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Nonlinear equality-constrained problems (again)

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → Rm smooth.
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Nonlinear equality-constrained problems (again)

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → Rm smooth.

Another example of merit function and method for (eCP):
augmented Lagrangian function

Φ(x, u,σ) = f(x) − uT c(x) +
1

2σ
‖c(x)‖2

where both u ∈ Rm and σ > 0 are now algorithm parameters.
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Nonlinear equality-constrained problems (again)

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → Rm smooth.

Another example of merit function and method for (eCP):
augmented Lagrangian function

Φ(x, u,σ) = f(x) − uT c(x) +
1

2σ
‖c(x)‖2

where both u ∈ Rm and σ > 0 are now algorithm parameters.

Two interpretations:
shifted quadratic penalty function
convexification of the Lagrangian function

Aim: adjust both u and σ to encourage convergence.
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Derivatives of the augmented Lagrangian function

Φ(x, u,σ) = f(x) − uT c(x) + 1
2σ‖c(x)‖

2. Let J(x) Jacobian of
constraints c(x) = (c1(x), . . . , cm(x)).

Lagrangian: L(x, y) = f(x) − yT c(x) for a(ny) y ∈ Rm
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Derivatives of the augmented Lagrangian function

Φ(x, u,σ) = f(x) − uT c(x) + 1
2σ‖c(x)‖

2. Let J(x) Jacobian of
constraints c(x) = (c1(x), . . . , cm(x)).

Lagrangian: L(x, y) = f(x) − yT c(x) for a(ny) y ∈ Rm

∇xΦ(x, u,σ) = ∇f(x) − J(x)Tu + 1
σ
J(x)T c(x)

=⇒ ∇xΦ(x, u,σ) =∇f(x) − J(x)Ty = ∇xL(x, y)

where y := u −
c(x)

σ
Lagrange multiplier estimates
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Derivatives of the augmented Lagrangian function

Φ(x, u,σ) = f(x) − uT c(x) + 1
2σ‖c(x)‖

2. Let J(x) Jacobian of
constraints c(x) = (c1(x), . . . , cm(x)).

Lagrangian: L(x, y) = f(x) − yT c(x) for a(ny) y ∈ Rm

∇xΦ(x, u,σ) = ∇f(x) − J(x)Tu + 1
σ
J(x)T c(x)

=⇒ ∇xΦ(x, u,σ) =∇f(x) − J(x)Ty = ∇xL(x, y)

where y := u −
c(x)

σ
Lagrange multiplier estimates

∇2Φ(x, u,σ) = ∇2f(x) −
∑m

i=1 ui∇2ci(x)+
1
σ

∑m
i=1 ci(x)∇2ci(x) +

1
σ
J(x)TJ(x)

=⇒
∇2Φ(x, u,σ) = ∇2f(x) −

∑m
i=1 yi∇2ci(x) +

1
σ
J(x)TJ(x)

=⇒ ∇2Φ(x, u,σ) = ∇2L(x, y) + 1
σ
J(x)TJ(x) where

y = u − c(x)
σ

.
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A convergence result for the augmented Lagrangian

Theorem 22. (Global convergence of augmented Lagrangian)
Assume that f, c ∈ C1 in (eCP) and for k ≥ 0, let

yk = uk −
c(xk)

σk
,

for some uk ∈ Rm, and assume that

‖∇Φ(xk, uk,σk)‖ ≤ εk, where εk → 0, k → ∞.

Moreover, assume that xk → x∗, where ∇ci(x∗), i = 1,m, are
linearly independent. Then yk −→ y∗ as k −→ ∞ with y∗

satisfying ∇f(x∗) − J(x∗)Ty∗ = 0.

If additionally, either σk → 0 for bounded uk or uk → y∗ for
bounded σk then x∗ is a KKT point of (eCP) with associated
Lagrange multipliers y∗. !
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A convergence result for the augmented Lagrangian

Proof of Theorem 22. The first part of Th 22, namely,
convergence of yk to y∗ = J(x∗)+∇f(x∗) follows exactly as in
the proof of Theorem 21 (penalty method convergence).
(Note that the assumption σk → 0 is not needed for this part
of the proof of Th 21.)
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A convergence result for the augmented Lagrangian

Proof of Theorem 22. The first part of Th 22, namely,
convergence of yk to y∗ = J(x∗)+∇f(x∗) follows exactly as in
the proof of Theorem 21 (penalty method convergence).
(Note that the assumption σk → 0 is not needed for this part
of the proof of Th 21.)
It remains to show that under the additional assumptions on
uk and σk, x∗ is feasible for the constraints.
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A convergence result for the augmented Lagrangian

Proof of Theorem 22. The first part of Th 22, namely,
convergence of yk to y∗ = J(x∗)+∇f(x∗) follows exactly as in
the proof of Theorem 21 (penalty method convergence).
(Note that the assumption σk → 0 is not needed for this part
of the proof of Th 21.)
It remains to show that under the additional assumptions on
uk and σk, x∗ is feasible for the constraints. To see this, use
the definition of yk = uk − c(xk)/σk to deduce
c(xk) = σk(uk − yk) and so

‖c(xk)‖ = σk‖uk − yk‖ ≤ σk‖yk − y∗‖ + σk‖uk − y∗‖ (*)

On the LHS of (*): ‖c(xk)‖ → ‖c(x∗)‖ as xk → x∗.
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A convergence result for the augmented Lagrangian

