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Nonlinear equality-constrained problems

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → Rm smooth.

attempt to find local solutions (at least KKT points).
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Nonlinear equality-constrained problems

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → Rm smooth.

attempt to find local solutions (at least KKT points).

constrained optimization −→ conflict of requirements:
objective minimization & feasibility of the solution.

easier to generate feasible iterates for linear equality
and general inequality constrained problems;
very hard, even impossible, in general, when general

equality constraints are present.
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Nonlinear equality-constrained problems

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → Rm smooth.

attempt to find local solutions (at least KKT points).

constrained optimization −→ conflict of requirements:
objective minimization & feasibility of the solution.

easier to generate feasible iterates for linear equality
and general inequality constrained problems;
very hard, even impossible, in general, when general

equality constraints are present.

=⇒ form a single, parametrized and unconstrained objective,
whose minimizers approach initial problem solutions as
parameters vary
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A penalty function for (eCP)

min
x∈Rn

f(x) subject to c(x) = 0. (eCP)

The quadratic penalty function:

min
x∈Rn

Φσ(x) = f(x) +
1

2σ
‖c(x)‖2, (eCPσ)

where σ > 0 penalty parameter.

σ: penalty on infeasibility;
σ −→ 0: ’forces’ constraint to be satisfied and achieve

optimality for f .

Φσ may have other stationary points that are not solutions
for (eCP); eg., when c(x) = 0 is inconsistent.
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Contours of the penalty function Φσ - an example
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The quadratic penalty function for minx2
1 + x2

2 subject to x1 + x2
2 = 1
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Contours of the penalty function Φσ - an example...
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2 subject to x1 + x2
2 = 1
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A quadratic penalty method

Given σ0 > 0, let k = 0. Until “convergence” do:

Choose 0 < σk+1 < σk.

Starting from xk
0 (possibly, xk

0 := xk), use an
unconstrained minimization algorithm to find an
“approximate” minimizer xk+1 of Φσk+1.
Let k := k + 1. ♦

Must have σk → 0, k → 0. σk+1 := 0.1σk, σk+1 := (σk)2, etc.
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A quadratic penalty method

Given σ0 > 0, let k = 0. Until “convergence” do:

Choose 0 < σk+1 < σk.

Starting from xk
0 (possibly, xk

0 := xk), use an
unconstrained minimization algorithm to find an
“approximate” minimizer xk+1 of Φσk+1.
Let k := k + 1. ♦

Must have σk → 0, k → 0. σk+1 := 0.1σk, σk+1 := (σk)2, etc.

Algorithms for minimizing Φσ:
• Linesearch, trust-region methods.
• σ small: Φσ very steep in the direction of constraints’
gradients, and so rapid change in Φσ for steps in such
directions; implications for “shape” of trust region.
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A convergence result for the penalty method

Theorem 21. (Global convergence of penalty method) Apply
the basic quadratic penalty method to the (eCP). Assume that
f, c ∈ C1, yk

i = −ci(xk)/σk, i = 1,m, and

‖∇Φσk(xk)‖ ≤ εk, where εk → 0, k → ∞,

and also σk → 0, as k → ∞. Moreover, assume that
xk → x∗, where ∇ci(x∗), i = 1,m, are linearly independent.

Then x∗ is a KKT point of (eCP) and yk → y∗, where y∗ is the
vector of Lagrange multipliers of (eCP) constraints. "
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A convergence result for the penalty method

Theorem 21. (Global convergence of penalty method) Apply
the basic quadratic penalty method to the (eCP). Assume that
f, c ∈ C1, yk

i = −ci(xk)/σk, i = 1,m, and

‖∇Φσk(xk)‖ ≤ εk, where εk → 0, k → ∞,

and also σk → 0, as k → ∞. Moreover, assume that
xk → x∗, where ∇ci(x∗), i = 1,m, are linearly independent.

Then x∗ is a KKT point of (eCP) and yk → y∗, where y∗ is the
vector of Lagrange multipliers of (eCP) constraints. "

∇ci(x∗), i = 1,m, lin. indep. ⇔ the Jacobian matrix J(x∗)
of the constraints is full row rank and so m ≤ n.

