Lecture 12: Penalty methods for constrained
optimization problems

Coralia Cartis, Mathematical Institute, University of Oxford
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Lecture 12: Penalty methods for constrained optimization problems —p. 1/14



Nonlinear equality-constrained problems

IIEIIiRITIL f(x) subjectto c(x) = 0, (eCP)

where f : R®* - R, ¢= (c1,...,cn) : R® — R™ smooth.

m attempt to find local solutions (at least KKT points).
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Nonlinear equality-constrained problems

IIEIIiRITIL f(x) subjectto c(x) = 0, (eCP)

where f : R®* - R, ¢= (c1,...,cn) : R® — R™ smooth.
m attempt to find local solutions (at least KKT points).
m constrained optimization — conflict of requirements:

objective minimization & feasibility of the solution.

B easier to generate feasible iterates for linear equality
and general inequality constrained problems;

m very hard, even impossible, in general, when general
equality constraints are present.
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Nonlinear equality-constrained problems

IIEIIiRITIL f(x) subjectto c(x) = 0, (eCP)

where f : R®* - R, ¢= (c1,...,cn) : R® — R™ smooth.
m attempt to find local solutions (at least KKT points).
m constrained optimization — conflict of requirements:

objective minimization & feasibility of the solution.

B easier to generate feasible iterates for linear equality
and general inequality constrained problems;

m very hard, even impossible, in general, when general
equality constraints are present.

— form a single, parametrized and unconstrained objective,
whose minimizers approach initial problem solutions as
parameters vary
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A penalty function for (eCP)

Irel]%,ll f(x) subjectto c(x) = 0. (eCP)

The quadratic penalty function:

. o 1 2
min  @,(2) = f(@) + _lle@|?,  (ecPo)

where o > 0 penalty parameter.

m o: penalty on infeasibility;
m o — 0: forces’ constraint to be satisfied and achieve
optimality for f.

B &, may have other stationary points that are not solutions
for (eCP); eg., when ¢(x) = 0 is inconsistent.
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Contours of the penalty function ¢, - an example
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The quadratic penalty function for min «2? + x2 subject to z; + =2 =1
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Contours of the penalty function ¢, - an example...
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The quadratic penalty function for min «2? + x2 subject to z; + =2 =1
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A quadratic penalty method

Given 02 >0, let k=0. Until “convergence” do:

B Choose 0 < oktl <« gk,

B Starting from azlg (possibly, :13’6’ = azk’), use an

unconstrained minimization algorithm to find an
“approximate” minimizer aFt! of D _rt1.

Let k:=k+1. O

Must have ¢ — 0, k — 0. okt := 0.10%, oF11 := (0"‘“)2, etc.

Lecture 12: Penalty methods for constrained optimization problems — p. 6/14



A quadratic penalty method

Given 02 >0, let k=0. Until “convergence” do:

B Choose 0 < oktl <« gk,

B Starting from azlg (possibly, :1:’6’ =

unconstrained minimization algorithm to find an
“approximate” minimizer aFt! of D _rt1.

Let k:=k+ 1. O

k), use an

Must have ¢ — 0, k — 0. okt := 0.10%, oF11 := (0"‘“)2, etc.

Algorithms for minimizing ®,,:
e Linesearch, trust-region methods.

e o small: &, very steep in the direction of constraints’
gradients, and so rapid change in &, for steps in such
directions; implications for “shape” of trust region.
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A convergence result for the penalty method

Theorem 21. (Global convergence of penalty method) Apply
the basic quadratic penalty method to the (eCP). Assume that
f,c € Ct, yf’ = —c;i(z¥) /o, i =1, m, and

IV®_i(x®)| < €, where ¥ — 0,k — oo,

and also ¢ — 0, as k — oco. Moreover, assume that
zk — x* where Ve;(z*), i = 1, m, are linearly independent.

Then z* is a KKT point of (eCP) and y* — y*, where y* is the
vector of Lagrange multipliers of (eCP) constraints. O
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A convergence result for the penalty method

Theorem 21. (Global convergence of penalty method) Apply
the basic quadratic penalty method to the (eCP). Assume that
f,c € Ct, yf’ = —c;i(z¥) /o, i =1, m, and

IV®_i(x®)| < €, where ¥ — 0,k — oo,

and also ¢ — 0, as k — oco. Moreover, assume that
zk — x* where Ve;(z*), i = 1, m, are linearly independent.

