT conditions become: cE(x∗) = 0 (which is trivial
as x∗ feasible) and ∇f(x∗) = JE(x∗)Ty∗ for some y∗ ∈ Rm,
where JE is the Jacobian matrix of the constraints cE.
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Optimality conditions for constrained problems ...

In general, need constraints/feasible set of (CP) to satisfy
regularity assumption called constraint qualification in order
to derive optimality conditions.
Theorem 16 (First order necessary conditions) Under
suitable constraint qualifications,
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).

Proof of Theorem 16 (for equality constraints only): Let I = ∅.
Then the KKT conditions become: cE(x∗) = 0 (which is trivial
as x∗ feasible) and ∇f(x∗) = JE(x∗)Ty∗ for some y∗ ∈ Rm,
where JE is the Jacobian matrix of the constraints cE.
Consider feasible perturbations/paths x(α) around x∗, where
α (sufficiently small) scalar, x(α) ∈ C1(Rn) and
x(0) = x∗, x(α) = x∗ + αs + O(α2), s 4= 0 and c(x(α)) = 0(†).

(†) requires constraint qualifications, namely, assuming the existence of s $= 0 with above properties.
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
For any i ∈ E, by Taylor’s theorem for ci(x(α)) around x∗,

0 = ci(x(α)) = ci(x∗ + αs + O(α2))

= ci(x∗) +∇ci(x∗)T (x∗ + αs− x∗) + O(α2)

= α∇ci(x∗)T s + O(α2),

where we used ci(x∗) = 0.
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
For any i ∈ E, by Taylor’s theorem for ci(x(α)) around x∗,

0 = ci(x(α)) = ci(x∗ + αs + O(α2))

= ci(x∗) +∇ci(x∗)T (x∗ + αs− x∗) + O(α2)

= α∇ci(x∗)T s + O(α2),

where we used ci(x∗) = 0. Dividing both sides by α, we
deduce

0 = ∇ci(x∗)T s + O(α),
for all α sufficiently small. Letting α→ 0, we obtain

∇ci(x∗)T s = 0 for all i ∈ E,
and so JE(x∗)s = 0. [In other words, any feasible direction s
(which is assumed to exist) satisfies JE(x∗)s = 0.]
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
Now expanding f , we deduce

f(x(α)) = f(x∗) +∇f(x∗)T (x∗ + αs− s∗) + O(α2)

= f(x∗) + α∇f(x∗)T s + O(α2).
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
Now expanding f , we deduce

f(x(α)) = f(x∗) +∇f(x∗)T (x∗ + αs− s∗) + O(α2)

= f(x∗) + α∇f(x∗)T s + O(α2).

Since x∗ is a local minimizer of f , we have f(x(α)) ≥ f(x∗)

for all α sufficiently small. Thus α∇f(x∗)T s + O(α2) ≥ 0 for all
α sufficiently small.
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
Now expanding f , we deduce

f(x(α)) = f(x∗) +∇f(x∗)T (x∗ + αs− s∗) + O(α2)

= f(x∗) + α∇f(x∗)T s + O(α2).

Since x∗ is a local minimizer of f , we have f(x(α)) ≥ f(x∗)

for all α sufficiently small. Thus α∇f(x∗)T s + O(α2) ≥ 0 for all
α sufficiently small. Considering α > 0, we divide by α to
obtain ∇f(x∗)T s + O(α) ≥ 0; now letting α→ 0, we deduce
∇f(x∗)T s ≥ 0.
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
Now expanding f , we deduce

f(x(α)) = f(x∗) +∇f(x∗)T (x∗ + αs− s∗) + O(α2)

= f(x∗) + α∇f(x∗)T s + O(α2).

Since x∗ is a local minimizer of f , we have f(x(α)) ≥ f(x∗)

for all α sufficiently small. Thus α∇f(x∗)T s + O(α2) ≥ 0 for all
α sufficiently small. Considering α > 0, we divide by α to
obtain ∇f(x∗)T s + O(α) ≥ 0; now letting α→ 0, we deduce
∇f(x∗)T s ≥ 0. Similarly, considering α < 0, we obtain
∇f(x∗)T s ≤ 0. Thus

∇f(x∗)T s = 0 for all s such that JE(x∗)s = 0. (1)
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
Now expanding f , we deduce

f(x(α)) = f(x∗) +∇f(x∗)T (x∗ + αs− s∗) + O(α2)

= f(x∗) + α∇f(x∗)T s + O(α2).

