Lecture 12: Penalty methods for constrained optimization problems

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Nonlinear equality-constrained problems

$$\begin{split} \min_{x\in\mathbb{R}^n} & f(x) \quad \text{subject to} \quad c(x) = 0, \end{split} \tag{eCP} \\ \text{where } f:\mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \ldots, c_m):\mathbb{R}^n \to \mathbb{R}^m \text{ smooth.} \end{split}$$

$$\blacksquare \text{ attempt to find local solutions (at least KKT points).} \end{split}$$

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $c(x) = 0,$ (eCP)

where $f : \mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \dots, c_m) : \mathbb{R}^n \to \mathbb{R}^m$ smooth.

attempt to find local solutions (at least KKT points).

- constrained optimization \longrightarrow conflict of requirements: objective minimization & feasibility of the solution.
 - easier to generate feasible iterates for linear equality and general inequality constrained problems;
 - very hard, even impossible, in general, when general equality constraints are present.

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $c(x) = 0,$ (eCP)

where $f : \mathbb{R}^n \to \mathbb{R}$, $c = (c_1, \dots, c_m) : \mathbb{R}^n \to \mathbb{R}^m$ smooth.

attempt to find local solutions (at least KKT points).

- constrained optimization \longrightarrow conflict of requirements: objective minimization & feasibility of the solution.
 - easier to generate feasible iterates for linear equality and general inequality constrained problems;
 - very hard, even impossible, in general, when general equality constraints are present.

 \implies form a single, parametrized and unconstrained objective, whose minimizers approach initial problem solutions as parameters vary

$$\min_{x\in\mathbb{R}^n} \quad f(x) \quad ext{subject to} \quad c(x) = 0.$$
 (eCP)

The quadratic penalty function:

$$\min_{x \in \mathbb{R}^n} \quad \Phi_{\sigma}(x) = f(x) + \frac{1}{2\sigma} \|c(x)\|^2, \qquad (\mathsf{eCP}_{\sigma})$$

where $\sigma > 0$ penalty parameter.

- \bullet σ : penalty on infeasibility;
- $\sigma \longrightarrow 0$: 'forces' constraint to be satisfied and achieve optimality for f.
- Φ_{σ} may have other stationary points that are not solutions for (eCP); eg., when c(x) = 0 is inconsistent.

Contours of the penalty function Φ_{σ} - an example

The quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$

Contours of the penalty function Φ_{σ} - an example...

The quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$

A quadratic penalty method

Given $\sigma^0>0$, let k=0. Until "convergence" do:

Choose
$$0 < \sigma^{k+1} < \sigma^k$$
 .

Starting from x_0^k (possibly, $x_0^k := x^k$), use an unconstrained minimization algorithm to find an "approximate" minimizer x^{k+1} of $\Phi_{\sigma^{k+1}}$. Let k := k + 1.

Must have $\sigma^k \to 0$, $k \to 0$. $\sigma^{k+1} := 0.1\sigma^k$, $\sigma^{k+1} := (\sigma^k)^2$, etc.

A quadratic penalty method

Given $\sigma^0>0$, let k=0. Until "convergence" do:

Choose
$$0 < \sigma^{k+1} < \sigma^k$$
 .

Starting from x_0^k (possibly, $x_0^k := x^k$), use an unconstrained minimization algorithm to find an "approximate" minimizer x^{k+1} of $\Phi_{\sigma^{k+1}}$. Let k := k+1.

Must have $\sigma^k \to 0$, $k \to 0$. $\sigma^{k+1} := 0.1 \sigma^k$, $\sigma^{k+1} := (\sigma^k)^2$, etc.

Algorithms for minimizing Φ_{σ} :

• Linesearch, trust-region methods.

• σ small: Φ_{σ} very steep in the direction of constraints' gradients, and so rapid change in Φ_{σ} for steps in such directions; implications for "shape" of trust region.