Then z* is a KKT point of (eCP) and y* — y*, where y* is the
vector of Lagrange multipliers of (eCP) constraints. O

m Ve;(x*), 1 = 1, m, lin. indep. < the Jacobian matrix J(x*)
of the constraints is full row rank and so m < n.

m J(x*) not full rank, then x* (locally) minimizes the
infeasibility lc(x) || [let y* — oo in (O) on the next slide]
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A convergence result for the penalty method

Proof of Theorem 21.

m The KKT conditions for (eCP) are: ¢(z*) = 0 and
Vf(x*) = J(z*)Ty* for some y € R™.
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A convergence result for the penalty method

Proof of Theorem 21.
m The KKT conditions for (eCP) are: ¢(z*) = 0 and
Vf(x*) = J(z*)Ty* for some y € R™.

m Recalling how we calculated the derivatives of a nonlinear
least square function (Lecture 7); a similar calculation
here gives

V&, (xk) = VF(xF) — UikJ(a:k)Tc(a:"’) = Vf(z*) — J(x*)Ty*, (0)
where y* = —c(z*) /o, € R™.
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A convergence result for the penalty method

Proof of Theorem 21.
m The KKT conditions for (eCP) are: ¢(z*) = 0 and
Vf(x*) = J(z*)Ty* for some y € R™.

m Recalling how we calculated the derivatives of a nonlinear
least square function (Lecture 7); a similar calculation
here gives

V&, (xk) = VF(xF) — UikJ(a:k)Tc(a:"’) = Vf(z*) — J(x*)Ty*, (0)
where y* = —c(z*) /o, € R™.

m Note also that if

y =arg min ||V f(z) - J(2)"yl* (1)

then % is the solution of an (overdetermined) linear least
squares (Lecture 7 again).
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A convergence result for the penalty method...

m Thus, from (1), recalling the normal equations, 3 satisfies
J(x)J(z)'y = —J(z)V f(z).
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A convergence result for the penalty method...

m Thus, from (1), recalling the normal equations, 3 satisfies
J(x)J(x)Ty = —J(xz)Vf(x). Thisis further equivalent to
y=—J(x)TVf(z), where J(z)t = (J(z)J(x)T) 1J(x)
pseudo-inverse, if J(x) is full row rank (so that J(x)J(x)*
IS nonsingular).
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A convergence result for the penalty method...

m Thus, from (1), recalling the normal equations, 3 satisfies
J(x)J(x)Ty = —J(xz)Vf(x). Thisis further equivalent to
y=—J(x)TVf(z), where J(z)t = (J(z)J(x)T) 1J(x)
pseudo-inverse, if J(x) is full row rank (so that J(x)J(x)*
IS nonsingular).

mLICQ = J(=*) full row rank (m < n) and so J(z*)* exists.
Since we assumed that z* — z* and J is continuous =
J(x*)* exists and is bounded above and cont. for all suff.
large k.
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A convergence result for the penalty method...

m Thus, from (1), recalling the normal equations, 3 satisfies
J(x)J(x)Ty = —J(xz)Vf(x). Thisis further equivalent to
y=—J(x)TVf(z), where J(z)t = (J(z)J(x)T) 1J(x)
pseudo-inverse, if J(x) is full row rank (so that J(x)J(x)*
IS nonsingular).

mLICQ = J(=*) full row rank (m < n) and so J(z*)* exists.
Since we assumed that z* — z* and J is continuous =
J(x*)* exists and is bounded above and cont. for all suff.
large k.

We first show that y* — y*, as k — oo; the multiplier y* solves
(1) with z = =* and so y* = J(=*) TV f(z*). We evaluate
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A convergence result for the penalty method...

m Thus, from (1), recalling the normal equations, 3 satisfies
J(x)J(x)Ty = —J(xz)Vf(x). Thisis further equivalent to
y=—J(x)TVf(z), where J(z)t = (J(z)J(x)T) 1J(x)
pseudo-inverse, if J(x) is full row rank (so that J(x)J(x)*
IS nonsingular).

mLICQ = J(=*) full row rank (m < n) and so J(z*)* exists.
Since we assumed that z* — z* and J is continuous =
J(x*)* exists and is bounded above and cont. for all suff.
large k.

