Lecture 13: Augmented Lagrangian methods for constrained optimization problems

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Nonlinear equality-constrained problems (again)

$$\min_{x \in \mathbb{R}^n} \quad f(x) \quad ext{subject to} \quad c(x) = 0, \qquad \qquad ext{(eCP)}$$

where $f:\mathbb{R}^n \to \mathbb{R}, \ \ c=(c_1,\ldots,c_m):\mathbb{R}^n \to \mathbb{R}^m$ smooth.

Nonlinear equality-constrained problems (again)

$$\min_{x \in \mathbb{R}^n} \quad f(x) \quad ext{subject to} \quad c(x) = 0, \tag{eCP}$$

where $f:\mathbb{R}^n o \mathbb{R}, \ \ c=(c_1,\ldots,c_m):\mathbb{R}^n o \mathbb{R}^m$ smooth.

Another example of merit function and method for (eCP): augmented Lagrangian function

$$\Phi(x,u,\sigma) = f(x) - u^T c(x) + rac{1}{2\sigma} \|c(x)\|^2$$

where both $u \in \mathbb{R}^m$ and $\sigma > 0$ are now algorithm parameters.

Nonlinear equality-constrained problems (again)

$$\min_{x \in \mathbb{R}^n} \quad f(x) \quad ext{subject to} \quad c(x) = 0, \tag{eCP}$$

where $f:\mathbb{R}^n \to \mathbb{R}, \ \ c=(c_1,\ldots,c_m):\mathbb{R}^n \to \mathbb{R}^m$ smooth.

Another example of merit function and method for (eCP): augmented Lagrangian function

$$\Phi(x,u,\sigma) = f(x) - u^T c(x) + rac{1}{2\sigma} \|c(x)\|^2$$

where both $u \in \mathbb{R}^m$ and $\sigma > 0$ are now algorithm parameters.

Two interpretations:

- shifted quadratic penalty function
- convexification of the Lagrangian function

Aim: adjust both u and σ to encourage convergence.

Derivatives of the augmented Lagrangian function

 $\Phi(x,u,\sigma)=f(x)-u^Tc(x)+rac{1}{2\sigma}\|c(x)\|^2$. Let J(x) Jacobian of constraints $c(x)=(c_1(x),\ldots,c_m(x))$.

Lagrangian: $\mathcal{L}(x,y) = f(x) - y^T c(x)$ for a(ny) $y \in \mathbb{R}^m$

Derivatives of the augmented Lagrangian function

$$\Phi(x,u,\sigma)=f(x)-u^Tc(x)+\frac{1}{2\sigma}\|c(x)\|^2$$
. Let $J(x)$ Jacobian of constraints $c(x)=(c_1(x),\ldots,c_m(x))$.

- Lagrangian: $\mathcal{L}(x,y) = f(x) y^T c(x)$ for a(ny) $y \in \mathbb{R}^m$
- lacksquare $\nabla_x \Phi(x,u,\sigma) = \nabla f(x) J(x)^T u + rac{1}{\sigma} J(x)^T c(x)$

$$\implies \nabla_x \Phi(x, u, \sigma) = \nabla f(x) - J(x)^T y = \nabla_x \mathcal{L}(x, y)$$

where
$$y := u - \frac{c(x)}{\sigma}$$
 Lagrange multiplier estimates

Derivatives of the augmented Lagrangian function

$$\Phi(x,u,\sigma)=f(x)-u^Tc(x)+\frac{1}{2\sigma}\|c(x)\|^2$$
. Let $J(x)$ Jacobian of constraints $c(x)=(c_1(x),\ldots,c_m(x))$.