<u>Theorem 21.</u> (Global convergence of penalty method) Apply the basic quadratic penalty method to the (eCP). Assume that $f, c \in C^1, y_i^k = -c_i(x^k)/\sigma^k, i = \overline{1, m}$, and

 $\|
abla \Phi_{\sigma^k}(x^k)\| \leq \epsilon^k$, where $\epsilon^k o 0, k o \infty$,

and also $\sigma^k \to 0$, as $k \to \infty$. Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i = \overline{1, m}$, are linearly independent.

Then x^* is a KKT point of (eCP) and $y^k \rightarrow y^*$, where y^* is the vector of Lagrange multipliers of (eCP) constraints.

<u>Theorem 21.</u> (Global convergence of penalty method) Apply the basic quadratic penalty method to the (eCP). Assume that $f, c \in C^1, y_i^k = -c_i(x^k)/\sigma^k, i = \overline{1, m}$, and

 $\|
abla \Phi_{\sigma^k}(x^k)\| \leq \epsilon^k$, where $\epsilon^k o 0, k o \infty$,

and also $\sigma^k \to 0$, as $k \to \infty$. Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i = \overline{1, m}$, are linearly independent.

Then x^* is a KKT point of (eCP) and $y^k \rightarrow y^*$, where y^* is the vector of Lagrange multipliers of (eCP) constraints.

■ $\nabla c_i(x^*)$, $i = \overline{1, m}$, lin. indep. \Leftrightarrow the Jacobian matrix $J(x^*)$ of the constraints is full row rank and so $m \leq n$.

■ $J(x^*)$ not full rank, then x^* (locally) minimizes the infeasibility ||c(x)||. [let $y^k \to \infty$ in (◊) on the next slide]

Proof of Theorem 21.

The KKT conditions for (eCP) are: $c(x^*) = 0$ and $\nabla f(x^*) = J(x^*)^T y^*$ for some $y \in \mathbb{R}^m$.

Proof of Theorem 21.

- The KKT conditions for (eCP) are: $c(x^*) = 0$ and $\nabla f(x^*) = J(x^*)^T y^*$ for some $y \in \mathbb{R}^m$.
- Recalling how we calculated the derivatives of a nonlinear least square function (Lecture 7); a similar calculation here gives

$$abla \Phi_{\sigma^k}(x^k) =
abla f(x^k) - rac{1}{\sigma_k} J(x^k)^T c(x^k) =
abla f(x^k) - J(x^k)^T y^k, \ (\diamond)$$
where $y^k = -c(x^k)/\sigma_k \in \mathbb{R}^m$.

Proof of Theorem 21.

- The KKT conditions for (eCP) are: $c(x^*) = 0$ and $\nabla f(x^*) = J(x^*)^T y^*$ for some $y \in \mathbb{R}^m$.
- Recalling how we calculated the derivatives of a nonlinear least square function (Lecture 7); a similar calculation here gives

$$abla \Phi_{\sigma^k}(x^k) =
abla f(x^k) - rac{1}{\sigma_k} J(x^k)^T c(x^k) =
abla f(x^k) - J(x^k)^T y^k, \ (\diamond)$$
where $y^k = -c(x^k)/\sigma_k \in \mathbb{R}^m$.

Note also that if

$$\overline{y} = \arg\min_{y \in \mathbb{R}^m} \|\nabla f(x) - J(x)^T y\|^2, \quad (1)$$

then \overline{y} is the solution of an (overdetermined) linear least squares (Lecture 7 again).

Thus, from (1), recalling the normal equations, \overline{y} satisfies $J(x)J(x)^T\overline{y} = -J(x)\nabla f(x)$.

Thus, from (1), recalling the normal equations, \overline{y} satisfies $J(x)J(x)^T\overline{y} = -J(x)\nabla f(x)$. This is further equivalent to $\overline{y} = -J(x)^+\nabla f(x)$, where $J(x)^+ = (J(x)J(x)^T)^{-1}J(x)$ pseudo-inverse, if J(x) is full row rank (so that $J(x)J(x)^T$ is nonsingular).