We first show that y* — y*, as k — oo; the multiplier y* solves

(1) with z = z* and so y* = J(z*) TV f(x=*). We evaluate

ly* — y*|| < 1T (") TV F(*) — J (@) TV ()| + [ T(zF)TV (=) — y*|
As z* — x*, J* and VvV f continuous, then J(z*)*t — J(x*)*t

and Vf(z*) = Vf(z*). Thus ||J(z*)TV f(z*) — J(z*)TVf(z*)| — O.
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A convergence result for the penalty method...

Proof of Theorem 21. As J(z*)*J(a*) = I then

1T (x®) TV f(z*) — | 1T (@*) TV f(x*) — J(a*)* T (z*)y"||

< [ T@)F] - [V (z®)]] < Cer

for some C; since ¢, — 0, we deduce y* — y*.
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A convergence result for the penalty method...

Proof of Theorem 21. As J(z*)*J(a*) = I then

1T (x®) TV f(z*) — | 1T (@*) TV f(x*) — J(a*)* T (z*)y"||

< [ T@)F] - [V (z®)]] < Cer

for some C; since ¢, — 0, we deduce y* — y*.

It remains to show that the limit point z* of {z*} is a KKT point
of (eCP). Passing to the limit in (¢), and using z* — z*,

y* — y* and continuity of vf and J, we deduce

V& (xF) = VF(z*) — J(=*)Ty*. On the other hand v&(z*) — o.
Thus Vf(z*) — J(z*)Ty* = 0.
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A convergence result for the penalty method...

Proof of Theorem 21. As J(z*)*J(a*) = I then

1T (x®) TV f(z*) — | 1T (@*) TV f(x*) — J(a*)* T (z*)y"||

< [ T@)F] - [V (z®)]] < Cer

for some C; since ¢, — 0, we deduce y* — y*.

It remains to show that the limit point z* of {z*} is a KKT point
of (eCP). Passing to the limit in (¢), and using z* — z*,
y* — y* and continuity of vf and J, we deduce
V&(zk) = Vf(z*) — J(=*)Ty*. On the other hand v&(z*) — o.
Thus Vf(z*) — J(z*)Ty* = 0.
The definition of y* gives

c(zk) = —akyF.
ok = 0, y* — y* implies RHS — 0. For the LHS, ¢(z*) — 0 as
k¥ — x*. = c(z*) = 0. Thus =* KKT. O
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Derivatives of the penalty function

mLet y(o) := —c(x)/o: estimates of Lagrange multipliers.
B Let L be the Lagrangian function of (eCP),

L(z,y) := f(z) — y'c(=).
B P, (z) = f(2) + 55 llc(@)]>
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Derivatives of the penalty function

mLet y(o) := —c(x)/o: estimates of Lagrange multipliers.
B Let L be the Lagrangian function of (eCP),

L(z,y) := f(z) — y c(z).
B P, (x) = f(x) + 5=|le(x)||2.  Then
V&,(z) = Vf(z) + LJ(z)Te(z) = ViL(z, y(o)),

where J(x) Jacobian m x n matrix of constraints c(x).
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Derivatives of the penalty function

mLet y(o) := —c(x)/o: estimates of Lagrange multipliers.
B Let L be the Lagrangian function of (eCP),

L(z,y) := f(z) — yTc(x).
B &, (z) = f(z) + 55llc(x)||?.  Then
Vo,(x) =Vf(x)+ %J(:B)Tc(az) = V.L(x,y(o)),
where J(x) Jacobian m x n matrix of constraints c(x).

[recall Lecture 7, nonlinear least squares derivatives]
V() + 5 it ci(@)Viei(@) + 5 J (2)" I (x)
V2, L(z,y(0)) + 2 (x)TJ ().

V2@, (x)
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Derivatives of the penalty function

mLet y(o) := —c(x)/o: estimates of Lagrange multipliers.
B Let L be the Lagrangian function of (eCP),

L(z,y) == f(z) — yTc().
B &, (z) = f(z) + 55llc(x)||?.  Then
V&, (z) = Vf(z)+ ;J(x)" c(x) = ViL(z,y(0)),
where J(x) Jacobian m x n matrix of constraints c(x).

[recall Lecture 7, nonlinear least squares derivatives]
V() + 5 it ci(@)Viei(@) + 5 J (2)" I (x)
V2, L(z,y(0)) + 2 (x)TJ ().