Proof of Theorem 22.(continued)
‖c(xk)‖ = σk‖uk − yk‖ ≤ σk‖yk − y∗‖ + σk‖uk − y∗‖ (*)
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A convergence result for the augmented Lagrangian

Proof of Theorem 22.(continued)
‖c(xk)‖ = σk‖uk − yk‖ ≤ σk‖yk − y∗‖ + σk‖uk − y∗‖ (*)

For the RHS of (*):
(i) if σk → 0 and ‖uk‖ ≤ M for all k ≥ 0, then by triangle ineq.,
σk‖uk − y∗‖ ≤ σk‖uk‖ + σk‖y∗‖ ≤ σk(M + ‖y∗‖) → 0

Since yk → y∗, σk‖yk − y∗‖ → 0 as {σk} is bounded above.
So the RHS of (*) converges to zero as k → ∞.
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A convergence result for the augmented Lagrangian

Proof of Theorem 22.(continued)
‖c(xk)‖ = σk‖uk − yk‖ ≤ σk‖yk − y∗‖ + σk‖uk − y∗‖ (*)

For the RHS of (*):
(i) if σk → 0 and ‖uk‖ ≤ M for all k ≥ 0, then by triangle ineq.,
σk‖uk − y∗‖ ≤ σk‖uk‖ + σk‖y∗‖ ≤ σk(M + ‖y∗‖) → 0

Since yk → y∗, σk‖yk − y∗‖ → 0 as {σk} is bounded above.
So the RHS of (*) converges to zero as k → ∞.

(ii) else, if uk → y∗ and |σk| ≤ σ for all k ≥ 0, then
σk‖uk − y∗‖ ≤ σ‖uk − y∗‖ → 0.
Since yk → y∗, σk‖yk − y∗‖ ≤ σ‖yk − y∗‖ → 0.
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A convergence result for the augmented Lagrangian

Proof of Theorem 22.(continued)
‖c(xk)‖ = σk‖uk − yk‖ ≤ σk‖yk − y∗‖ + σk‖uk − y∗‖ (*)

For the RHS of (*):
(i) if σk → 0 and ‖uk‖ ≤ M for all k ≥ 0, then by triangle ineq.,
σk‖uk − y∗‖ ≤ σk‖uk‖ + σk‖y∗‖ ≤ σk(M + ‖y∗‖) → 0

Since yk → y∗, σk‖yk − y∗‖ → 0 as {σk} is bounded above.
So the RHS of (*) converges to zero as k → ∞.

(ii) else, if uk → y∗ and |σk| ≤ σ for all k ≥ 0, then
σk‖uk − y∗‖ ≤ σ‖uk − y∗‖ → 0.
Since yk → y∗, σk‖yk − y∗‖ ≤ σ‖yk − y∗‖ → 0.

Thus in both cases, LHS of (*) and RHS of (*) in the limit are
equal and so c(x∗) = 0. !

Note that Augmented Lagrangian may converge to KKT
points without σk → 0, which limits the ill-conditioning.
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Contours of the augmented Lagrangian - an example
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u = 0.5 u = 0.9

The augmented Lagrangian function for minx2
1 + x2

2 subject to
x1 + x2

2 = 1 for fixed σ = 1.
Φ(x, u,σ) = x2

1 + x2
2 − u(x1 + x2

2 − 1) + 1
2σ

(x1 + x2
2 − 1)2.
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Contours of the augmented Lagrangian - an example...
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u = 0.99 u = y∗ = 1

The augmented Lagrangian function for minx2
1 + x2

2 subject to
x1 + x2

2 = 1 for fixed σ = 1.
Φ(x, u,σ) = x2

1 + x2
2 − u(x1 + x2

2 − 1) + 1
2σ

(x1 + x2
2 − 1)2.
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Augmented Lagrangian methods

Th 22 =⇒ convergence guaranteed if uk fixed and σk −→ 0

[similar to quadratic penalty methods]
=⇒ yk −→ y∗ and c(xk) −→ 0

check if ‖c(xk)‖ ≤ ηk where ηk −→ 0

if so, set uk+1 = yk and σk+1 = σk

[recall expression of yk in Th 22]
if not, set uk+1 = uk and σk+1 ≤ τσk for some τ ∈ (0, 1)

reasonable: ηk = (σk)0.1+0.9j where j iterations since σk

last changed

Under such rules, can ensure that σk is eventually unchanged
under modest assumptions, and (fast) linear convergence.
When σk is sufficiently large, need also to ensure that
∇2Φ(xk, uk,σk) is positive (semi-)definite.
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A basic augmented Lagrangian method

Given σ0 > 0 and u0, let k = 0. Until
“convergence” do:

Set ηk and εk+1.
If ‖c(xk)‖ ≤ ηk, set uk+1 = yk and σk+1 = σk.
Otherwise, set uk+1 = uk and σk+1 ≤ τσk.

Starting from xk
0 (possibly, xk

0 := xk), use an
unconstrained minimization algorithm to find an
“approximate” minimizer xk+1 of Φ(·, uk+1,σk+1)

for which ‖∇xΦ(xk+1, uk+1,σk+1)‖ ≤ εk+1.
Let k := k + 1. ♦

Often choose τ = min(0.1,
√
σk)

Reasonable: εk = (σk)j+1, where j iterations since σk

last changed
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