Since x∗ is a local minimizer of f , we have f(x(α)) ≥ f(x∗)

for all α sufficiently small. Thus α∇f(x∗)T s + O(α2) ≥ 0 for all
α sufficiently small. Considering α > 0, we divide by α to
obtain ∇f(x∗)T s + O(α) ≥ 0; now letting α→ 0, we deduce
∇f(x∗)T s ≥ 0. Similarly, considering α < 0, we obtain
∇f(x∗)T s ≤ 0. Thus

∇f(x∗)T s = 0 for all s such that JE(x∗)s = 0. (1)
By rank-nullity theorem, (1) implies that ∇f(x∗) must belong
to the range space of JE(x∗)T (ie, span of columns of
JE(x∗)T ), and so ∇f(x∗) = JE(x∗)Ty∗ for some y∗. The next
slide details this argument.
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
By rank-nullity theorem, there exists y∗ ∈ Rm and s∗ ∈ Rn such that

∇f(x∗) = JE(x∗)Ty∗ + s∗, (2)
where s∗ belongs to the null space of JE(x∗) (so JE(x∗)s∗ = 0).
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
By rank-nullity theorem, there exists y∗ ∈ Rm and s∗ ∈ Rn such that

∇f(x∗) = JE(x∗)Ty∗ + s∗, (2)
where s∗ belongs to the null space of JE(x∗) (so JE(x∗)s∗ = 0).
Taking the inner product of (2) with s∗, we deduce
(s∗)T∇f(x∗) = (s∗)TJE(x∗)Ty∗ + (s∗)T s∗, or equivalently,

(s∗)T∇f(x∗) = (y∗)TJE(x∗)s∗ + ‖s∗‖2.
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
By rank-nullity theorem, there exists y∗ ∈ Rm and s∗ ∈ Rn such that

∇f(x∗) = JE(x∗)Ty∗ + s∗, (2)
where s∗ belongs to the null space of JE(x∗) (so JE(x∗)s∗ = 0).
Taking the inner product of (2) with s∗, we deduce
(s∗)T∇f(x∗) = (s∗)TJE(x∗)Ty∗ + (s∗)T s∗, or equivalently,

(s∗)T∇f(x∗) = (y∗)TJE(x∗)s∗ + ‖s∗‖2.
From (1) and JE(x∗)s∗ = 0, we deduce (s∗)T∇f(x∗) = 0. Thus
‖s∗‖2 = 0 and so s∗ = 0. Again from (2): ∇f(x∗) = JE(x∗)Ty∗. !
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Optimality conditions for constrained problems ...

Proof of Theorem 16 (for equality constraints only): (continued)
By rank-nullity theorem, there exists y∗ ∈ Rm and s∗ ∈ Rn such that

∇f(x∗) = JE(x∗)Ty∗ + s∗, (2)
where s∗ belongs to the null space of JE(x∗) (so JE(x∗)s∗ = 0).
Taking the inner product of (2) with s∗, we deduce
(s∗)T∇f(x∗) = (s∗)TJE(x∗)Ty∗ + (s∗)T s∗, or equivalently,

(s∗)T∇f(x∗) = (y∗)TJE(x∗)s∗ + ‖s∗‖2.
From (1) and JE(x∗)s∗ = 0, we deduce (s∗)T∇f(x∗) = 0. Thus
‖s∗‖2 = 0 and so s∗ = 0. Again from (2): ∇f(x∗) = JE(x∗)Ty∗. !

Let (CP) with equalities only (I = ∅). Then feasible descent
direction s at x ∈ Ω if ∇f(x)T s < 0 and JE(x)s = 0.

Let (CP). Then feasible descent direction s at x ∈ Ω if
∇f(x)T s < 0, JE(x)s = 0 and ∇ci(x)T s ≥ 0 for all i ∈ I ∩A(x).

Lectures 10 and 11: Constrained optimization problems and their optimality conditions – p. 13/25



Constraint qualifications

Proof of Th 16: used (first-order) Taylor to linearize f and ci
along feasible paths/perturbations x(α) etc. Only correct if
linearized approximation covers the essential geometry of the
feasible set. CQs ensure this is the case.
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Constraint qualifications

Proof of Th 16: used (first-order) Taylor to linearize f and ci
along feasible paths/perturbations x(α) etc. Only correct if
linearized approximation covers the essential geometry of the
feasible set. CQs ensure this is the case.
Examples:

(CP) satisfies the Slater Constraint Qualification (SCQ)⇐⇒
if ∃x s.t. cE(x) = Ax− b = 0 and cI(x) > 0 (i.e., ci(x) > 0, i ∈ I).
(CP) satisfies the Linear Independence Constraint