J(x∗) not full rank, then x∗ (locally) minimizes the
infeasibility ‖c(x)‖. [let yk → ∞ in (♦) on the next slide]
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A convergence result for the penalty method

Proof of Theorem 21.
The KKT conditions for (eCP) are: c(x∗) = 0 and
∇f(x∗) = J(x∗)Ty∗ for some y ∈ Rm.
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A convergence result for the penalty method

Proof of Theorem 21.
The KKT conditions for (eCP) are: c(x∗) = 0 and
∇f(x∗) = J(x∗)Ty∗ for some y ∈ Rm.
Recalling how we calculated the derivatives of a nonlinear
least square function (Lecture 7); a similar calculation
here gives

∇Φσk(xk) = ∇f(xk) − 1
σk

J(xk)T c(xk) = ∇f(xk) − J(xk)Tyk, (♦)
where yk = −c(xk)/σk ∈ Rm.
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A convergence result for the penalty method

Proof of Theorem 21.
The KKT conditions for (eCP) are: c(x∗) = 0 and
∇f(x∗) = J(x∗)Ty∗ for some y ∈ Rm.
Recalling how we calculated the derivatives of a nonlinear
least square function (Lecture 7); a similar calculation
here gives

∇Φσk(xk) = ∇f(xk) − 1
σk

J(xk)T c(xk) = ∇f(xk) − J(xk)Tyk, (♦)
where yk = −c(xk)/σk ∈ Rm.
Note also that if

y = arg min
y∈Rm

‖∇f(x) − J(x)Ty‖2, (1)

then y is the solution of an (overdetermined) linear least
squares (Lecture 7 again).
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A convergence result for the penalty method...

Thus, from (1), recalling the normal equations, y satisfies
J(x)J(x)Ty = −J(x)∇f(x).
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A convergence result for the penalty method...

Thus, from (1), recalling the normal equations, y satisfies
J(x)J(x)Ty = −J(x)∇f(x). This is further equivalent to
y = −J(x)+∇f(x), where J(x)+ = (J(x)J(x)T )−1J(x)

pseudo-inverse, if J(x) is full row rank (so that J(x)J(x)T
is nonsingular).
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A convergence result for the penalty method...

Thus, from (1), recalling the normal equations, y satisfies
J(x)J(x)Ty = −J(x)∇f(x). This is further equivalent to
y = −J(x)+∇f(x), where J(x)+ = (J(x)J(x)T )−1J(x)

pseudo-inverse, if J(x) is full row rank (so that J(x)J(x)T
is nonsingular).
LICQ ⇒ J(x∗) full row rank (m ≤ n) and so J(x∗)+ exists.
Since we assumed that xk → x∗ and J is continuous ⇒
J(xk)+ exists and is bounded above and cont. for all suff.
large k.
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A convergence result for the penalty method...

Thus, from (1), recalling the normal equations, y satisfies
J(x)J(x)Ty = −J(x)∇f(x). This is further equivalent to
y = −J(x)+∇f(x), where J(x)+ = (J(x)J(x)T )−1J(x)

pseudo-inverse, if J(x) is full row rank (so that J(x)J(x)T
is nonsingular).
LICQ ⇒ J(x∗) full row rank (m ≤ n) and so J(x∗)+ exists.
Since we assumed that xk → x∗ and J is continuous ⇒
J(xk)+ exists and is bounded above and cont. for all suff.
large k.

We first show that yk → y∗, as k → ∞; the multiplier y∗ solves
(1) with x = x∗ and so y∗ = J(x∗)+∇f(x∗). We evaluate
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A convergence result for the penalty method...

Thus, from (1), recalling the normal equations, y satisfies
J(x)J(x)Ty = −J(x)∇f(x). This is further equivalent to
y = −J(x)+∇f(x), where J(x)+ = (J(x)J(x)T )−1J(x)

pseudo-inverse, if J(x) is full row rank (so that J(x)J(x)T
is nonsingular).
LICQ ⇒ J(x∗) full row rank (m ≤ n) and so J(x∗)+ exists.
Since we assumed that xk → x∗ and J is continuous ⇒
J(xk)+ exists and is bounded above and cont. for all suff.
large k.

We first show that yk → y∗, as k → ∞; the multiplier y∗ solves
(1) with x = x∗ and so y∗ = J(x∗)+∇f(x∗). We evaluate
‖yk − y∗‖ ≤ ‖J(xk)+∇f(xk) − J(x∗)+∇f(x∗)‖ + ‖J(xk)+∇f(xk) − yk‖
As xk → x∗, J+ and ∇f continuous, then J(xk)+ → J(x∗)+

and ∇f(xk) → ∇f(x∗). Thus ‖J(xk)+∇f(xk) − J(x∗)+∇f(x∗)‖ → 0.
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A convergence result for the penalty method...

Proof of Theorem 21. As J(xk)+J(xk) = I then

‖J(xk)+∇f(xk) − yk‖ = ‖J(xk)+∇f(xk) − J(xk)+J(xk)yk‖
≤ ‖J(xk)+‖ · ‖∇Φσk(xk)‖ ≤ Cεk

for some C; since εk → 0, we deduce yk → y∗.
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A convergence result for the penalty method...