Thus, from (1), recalling the normal equations, \overline{y} satisfies $J(x)J(x)^T\overline{y} = -J(x)\nabla f(x)$. This is further equivalent to $\overline{y} = -J(x)^+\nabla f(x)$, where $J(x)^+ = (J(x)J(x)^T)^{-1}J(x)$ pseudo-inverse, if J(x) is full row rank (so that $J(x)J(x)^T$ is nonsingular).

■ LICQ \Rightarrow $J(x^*)$ full row rank $(m \le n)$ and so $J(x^*)^+$ exists. Since we assumed that $x^k \rightarrow x^*$ and J is continuous \Rightarrow $J(x^k)^+$ exists and is bounded above and cont. for all suff. large k.

Thus, from (1), recalling the normal equations, \overline{y} satisfies $J(x)J(x)^T\overline{y} = -J(x)\nabla f(x)$. This is further equivalent to $\overline{y} = -J(x)^+\nabla f(x)$, where $J(x)^+ = (J(x)J(x)^T)^{-1}J(x)$ pseudo-inverse, if J(x) is full row rank (so that $J(x)J(x)^T$ is nonsingular).

■ LICQ \Rightarrow $J(x^*)$ full row rank $(m \le n)$ and so $J(x^*)^+$ exists. Since we assumed that $x^k \to x^*$ and J is continuous \Rightarrow $J(x^k)^+$ exists and is bounded above and cont. for all suff. large k.

We first show that $y^k \to y^*$, as $k \to \infty$; the multiplier y^* solves (1) with $x = x^*$ and so $y^* = J(x^*)^+ \nabla f(x^*)$. We evaluate

Thus, from (1), recalling the normal equations, \overline{y} satisfies $J(x)J(x)^T\overline{y} = -J(x)\nabla f(x)$. This is further equivalent to $\overline{y} = -J(x)^+\nabla f(x)$, where $J(x)^+ = (J(x)J(x)^T)^{-1}J(x)$ pseudo-inverse, if J(x) is full row rank (so that $J(x)J(x)^T$ is nonsingular).

■ LICQ \Rightarrow $J(x^*)$ full row rank $(m \le n)$ and so $J(x^*)^+$ exists. Since we assumed that $x^k \to x^*$ and J is continuous \Rightarrow $J(x^k)^+$ exists and is bounded above and cont. for all suff. large k.

We first show that $y^k \to y^*$, as $k \to \infty$; the multiplier y^* solves (1) with $x = x^*$ and so $y^* = J(x^*)^+ \nabla f(x^*)$. We evaluate $\|y^k - y^*\| \le \|J(x^k)^+ \nabla f(x^k) - J(x^*)^+ \nabla f(x^*)\| + \|J(x^k)^+ \nabla f(x^k) - y^k\|$ As $x^k \to x^*$, J^+ and ∇f continuous, then $J(x^k)^+ \to J(x^*)^+$ and $\nabla f(x^k) \to \nabla f(x^*)$. Thus $\|J(x^k)^+ \nabla f(x^k) - J(x^*)^+ \nabla f(x^*)\| \to 0$.

<u>Proof of Theorem 21.</u> As $J(x^k)^+J(x^k) = I$ then

$$\begin{aligned} \|J(x^k)^+ \nabla f(x^k) - y^k\| &= \|J(x^k)^+ \nabla f(x^k) - J(x^k)^+ J(x^k) y^k\| \\ &\leq \|J(x^k)^+\| \cdot \| \nabla \Phi_{\sigma^k}(x^k)\| \leq C\epsilon_k \end{aligned}$$

for some C; since $\epsilon_k \to 0$, we deduce $y^k \to y^*$.

<u>Proof of Theorem 21.</u> As $J(x^k)^+J(x^k) = I$ then

$$egin{aligned} \|J(x^k)^+
abla f(x^k) - y^k\| &= \|J(x^k)^+
abla f(x^k) - J(x^k)^+ J(x^k) y^k\| \ &\leq \|J(x^k)^+\| \cdot \|
abla \Phi_{\sigma^k}(x^k)\| \leq C \epsilon_k \end{aligned}$$

for some C; since $\epsilon_k \to 0$, we deduce $y^k \to y^*$.