- Lagrangian: $\mathcal{L}(x,y) = f(x) y^T c(x)$ for a(ny) $y \in \mathbb{R}^m$
- lacksquare $\nabla_x \Phi(x, u, \sigma) = \nabla f(x) J(x)^T u + \frac{1}{\sigma} J(x)^T c(x)$

$$\implies \nabla_x \Phi(x, u, \sigma) = \nabla f(x) - J(x)^T y = \nabla_x \mathcal{L}(x, y)$$

where $y:=u-\frac{c(x)}{\sigma}$ Lagrange multiplier estimates

$$\begin{split} \blacksquare \nabla^2 \Phi(x, u, \sigma) &= \nabla^2 f(x) - \sum_{i=1}^m u_i \nabla^2 c_i(x) + \\ &\frac{1}{\sigma} \sum_{i=1}^m c_i(x) \nabla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x) \end{split}$$

$$\Longrightarrow$$

$$abla^2 \Phi(x, u, \sigma) =
abla^2 f(x) - \sum_{i=1}^m y_i
abla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x)$$

$$\implies
abla^2 \Phi(x, u, \sigma) =
abla^2 \mathcal{L}(x, y) + \frac{1}{\sigma} J(x)^T J(x) \text{ where}$$

$$y = u - \frac{c(x)}{\sigma}$$
.

Theorem 22. (Global convergence of augmented Lagrangian) Assume that $f, c \in C^1$ in (eCP) and for $k \geq 0$, let

$$y^k = u^k - \frac{c(x^k)}{\sigma^k},$$

for some $u^k \in \mathbb{R}^m$, and assume that

$$\|\nabla\Phi(x^k,u^k,\sigma^k)\|\leq \epsilon^k$$
, where $\epsilon^k\to 0, k\to\infty$.

Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i = \overline{1,m}$, are linearly independent. Then $y^k \longrightarrow y^*$ as $k \longrightarrow \infty$ with y^* satisfying $\nabla f(x^*) - J(x^*)^T y^* = 0$.

If additionally, either $\sigma^k \to 0$ for bounded u^k or $u^k \to y^*$ for bounded σ^k then x^* is a KKT point of (eCP) with associated Lagrange multipliers y^* .

Proof of Theorem 22. The first part of Th 22, namely, convergence of y^k to $y^* = J(x^*)^+ \nabla f(x^*)$ follows exactly as in the proof of Theorem 21 (penalty method convergence). (Note that the assumption $\sigma^k \to 0$ is not needed for this part of the proof of Th 21.)

Proof of Theorem 22. The first part of Th 22, namely, convergence of y^k to $y^* = J(x^*)^+ \nabla f(x^*)$ follows exactly as in the proof of Theorem 21 (penalty method convergence). (Note that the assumption $\sigma^k \to 0$ is not needed for this part of the proof of Th 21.)

It remains to show that under the additional assumptions on u^k and σ^k , x^* is feasible for the constraints.

Proof of Theorem 22. The first part of Th 22, namely, convergence of y^k to $y^* = J(x^*)^+ \nabla f(x^*)$ follows exactly as in the proof of Theorem 21 (penalty method convergence). (Note that the assumption $\sigma^k \to 0$ is not needed for this part of the proof of Th 21.)

It remains to show that under the additional assumptions on u^k and σ^k , x^* is feasible for the constraints. To see this, use the definition of $y^k = u^k - c(x^k)/\sigma^k$ to deduce $c(x^k) = \sigma^k(u^k - y^k)$ and so

$$||c(x^k)|| = \sigma^k ||u^k - y^k|| \le \sigma^k ||y^k - y^*|| + \sigma^k ||u^k - y^*||$$
 (*)

On the LHS of (*): $\|c(x^k)\| o \|c(x^*)\|$ as $x^k o x^*$.

Proof of Theorem 22.(continued)

$$||c(x^k)|| = \sigma^k ||u^k - y^k|| \le \sigma^k ||y^k - y^*|| + \sigma^k ||u^k - y^*||$$
 (*)

Proof of Theorem 22.(continued)

$$||c(x^k)|| = \sigma^k ||u^k - y^k|| \le \sigma^k ||y^k - y^*|| + \sigma^k ||u^k - y^*|| \quad (*)$$

For the RHS of (*):

(i) if $\sigma^k \to 0$ and $||u^k|| \le M$ for all $k \ge 0$, then by triangle ineq.,

$$\|\sigma^k\|u^k - y^*\| \le \sigma^k\|u^k\| + \sigma^k\|y^*\| \le \sigma^k(M + \|y^*\|) \to 0$$

Since $y^k \to y^*$, $\sigma^k ||y^k - y^*|| \to 0$ as $\{\sigma^k\}$ is bounded above.