V2@, (x)

m o — 0: generally, ¢;(x) — 0 at the same rate with o for all
i. Thus usually, V2_L(z,y(o)) well-behaved.

mo—0 Jx)lJ(x)/o— Jx)TJ(x*)/0 = .

Lecture 12: Penalty methods for constrained optimization problems —p. 11/14



lll-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] = m eigenvalues of VZ& . (z*)
are 0(1/0%) and hence, tend to infinity as £ — oo (ie, o* — 0);
remaining n — m are O(1) in the limit.
e Hence, the condition number of V2&_.(z*) is O(1/0"%)

— It blows up as k£ — .
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lll-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] = m eigenvalues of VZ& . (z*)
are 0(1/0%) and hence, tend to infinity as £ — oo (ie, o* — 0);
remaining n — m are O(1) in the limit.
e Hence, the condition number of V2&_.(z*) is O(1/0"%)

— It blows up as k£ — .

— worried that we may not be able to compute changes to
x* accurately. Namely, whether using linesearch or
trust-region methods, asymptotically, we want to minimize
®_.+1 () by taking Newton steps, i.e., solve the system

V2®,(x)dr = -V, (x), ()

for dz from some current z = z** and o = o*t1.

Lecture 12: Penalty methods for constrained optimization problems — p. 12/14



lll-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] = m eigenvalues of VZ& . (z*)
are 0(1/0%) and hence, tend to infinity as £ — oo (ie, o* — 0);
remaining n — m are O(1) in the limit.
e Hence, the condition number of V2&_.(z*) is O(1/0"%)

— It blows up as k£ — .

— worried that we may not be able to compute changes to
x* accurately. Namely, whether using linesearch or
trust-region methods, asymptotically, we want to minimize
®_.+1(x) by taking Newton steps, I.e., solve the system

V2®,(x)dr = -V, (x), ()
for dz from some current x = z** and o = o***.

Despite ill-conditioning present, we can still solve for dx
accurately!
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Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to
(V2. L(z,y(0)) + 2 J ()T I (x)) de = — (Vf(z) + ;J(z)Tc(x)),
where y(o) = —c(x)/o.
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Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to
(V2 _L(z,y(o)) + %J(CU)TJ(CB)) de = — (Vf(z) + %J(w)Tc(w)),
where y(o) = —c(x)/o. Define auxiliary variable w
w = % (J(x)dx 4+ c(x)) < J(x)dxr — ow = —c(x).

Then v2_L(z,y(o))dz + J(x)Tw = —V f(x), and the Newton
system (*) can be re-written as

V2L(e,y(0) J@) \(dz )\ _ [ Vit
J(x) —ol w c(x)

This system is essentially independent of o for small 0 —-
cannot suffer from ill-conditioning due to o — 0.
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Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to
(V2 _L(z,y(o)) + %J(CU)TJ(CB)) de = — (Vf(z) + %J(w)Tc(w)),
where y(o) = —c(x)/o. Define auxiliary variable w
w = % (J(x)dx 4+ c(x)) < J(x)dxr — ow = —c(x).

Then v2_L(z,y(o))dz + J(x)Tw = —V f(x), and the Newton
system (*) can be re-written as

V2L(e,y(0) J@) \(dz )\ _ [ Vit
J(x) —ol w c(x)

This system is essentially independent of o for small o0 —>
cannot suffer from ill-conditioning due to o — 0.
M Still need to be careful about minimizing ®, for small o. Eg, when using TR methods, use
||dxz||B < A for TR constraint. B takes into account ill-conditioned terms of Hessian so as

to encourage equal model decrease in all directions.
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Other penalty functions

Consider the general (CP) problem
minimizegzcr~  f(x) subjectto cg(x) =0, cy(x) > 0. (CP)

Exact penalty function: ®(z, o) is exact if there is o, > 0 such
that if o < o., any local solution of (CP) is a local minimizer of
®(x, o). (Quadratic penalty is inexact.)
Examples:

m I,-penalty function: ®(z, o) = f(z) + =||ce(z)|

m [, -penalty function: let 2= = min{z, 0},

P(x,0) = f(x) + % ZiEE lci(x)| + %ZiEI[Ci(m)]_'

Extension of quadratic penalty to (CP):
®(z,0) = f(@) + 3 llee @) + 55 Sies ([ei(@)]7)”
(may no longer be suff. smooth; it is inexact)
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