It remains to show that the limit point x^* of $\{x^k\}$ is a KKT point of (eCP). Passing to the limit in (\Diamond), and using $x^k \to x^*$, $y^k \to y^*$ and continuity of ∇f and J, we deduce $\nabla \Phi(x^k) \to \nabla f(x^*) - J(x^*)^T y^*$. On the other hand $\nabla \Phi(x^k) \to 0$. Thus $\nabla f(x^*) - J(x^*)^T y^* = 0$.

<u>Proof of Theorem 21.</u> As $J(x^k)^+J(x^k) = I$ then

$$egin{aligned} \|J(x^k)^+
abla f(x^k) - y^k\| &= \|J(x^k)^+
abla f(x^k) - J(x^k)^+ J(x^k) y^k\| \ &\leq \|J(x^k)^+\| \cdot \|
abla \Phi_{\sigma^k}(x^k)\| \leq C \epsilon_k \end{aligned}$$

for some C; since $\epsilon_k \to 0$, we deduce $y^k \to y^*$.

It remains to show that the limit point x^* of $\{x^k\}$ is a KKT point of (eCP). Passing to the limit in (\Diamond), and using $x^k \to x^*$, $y^k \to y^*$ and continuity of ∇f and J, we deduce $\nabla \Phi(x^k) \to \nabla f(x^*) - J(x^*)^T y^*$. On the other hand $\nabla \Phi(x^k) \to 0$. Thus $\nabla f(x^*) - J(x^*)^T y^* = 0$. The definition of y^k gives $c(x^k) = -\sigma^k y^k$. $\sigma^k \to 0, y^k \to y^*$ implies RHS $\to 0$. For the LHS, $c(x^k) \to 0$ as

 $x^k \rightarrow x^*$. $\Rightarrow c(x^*) = 0$. Thus x^* KKT. \Box

Let y(σ) := -c(x)/σ: estimates of Lagrange multipliers.
 Let L be the Lagrangian function of (eCP),

$$L(x,y) := f(x) - y^T c(x).$$

• $\Phi_{\sigma}(x) = f(x) + \frac{1}{2\sigma} \|c(x)\|^2$.

Let y(σ) := -c(x)/σ: estimates of Lagrange multipliers.
Let L be the Lagrangian function of (eCP),

$$L(x,y):=f(x)-y^Tc(x).$$

 $\Phi_{\sigma}(x)=f(x)+rac{1}{2\sigma}\|c(x)\|^2.$ Then
 $abla \Phi_{\sigma}(x)=
abla f(x)+rac{1}{\sigma}J(x)^Tc(x)=
abla x L(x,y(\sigma)),$

where J(x) Jacobian $m \times n$ matrix of constraints c(x).

Let y(σ) := -c(x)/σ: estimates of Lagrange multipliers.
 Let L be the Lagrangian function of (eCP),

$$L(x,y) := f(x) - y^T c(x).$$

 $\Phi_{\sigma}(x) = f(x) + \frac{1}{2\sigma} \|c(x)\|^2.$ Then
 $abla \Phi_{\sigma}(x) =
abla f(x) + \frac{1}{\sigma} J(x)^T c(x) =
abla x L(x, y(\sigma)),$

where J(x) Jacobian $m \times n$ matrix of constraints c(x).