Qualification (LICQ) ⇐⇒ ∇ci(x), i ∈ A(x), are linearly
independent (at relevant x).
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Constraint qualifications

Proof of Th 16: used (first-order) Taylor to linearize f and ci
along feasible paths/perturbations x(α) etc. Only correct if
linearized approximation covers the essential geometry of the
feasible set. CQs ensure this is the case.
Examples:

(CP) satisfies the Slater Constraint Qualification (SCQ)⇐⇒
if ∃x s.t. cE(x) = Ax− b = 0 and cI(x) > 0 (i.e., ci(x) > 0, i ∈ I).
(CP) satisfies the Linear Independence Constraint

Qualification (LICQ) ⇐⇒ ∇ci(x), i ∈ A(x), are linearly
independent (at relevant x).

Both SCQ and LICQ fail for
Ω = {(x1, x2) : c1(x) = 1− x2

1 − (x2 − 1)2 ≥ 0; c2(x) = −x2 ≥ 0}.

TΩ(x) = {(0, 0)} and F(x) = {(s1, 0) : s1 ∈ R}. Thus TΩ(x) 4= F(x).
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Constraint qualifications...

Tangent cone to Ω at x: [See Chapter 12, Nocedal & Wright]

TΩ(x) = {s : limiting direction of feasible sequence} [‘geometry’ of Ω]

s = lim
k→∞

zk − x

tk
where zk ∈ Ω, tk > 0, tk → 0 and zk → x as k→∞.

Set of linearized feasible directions: [‘algebra’ of Ω]

F(x) = {s : sT∇ci(x) = 0, i ∈ E; sT∇ci(x) ≥ 0, i ∈ I ∩A(x)}
Want TΩ(x) = F(x)←−[ensured if a CQ holds]

min(x1,x2) x1 + x2

s.t. x2
1 + x2

2 − 2 = 0.
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Optimality conditions for constrained problems ...

If the constraints of (CP) are linear in the variables, no constraint
qualification is required.

Theorem 17 (First order necessary conditions for linearly
constrained problems) Let (cE, cI)(x) := Ax− b in (CP). Then
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).
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Optimality conditions for constrained problems ...

If the constraints of (CP) are linear in the variables, no constraint
qualification is required.

Theorem 17 (First order necessary conditions for linearly
constrained problems) Let (cE, cI)(x) := Ax− b in (CP). Then
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).

Let A = (AE, AI) and b = (bE, bI) corresponding to equality
and inequality constraints.
KKT conditions for linearly-constrained (CP): x∗ KKT point⇔
there exists (y∗,λ∗) such that

∇f(x∗) = AT
Ey∗ + AT

I λ
∗,

AEx∗ − bE = 0, AIx
∗ − bI ≥ 0,

λ∗ ≥ 0, (λ∗)T (AIx
∗ − bI) = 0.
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Optimality conditions for convex problems

(CP) is a convex programming problem if and only if
f(x) is a convex function, ci(x) is a concave function for all
i ∈ I and cE(x) = Ax− b.

• ci is a concave function⇔ (−ci) is a convex function.
• (CP) convex problem⇒ Ω is a convex set.
• (CP) convex problem⇒ any local minimizer of (CP) is global.
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Optimality conditions for convex problems

(CP) is a convex programming problem if and only if
f(x) is a convex function, ci(x) is a concave function for all
i ∈ I and cE(x) = Ax− b.

• ci is a concave function⇔ (−ci) is a convex function.
• (CP) convex problem⇒ Ω is a convex set.
• (CP) convex problem⇒ any local minimizer of (CP) is global.

First order necessary conditions are also sufficient for optimality
when (CP) is convex.

Theorem 18. (Sufficient optimality conditions for convex
problems: Let (CP) be a convex programming problem.
x̂ KKT point of (CP) =⇒ x̂ is a (global) minimizer of (CP). !
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Optimality conditions for convex problems

Proof of Theorem 18.
f convex =⇒ f(x) ≥ f(x̂) +∇f(x̂)$(x− x̂), for all x ∈ Rn. (3)
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Optimality conditions for convex problems

Proof of Theorem 18.
f convex =⇒ f(x) ≥ f(x̂) +∇f(x̂)$(x− x̂), for all x ∈ Rn. (3)

(3)+[∇f(x̂) = A$ŷ +
∑

i∈I λ̂i∇ci(x̂)] =⇒

Lectures 10 and 11: Constrained optimization problems and their optimality conditions – p. 18/25



Optimality conditions for convex problems

Proof of Theorem 18.
f convex =⇒ f(x) ≥ f(x̂) +∇f(x̂)$(x− x̂), for all x ∈ Rn. (3)