Proof of Theorem 21. As J(xk)+J(xk) = I then

‖J(xk)+∇f(xk) − yk‖ = ‖J(xk)+∇f(xk) − J(xk)+J(xk)yk‖
≤ ‖J(xk)+‖ · ‖∇Φσk(xk)‖ ≤ Cεk

for some C; since εk → 0, we deduce yk → y∗.
It remains to show that the limit point x∗ of {xk} is a KKT point
of (eCP). Passing to the limit in (♦), and using xk → x∗,
yk → y∗ and continuity of ∇f and J , we deduce
∇Φ(xk) → ∇f(x∗) − J(x∗)Ty∗. On the other hand ∇Φ(xk) → 0.
Thus ∇f(x∗) − J(x∗)Ty∗ = 0.
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A convergence result for the penalty method...

Proof of Theorem 21. As J(xk)+J(xk) = I then

‖J(xk)+∇f(xk) − yk‖ = ‖J(xk)+∇f(xk) − J(xk)+J(xk)yk‖
≤ ‖J(xk)+‖ · ‖∇Φσk(xk)‖ ≤ Cεk

for some C; since εk → 0, we deduce yk → y∗.
It remains to show that the limit point x∗ of {xk} is a KKT point
of (eCP). Passing to the limit in (♦), and using xk → x∗,
yk → y∗ and continuity of ∇f and J , we deduce
∇Φ(xk) → ∇f(x∗) − J(x∗)Ty∗. On the other hand ∇Φ(xk) → 0.
Thus ∇f(x∗) − J(x∗)Ty∗ = 0.
The definition of yk gives

c(xk) = −σkyk.

σk → 0, yk → y∗ implies RHS → 0. For the LHS, c(xk) → 0 as
xk → x∗. ⇒ c(x∗) = 0. Thus x∗ KKT. "
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Derivatives of the penalty function

Let y(σ) := −c(x)/σ: estimates of Lagrange multipliers.
Let L be the Lagrangian function of (eCP),

L(x, y) := f(x) − yT c(x).

Φσ(x) = f(x) + 1
2σ‖c(x)‖

2.
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Derivatives of the penalty function

Let y(σ) := −c(x)/σ: estimates of Lagrange multipliers.
Let L be the Lagrangian function of (eCP),

L(x, y) := f(x) − yT c(x).

Φσ(x) = f(x) + 1
2σ‖c(x)‖

2. Then

∇Φσ(x) = ∇f(x) + 1
σJ(x)

T c(x) = ∇xL(x, y(σ)),

where J(x) Jacobian m × n matrix of constraints c(x).
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Derivatives of the penalty function

Let y(σ) := −c(x)/σ: estimates of Lagrange multipliers.
Let L be the Lagrangian function of (eCP),

L(x, y) := f(x) − yT c(x).

Φσ(x) = f(x) + 1
2σ‖c(x)‖

2. Then

∇Φσ(x) = ∇f(x) + 1
σJ(x)

T c(x) = ∇xL(x, y(σ)),

where J(x) Jacobian m × n matrix of constraints c(x).
[recall Lecture 7, nonlinear least squares derivatives]

∇2Φσ(x) = ∇2f(x) + 1
σ

∑m
i=1 ci(x)∇2ci(x) +

1
σJ(x)

TJ(x)

= ∇2
xxL(x, y(σ)) + 1

σJ(x)
TJ(x).
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Derivatives of the penalty function

Let y(σ) := −c(x)/σ: estimates of Lagrange multipliers.
Let L be the Lagrangian function of (eCP),

L(x, y) := f(x) − yT c(x).

Φσ(x) = f(x) + 1
2σ‖c(x)‖

2. Then

∇Φσ(x) = ∇f(x) + 1
σJ(x)

T c(x) = ∇xL(x, y(σ)),

where J(x) Jacobian m × n matrix of constraints c(x).
[recall Lecture 7, nonlinear least squares derivatives]

∇2Φσ(x) = ∇2f(x) + 1
σ

∑m
i=1 ci(x)∇2ci(x) +

1
σJ(x)

TJ(x)

= ∇2
xxL(x, y(σ)) + 1

σJ(x)
TJ(x).