 $\begin{bmatrix} \text{recall Lecture 7, nonlinear least squares derivatives} \end{bmatrix}$ $\nabla^2 \Phi_{\sigma}(x) = \nabla^2 f(x) + \frac{1}{\sigma} \sum_{i=1}^m c_i(x) \nabla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x)$ $= \nabla^2_{xx} L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x).$

Let y(σ) := -c(x)/σ: estimates of Lagrange multipliers.
 Let L be the Lagrangian function of (eCP),

$$L(x,y) := f(x) - y^T c(x).$$

 $\Phi_{\sigma}(x) = f(x) + \frac{1}{2\sigma} ||c(x)||^2.$ Then
 $abla \Phi_{\sigma}(x) =
abla f(x) + \frac{1}{\sigma} J(x)^T c(x) =
abla_x L(x,y(\sigma)),$

where J(x) Jacobian $m \times n$ matrix of constraints c(x).

 $\begin{bmatrix} \text{recall Lecture 7, nonlinear least squares derivatives} \end{bmatrix}$ $\nabla^2 \Phi_{\sigma}(x) = \nabla^2 f(x) + \frac{1}{\sigma} \sum_{i=1}^m c_i(x) \nabla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x)$ $= \nabla^2_{xx} L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x).$

• $\sigma \longrightarrow 0$: generally, $c_i(x) \rightarrow 0$ at the same rate with σ for all *i*. Thus usually, $\nabla^2_{xx} L(x, y(\sigma))$ well-behaved.

 $\ \ \, \bullet \ \, \circ \ \, \sigma \rightarrow 0 : \ \, J(x)^T J(x)/\sigma \rightarrow J(x^*)^T J(x^*)/0 = \infty.$

Ill-conditioning of the penalty's Hessian ...

'Fact' [cf. Th 5.2, Gould ref.] $\implies m$ eigenvalues of $\nabla^2 \Phi_{\sigma^k}(x^k)$ are $\mathcal{O}(1/\sigma^k)$ and hence, tend to infinity as $k \to \infty$ (ie, $\sigma^k \to 0$); remaining n - m are $\mathcal{O}(1)$ in the limit.

ullet Hence, the condition number of $abla^2 \Phi_{\sigma^k}(x^k)$ is $\mathcal{O}(1/\sigma^k)$

 \implies it blows up as $k \rightarrow \infty$.

Ill-conditioning of the penalty's Hessian ...

'Fact' [cf. Th 5.2, Gould ref.] $\implies m$ eigenvalues of $\nabla^2 \Phi_{\sigma^k}(x^k)$ are $\mathcal{O}(1/\sigma^k)$ and hence, tend to infinity as $k \to \infty$ (ie, $\sigma^k \to 0$); remaining n - m are $\mathcal{O}(1)$ in the limit.

• Hence, the condition number of $abla^2 \Phi_{\sigma^k}(x^k)$ is $\mathcal{O}(1/\sigma^k)$

 \implies it blows up as $k \rightarrow \infty$.

 \implies worried that we may not be able to compute changes to x^k accurately. Namely, whether using linesearch or trust-region methods, asymptotically, we want to minimize $\Phi_{\sigma^{k+1}}(x)$ by taking Newton steps, i.e., solve the system

 $abla^2 \Phi_\sigma(x) dx = -\nabla \Phi_\sigma(x), \qquad (*)$

for dx from some current $x = x^{k,i}$ and $\sigma = \sigma^{k+1}$.

Ill-conditioning of the penalty's Hessian ...

'Fact' [cf. Th 5.2, Gould ref.] $\implies m$ eigenvalues of $\nabla^2 \Phi_{\sigma^k}(x^k)$ are $\mathcal{O}(1/\sigma^k)$ and hence, tend to infinity as $k \to \infty$ (ie, $\sigma^k \to 0$); remaining n - m are $\mathcal{O}(1)$ in the limit.

• Hence, the condition number of $abla^2 \Phi_{\sigma^k}(x^k)$ is $\mathcal{O}(1/\sigma^k)$

 \implies it blows up as $k \rightarrow \infty$.

 \implies worried that we may not be able to compute changes to x^k accurately. Namely, whether using linesearch or trust-region methods, asymptotically, we want to minimize $\Phi_{\sigma^{k+1}}(x)$ by taking Newton steps, i.e., solve the system

 $abla^2 \Phi_\sigma(x) dx = -\nabla \Phi_\sigma(x), \qquad (*)$

for dx from some current $x = x^{k,i}$ and $\sigma = \sigma^{k+1}$.