(3)+[∇f(x̂) = A$ŷ +
∑

i∈I λ̂i∇ci(x̂)] =⇒

f(x) ≥ f(x̂) + (A$ŷ)$(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)$(x− x̂)),
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Optimality conditions for convex problems

Proof of Theorem 18.
f convex =⇒ f(x) ≥ f(x̂) +∇f(x̂)$(x− x̂), for all x ∈ Rn. (3)

(3)+[∇f(x̂) = A$ŷ +
∑

i∈I λ̂i∇ci(x̂)] =⇒

f(x) ≥ f(x̂) + (A$ŷ)$(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)$(x− x̂)),

f(x) ≥ f(x̂) + ŷ$A(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)$(x− x̂)) (4).
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Optimality conditions for convex problems

Proof of Theorem 18.
f convex =⇒ f(x) ≥ f(x̂) +∇f(x̂)$(x− x̂), for all x ∈ Rn. (3)

(3)+[∇f(x̂) = A$ŷ +
∑

i∈I λ̂i∇ci(x̂)] =⇒

f(x) ≥ f(x̂) + (A$ŷ)$(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)$(x− x̂)),

f(x) ≥ f(x̂) + ŷ$A(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)$(x− x̂)) (4).

Let x ∈ Ω arbitrary =⇒ Ax = b and c(x) ≥ 0.
Ax = b and Ax̂ = b =⇒ A(x− x̂) = 0. (5)
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Optimality conditions for convex problems

Proof of Theorem 18.
f convex =⇒ f(x) ≥ f(x̂) +∇f(x̂)$(x− x̂), for all x ∈ Rn. (3)

(3)+[∇f(x̂) = A$ŷ +
∑
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i∈I λ̂i(∇ci(x̂)$(x− x̂)),

f(x) ≥ f(x̂) + ŷ$A(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)$(x− x̂)) (4).

Let x ∈ Ω arbitrary =⇒ Ax = b and c(x) ≥ 0.
Ax = b and Ax̂ = b =⇒ A(x− x̂) = 0. (5)

ci concave =⇒ ci(x) ≤ ci(x̂) +∇ci(x̂)$(x− x̂).
=⇒ ∇ci(x̂)$(x− x̂) ≥ ci(x)− ci(x̂).
=⇒ λ̂i(∇ci(x̂)$(x− x̂)) ≥ λ̂i(ci(x)− ci(x̂)) = λ̂ici(x)≥ 0,
since λ̂ ≥ 0, λ̂ici(x) = 0 and c(x) ≥ 0.
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Optimality conditions for convex problems

Proof of Theorem 18.
f convex =⇒ f(x) ≥ f(x̂) +∇f(x̂)$(x− x̂), for all x ∈ Rn. (3)

(3)+[∇f(x̂) = A$ŷ +
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i∈I λ̂i∇ci(x̂)] =⇒

f(x) ≥ f(x̂) + (A$ŷ)$(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)$(x− x̂)),

f(x) ≥ f(x̂) + ŷ$A(x− x̂) +
∑

i∈I λ̂i(∇ci(x̂)$(x− x̂)) (4).

Let x ∈ Ω arbitrary =⇒ Ax = b and c(x) ≥ 0.
Ax = b and Ax̂ = b =⇒ A(x− x̂) = 0. (5)

ci concave =⇒ ci(x) ≤ ci(x̂) +∇ci(x̂)$(x− x̂).
=⇒ ∇ci(x̂)$(x− x̂) ≥ ci(x)− ci(x̂).
=⇒ λ̂i(∇ci(x̂)$(x− x̂)) ≥ λ̂i(ci(x)− ci(x̂)) = λ̂ici(x)≥ 0,
since λ̂ ≥ 0, λ̂ici(x) = 0 and c(x) ≥ 0.
Thus, from (4) and (5), f(x) ≥ f(x̂). !
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Example: Optimality conditions for QP problems

A Quadratic Programming (QP) problem has the form

minimizex∈Rn c#x + 1
2x

#Hx s. t. Ax = b, Ãx ≥ b̃. (QP)

H symm. pos. semidefinite =⇒ (QP) convex problem.

The KKT conditions for (QP):
x̂ KKT point of (QP) ⇐⇒ ∃ (ŷ, λ̂) ∈ Rm × Rp such that

Hx̂ + c = A#ŷ + Ã#λ̂,

Ax̂ = b, Ãx̂ ≥ b̃,

λ̂ ≥ 0, λ̂#(Ãx̂− b̃) = 0.