σ −→ 0: generally, ci(x) → 0 at the same rate with σ for all
i. Thus usually, ∇2

xxL(x, y(σ)) well-behaved.
σ → 0: J(x)TJ(x)/σ → J(x∗)TJ(x∗)/0 = ∞.
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Ill-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] =⇒ m eigenvalues of ∇2Φσk(xk)

are O(1/σk) and hence, tend to infinity as k → ∞ (ie, σk → 0);
remaining n − m are O(1) in the limit.
• Hence, the condition number of ∇2Φσk(xk) is O(1/σk)

=⇒ it blows up as k → ∞.
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Ill-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] =⇒ m eigenvalues of ∇2Φσk(xk)

are O(1/σk) and hence, tend to infinity as k → ∞ (ie, σk → 0);
remaining n − m are O(1) in the limit.
• Hence, the condition number of ∇2Φσk(xk) is O(1/σk)

=⇒ it blows up as k → ∞.
=⇒ worried that we may not be able to compute changes to

xk accurately. Namely, whether using linesearch or
trust-region methods, asymptotically, we want to minimize
Φσk+1(x) by taking Newton steps, i.e., solve the system

∇2Φσ(x)dx = −∇Φσ(x), (*)
for dx from some current x = xk,i and σ = σk+1.
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Ill-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] =⇒ m eigenvalues of ∇2Φσk(xk)

are O(1/σk) and hence, tend to infinity as k → ∞ (ie, σk → 0);
remaining n − m are O(1) in the limit.
• Hence, the condition number of ∇2Φσk(xk) is O(1/σk)

=⇒ it blows up as k → ∞.
=⇒ worried that we may not be able to compute changes to

xk accurately. Namely, whether using linesearch or
trust-region methods, asymptotically, we want to minimize
Φσk+1(x) by taking Newton steps, i.e., solve the system

∇2Φσ(x)dx = −∇Φσ(x), (*)
for dx from some current x = xk,i and σ = σk+1.

Despite ill-conditioning present, we can still solve for dx

accurately!
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Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to(
∇2

xxL(x, y(σ)) + 1
σJ(x)

TJ(x)
)
dx = −

(
∇f(x) + 1

σJ(x)
T c(x)

)
,

where y(σ) = −c(x)/σ.
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Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to(
∇2

xxL(x, y(σ)) + 1
σJ(x)

TJ(x)
)
dx = −

(
∇f(x) + 1

σJ(x)
T c(x)

)
,

where y(σ) = −c(x)/σ. Define auxiliary variable w

w := 1
σ (J(x)dx + c(x)) ↔ J(x)dx − σw = −c(x).

Then ∇2
xxL(x, y(σ))dx + J(x)Tw = −∇f(x), and the Newton

system (*) can be re-written as


 ∇2L(x, y(σ)) J(x)$

J(x) −σI







 dx

w



 = −



 ∇f(x)

c(x)





This system is essentially independent of σ for small σ =⇒
cannot suffer from ill-conditioning due to σ → 0.
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Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to(
∇2

xxL(x, y(σ)) + 1
σJ(x)

TJ(x)
)
dx = −

(
∇f(x) + 1

σJ(x)
T c(x)

)
,

where y(σ) = −c(x)/σ. Define auxiliary variable w

w := 1
σ (J(x)dx + c(x)) ↔ J(x)dx − σw = −c(x).

Then ∇2
xxL(x, y(σ))dx + J(x)Tw = −∇f(x), and the Newton

system (*) can be re-written as


 ∇2L(x, y(σ)) J(x)$

J(x) −σI







 dx

w



 = −



 ∇f(x)

c(x)





This system is essentially independent of σ for small σ =⇒
cannot suffer from ill-conditioning due to σ → 0.

Still need to be careful about minimizing Φσ for small σ. Eg, when using TR methods, use

‖dx‖B ≤ ∆ for TR constraint. B takes into account ill-conditioned terms of Hessian so as

to encourage equal model decrease in all directions.
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Other penalty functions

Consider the general (CP) problem
minimizex∈Rn f(x) subject to cE(x) = 0, cI(x) ≥ 0. (CP)

Exact penalty function: Φ(x,σ) is exact if there is σ∗ > 0 such
that if σ < σ∗, any local solution of (CP) is a local minimizer of
Φ(x,σ). (Quadratic penalty is inexact.)
Examples:

l2-penalty function: Φ(x,σ) = f(x) + 1
σ
‖cE(x)‖

l1-penalty function: let z− = min{z, 0},
Φ(x,σ) = f(x) + 1

σ

∑
i∈E |ci(x)| + 1

σ

∑
i∈I [ci(x)]

−.

Extension of quadratic penalty to (CP):
Φ(x,σ) = f(x) + 1

2σ
‖cE(x)‖2 + 1

2σ

∑
i∈I

(
[ci(x)]−

)2

(may no longer be suff. smooth; it is inexact)
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