Despite ill-conditioning present, we can still solve for dx accurately!

Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to $(\nabla_{xx}^2 L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x)) dx = -(\nabla f(x) + \frac{1}{\sigma} J(x)^T c(x)),$ where $y(\sigma) = -c(x)/\sigma$.

Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to $(\nabla_{xx}^2 L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x)) dx = -(\nabla f(x) + \frac{1}{\sigma} J(x)^T c(x)),$ where $y(\sigma) = -c(x)/\sigma$. Define auxiliary variable w $w := \frac{1}{\sigma} (J(x)dx + c(x)) \leftrightarrow J(x)dx - \sigma w = -c(x).$ Then $\nabla_{xx}^2 L(x, y(\sigma))dx + J(x)^T w = -\nabla f(x),$ and the Newton system (*) can be re-written as

$$egin{pmatrix}
abla^2 L(x,y(\sigma)) & J(x)^{ op} \ J(x) & -\sigma I \end{pmatrix} egin{pmatrix} dx \ w \end{pmatrix} = - egin{pmatrix}
abla f(x) \ c(x) \end{pmatrix}$$

This system is essentially independent of σ for small $\sigma \implies$ cannot suffer from ill-conditioning due to $\sigma \rightarrow 0$.

Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to $(\nabla_{xx}^2 L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x)) dx = -(\nabla f(x) + \frac{1}{\sigma} J(x)^T c(x)),$ where $y(\sigma) = -c(x)/\sigma$. Define auxiliary variable w $w := \frac{1}{\sigma} (J(x)dx + c(x)) \leftrightarrow J(x)dx - \sigma w = -c(x).$ Then $\nabla_{xx}^2 L(x, y(\sigma))dx + J(x)^T w = -\nabla f(x),$ and the Newton system (*) can be re-written as

$$egin{pmatrix}
abla^2 L(x,y(\sigma)) & J(x)^{ op} \ J(x) & -\sigma I \ \end{pmatrix} egin{pmatrix} dx \ w \ \end{pmatrix} = - egin{pmatrix}
abla f(x) \ c(x) \ c(x) \ \end{pmatrix}$$

This system is essentially independent of σ for small $\sigma \implies$ cannot suffer from ill-conditioning due to $\sigma \rightarrow 0$.

Still need to be careful about minimizing Φ_{σ} for small σ . Eg, when using TR methods, use $||dx||_B \leq \Delta$ for TR constraint. *B* takes into account ill-conditioned terms of Hessian so as to encourage equal model decrease in all directions.

Consider the general (CP) problem

 $ext{minimize}_{x\in\mathbb{R}^n}$ f(x) subject to $c_E(x)=0,$ $c_I(x)\geq 0.$ (CP)

Exact penalty function: $\Phi(x, \sigma)$ is exact if there is $\sigma_* > 0$ such that if $\sigma < \sigma_*$, any local solution of (CP) is a local minimizer of $\Phi(x, \sigma)$. (Quadratic penalty is inexact.) Examples:

• l_2 -penalty function: $\Phi(x, \sigma) = f(x) + \frac{1}{\sigma} \|c_E(x)\|$

■ *l*₁-penalty function: let
$$z^- = \min\{z, 0\}$$
,
 $\Phi(x, \sigma) = f(x) + \frac{1}{\sigma} \sum_{i \in E} |c_i(x)| + \frac{1}{\sigma} \sum_{i \in I} [c_i(x)]^-$.
Extension of quadratic penalty to (CP):

$$\Phi(x,\sigma) = f(x) + \frac{1}{2\sigma} \|c_E(x)\|^2 + \frac{1}{2\sigma} \sum_{i \in I} \left([c_i(x)]^- \right)^2$$
(may no longer be suff, smooth; it is inexact)

(may no longer be suff. smooth; it is inexact)