So the RHS of (*) converges to zero as $k \to \infty$.

Proof of Theorem 22.(continued)

$$||c(x^k)|| = \sigma^k ||u^k - y^k|| \le \sigma^k ||y^k - y^*|| + \sigma^k ||u^k - y^*||$$
 (*)

For the RHS of (*):

(i) if $\sigma^k \to 0$ and $||u^k|| \le M$ for all $k \ge 0$, then by triangle ineq.,

$$\|\sigma^k\|u^k - y^*\| \le \sigma^k\|u^k\| + \sigma^k\|y^*\| \le \sigma^k(M + \|y^*\|) \to 0$$

Since $y^k \to y^*$, $\sigma^k ||y^k - y^*|| \to 0$ as $\{\sigma^k\}$ is bounded above.

So the RHS of (*) converges to zero as $k \to \infty$.

(ii) else, if $u^k \to y^*$ and $|\sigma^k| \le \overline{\sigma}$ for all $k \ge 0$, then $|\sigma^k| |u^k - y^*| \le \overline{\sigma} ||u^k - y^*|| \to 0$.

Since $y^k \to y^*$, $\sigma^k ||y^k - y^*|| \leq \overline{\sigma} ||y^k - y^*|| \to 0$.

Proof of Theorem 22.(continued)

$$||c(x^k)|| = \sigma^k ||u^k - y^k|| \le \sigma^k ||y^k - y^*|| + \sigma^k ||u^k - y^*||$$
 (*)

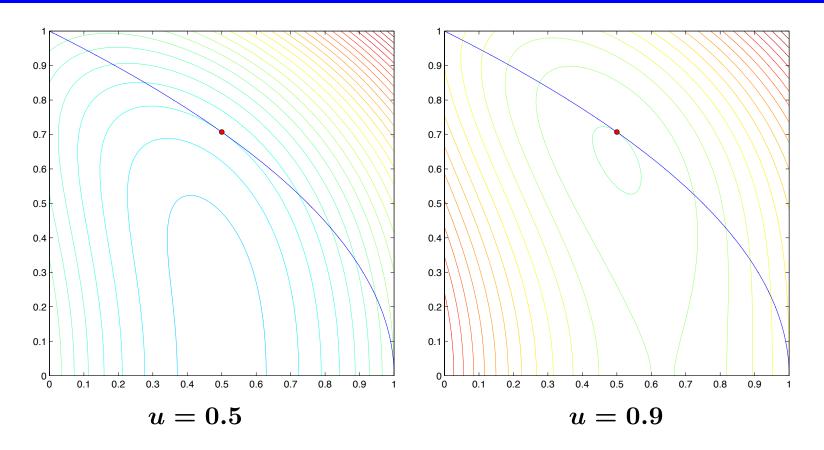
For the RHS of (*):

- (i) if $\sigma^k \to 0$ and $||u^k|| \le M$ for all $k \ge 0$, then by triangle ineq., $\sigma^k ||u^k y^*|| \le \sigma^k ||u^k|| + \sigma^k ||y^*|| \le \sigma^k (M + ||y^*||) \to 0$ Since $y^k \to y^*$, $\sigma^k ||y^k - y^*|| \to 0$ as $\{\sigma^k\}$ is bounded above. So the RHS of (*) converges to zero as $k \to \infty$.
- (ii) else, if $u^k \to y^*$ and $|\sigma^k| \le \overline{\sigma}$ for all $k \ge 0$, then $|\sigma^k| \|u^k y^*\| \le \overline{\sigma} \|u^k y^*\| \to 0$. Since $|y^k \to y^*|$, $|\sigma^k| \|y^k - y^*\| \le \overline{\sigma} \|y^k - y^*\| \to 0$.

Thus in both cases, LHS of (*) and RHS of (*) in the limit are equal and so $c(x^*) = 0$.

Note that Augmented Lagrangian may converge to KKT points without $\sigma^k \to 0$, which limits the ill-conditioning.