“An example of a nonlinear constrained problem” is convex;
removing the constraint x2 − x2

1 ≥ 0 makes it a convex (QP).
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Example: Duality theory for QP problems

For simplicity, let A := 0 and H 8 0 in (QP): primal problem:

minimizex∈Rn c$x + 1
2x

$Hx s. t. Ãx ≥ b̃. (QP)

The KKT conditions for (QP):

Hx̂ + c = Ã$λ̂,

Ãx̂ ≥ b̃,

λ̂ ≥ 0, λ̂$(Ãx̂− b̃) = 0.

Dual problem:

maximize(x,λ) − 1
2x

THx + b̃Tλ s.t. −Hx + Ã$λ = c and λ ≥ 0.

Optimal value of primal pb=optimal value of dual pb (provided
they exist).
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Optimality conditions for nonconvex problems

• When (CP) is not convex, the KKT conditions are not in
general sufficient for optimality
−→ need positive definite Hessian of the Lagrangian function
along “feasible” directions.

• More on second-order optimality conditions later on.
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Second-order optimality conditions

• When (CP) is not convex, the KKT conditions are not in
general sufficient for optimality.

Assume some CQ holds. Then at a given point x∗: the set of
feasible directions for (CP) at x∗:

F(x∗) =
{
s : JE(x∗)s = 0, sT∇ci(x∗) ≥ 0, i ∈ A(x∗) ∩ I

}
.

If x∗ is a KKT point, then for any s ∈ F(x∗),

sT∇f(x∗) = sTJE(x∗)Ty∗ +
∑

i∈A(x∗)∩I λisT∇ci(x∗)

= (JE(x∗)s)Ty∗ +
∑

i∈A(x∗)∩I λisT∇ci(x∗)

=
∑

i∈A(x∗)∩I λisT∇ci(x∗) ≥ 0. (6)

Lectures 10 and 11: Constrained optimization problems and their optimality conditions – p. 22/25



Second-order optimality conditions...

If x∗ is a KKT point, then for any s ∈ F(x∗), either
sT∇f(x∗) > 0

−→ so f can only increase and stay feasible along s

or sT∇f(x∗) = 0

−→ cannot decide from 1st order info if f increases or not
along such s.

From (6), we see that the directions of interest are:
JE(x∗)s = 0 and sT∇ci(x∗) = 0, ∀i ∈ A(x∗) ∩ I with λi > 0.

F (λ∗) = {s ∈ F(x∗) : sT∇ci(x∗) = 0, ∀i ∈ A(x∗) ∩ I with λ∗
i > 0},

where λ∗ is a Lagrange multiplier of the inequality constraints.
Then note that sT∇f(x∗) = 0 for all s ∈ F (λ∗).
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Second-order optimality conditions ...

Theorem 19 (Second-order necessary conditions)
Let some CQ hold for (CP). Let x∗ be a local minimizer of
(CP), and (y∗,λ∗) Lagrange multipliers of the KKT conditions
at x∗. Then

sT∇2
xxL(x∗, y∗,λ∗)s ≥ 0 for all s ∈ F (λ∗),

where L(x, y,λ) = f(x)− yT cE(x)− λT cI(x) is the
Lagrangian function and so
∇2

xxL(x, y,λ) = ∇2f(x)−
∑m

j=1 yj∇2cj(x)−
∑p

i=1 λici(x)].
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Second-order optimality conditions ...

Theorem 19 (Second-order necessary conditions)
Let some CQ hold for (CP). Let x∗ be a local minimizer of
(CP), and (y∗,λ∗) Lagrange multipliers of the KKT conditions
at x∗. Then

sT∇2
xxL(x∗, y∗,λ∗)s ≥ 0 for all s ∈ F (λ∗),

where L(x, y,λ) = f(x)− yT cE(x)− λT cI(x) is the
Lagrangian function and so
∇2

xxL(x, y,λ) = ∇2f(x)−
∑m

j=1 yj∇2cj(x)−
∑p

i=1 λici(x)].

Theorem 20 (Second-order sufficient conditions)
Assume that x∗ is a feasible point of (CP) and (y∗,λ∗) are
such that the KKT conditions are satisfied by (x∗, y∗,λ∗). If

sT∇2
xxL(x∗, y∗,λ∗)s > 0 for all s ∈ F (λ∗), s 4= 0,

then x∗ is a local minimizer of (CP). [See proofs in Nocedal & Wright]
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Some simple approaches for solving (CP)

Equality-constrained problems: direct elimination (a simple
approach that may help/work sometimes; cannot be
automated in general)

Method of Lagrange multipliers: using the KKT and second
order conditions to find minimizers (again, cannot be
automated in general)

[see Pb Sheet 4]
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