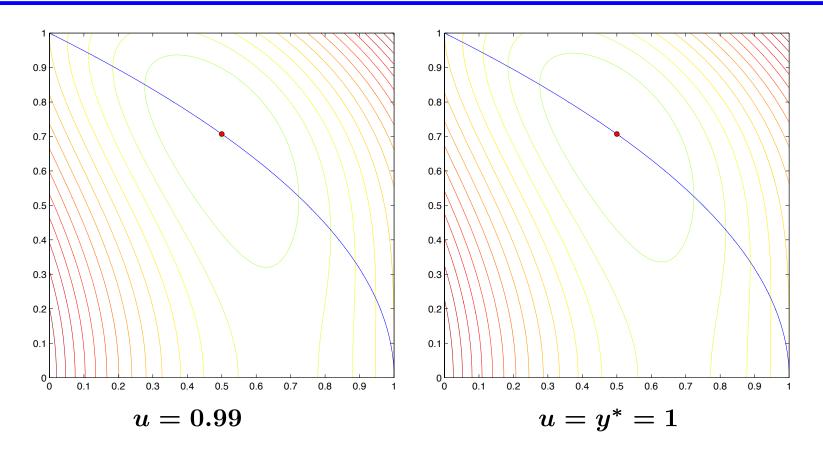
Contours of the augmented Lagrangian - an example



The augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ for fixed $\sigma = 1$.

$$\Phi(x,u,\sigma) = x_1^2 + x_2^2 - u(x_1 + x_2^2 - 1) + \frac{1}{2\sigma}(x_1 + x_2^2 - 1)^2$$
.

Contours of the augmented Lagrangian - an example...



The augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ for fixed $\sigma = 1$.

$$\Phi(x,u,\sigma)=x_1^2+x_2^2-u(x_1+x_2^2-1)+\frac{1}{2\sigma}(x_1+x_2^2-1)^2$$
.

Augmented Lagrangian methods

Th 22 \Longrightarrow convergence guaranteed if u^k fixed and $\sigma^k \longrightarrow 0$ [similar to quadratic penalty methods]

$$\Longrightarrow y^k \longrightarrow y^* \text{ and } c(x^k) \longrightarrow 0$$

- lacksquare check if $\|c(x^k)\| \leq \eta^k$ where $\eta^k \longrightarrow 0$
 - \blacksquare if so, set $u^{k+1} = y^k$ and $\sigma^{k+1} = \sigma^k$

[recall expression of y^k in Th 22]

- \blacksquare if not, set $u^{k+1} = u^k$ and $\sigma^{k+1} \leq \tau \sigma^k$ for some $\tau \in (0,1)$
- \blacksquare reasonable: $\eta^k = (\sigma^k)^{0.1+0.9j}$ where j iterations since σ^k last changed

Under such rules, can ensure that σ^k is eventually unchanged under modest assumptions, and (fast) linear convergence.

When σ^k is sufficiently large, need also to ensure that $\nabla^2 \Phi(x^k, u^k, \sigma^k)$ is positive (semi-)definite.

A basic augmented Lagrangian method

Given $\sigma^0>0$ and u^0 , let k=0. Until "convergence" do:

- Set η^k and ϵ^{k+1} . If $\|c(x^k)\| \leq \eta^k$, set $u^{k+1} = y^k$ and $\sigma^{k+1} = \sigma^k$. Otherwise, set $u^{k+1} = u^k$ and $\sigma^{k+1} \leq \tau \sigma^k$.
- Starting from x_0^k (possibly, $x_0^k := x^k$), use an unconstrained minimization algorithm to find an "approximate" minimizer x^{k+1} of $\Phi(\cdot, u^{k+1}, \sigma^{k+1})$ for which $\|\nabla_x \Phi(x^{k+1}, u^{k+1}, \sigma^{k+1})\| \le \epsilon^{k+1}$. Let k := k+1.
- lacksquare Often choose $au = \min(0.1, \sqrt{\sigma^k})$
- Reasonable: $\epsilon^k = (\sigma^k)^{j+1}$, where j iterations since σ^k last changed