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Nonlinear equality-constrained problems (again)

nelIiRI'rlz f(x) subjectto c(x) =0, (eCP)

where f : R®* - R, ¢ = (c1,...,cn) : R® — R™ smooth.
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Nonlinear equality-constrained problems (again)

nelIiRI'rlz f(x) subjectto c(x) =0, (eCP)

where f : R®* - R, ¢ = (c1,...,cn) : R® — R™ smooth.

Another example of merit function and method for (eCP):
augmented Lagrangian function

B(@,u,0) = (@) — uTe(@) + —le(@)]

where both « € R™ and o > 0 are now algorithm parameters.
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Nonlinear equality-constrained problems (again)

nelIiRI'rlz f(x) subjectto c(x) =0, (eCP)

where f: R®* - R, ¢ = (c1,...,¢m) : R® = R™ smooth.
Another example of merit function and method for (eCP):
augmented Lagrangian function
B(z,u,0) = F(@) — uTe(@) + _|le(z)]3

where both « € R™ and o > 0 are now algorithm parameters.
Two interpretations:

m shifted quadratic penalty function

m convexification of the Lagrangian function
Aim: adjust both « and o t0 encourage convergence.
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Derivatives of the augmented Lagrangian function

®(z,u,0) = f(x) — ule(x) + 5-|lc(x)]|?. Let J(x) Jacobian of
constraints c(z) = (c1(x),...,cm(x)).

m Lagrangian: £(z,y) = f(z) — yTc(z) for a(ny) y € R™
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Derivatives of the augmented Lagrangian function

®(z,u,0) = f(x) — ule(x) + 5-|lc(x)]|?. Let J(x) Jacobian of
constraints c(z) = (c1(x),...,cm(x)).
m Lagrangian: £(z,y) = f(z) — yTc(z) for a(ny) y € R™
BV, (x,u,0) =Vf(zx)—J(x)Tu+ %J(w)TC(w)
— V.®(z,u,0) =Vf(z) —J(x)Ty =V.L(x,y)
c(z)

where y:=u — Lagrange multiplier estimates
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Derivatives of the augmented Lagrangian function

®(z,u,0) = f(x) — ule(x) + 5-|lc(x)]|?. Let J(x) Jacobian of
constraints c(z) = (c1(x),...,cm(x)).
m Lagrangian: £(z,y) = f(z) — yTc(z) for a(ny) y € R™
BV, (x,u,0) =Vf(zx)—J(x)Tu+ %J(w)TC(w)
— V.®(z,u,0) =Vf(z) —J(x)Ty =V.L(x,y)
c(z)

where y:=u — Lagrange multiplier estimates

B V2®(x,u,0) = Vif(x) — > ", u; V3¢ (x)+
> vy €i(®)Viei(x) + 2 J (2)T I ()
—
V2®(z,u,0) = V2f(x) — 202, v Vei(z) + S I (z) ()
— V2®(z,u,0) = V2L(z,y) + =J(x)TJ(x) Where

y=u—
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A convergence result for the augmented Lagrangian

Theorem 22. (Global convergence of augmented Lagrangian)
Assume that f,c € ¢* in (eCP) and for & > o, let

k
c(x
Yk = uk — (z")

k b)
(0a
for some u* € R™, and assume that

IV®(xF, u*, o%)| < €*, where e — 0,k — co.

Moreover, assume that =¥ — x*, where Ve;(z*), i = 1, m, are
linearly independent. Then y* — y* as k — oo with y*
satisfying v f(z*) — J(z*)Ty* = 0.

If additionally, either o* — 0 for bounded «* or u* — y* for
bounded o* then z* is a KKT point of (eCP) with associated
Lagrange multipliers y*. O
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A convergence result for the augmented Lagrangian

Proof of Theorem 22. The first part of Th 22, namely,
convergence of y* to y* = J(=*) TV f(x*) follows exactly as in
the proof of Theorem 21 (penalty method convergence).
(Note that the assumption o — 0 is not needed for this part

of the proof of Th 21.)
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A convergence result for the augmented Lagrangian

Proof of Theorem 22. The first part of Th 22, namely,
convergence of y* to y* = J(=*) TV f(x*) follows exactly as in
the proof of Theorem 21 (penalty method convergence).
(Note that the assumption o — 0 is not needed for this part

of the proof of Th 21.)

It remains to show that under the additional assumptions on
u* and o*, =* Is feasible for the constraints.
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A convergence result for the augmented Lagrangian

Proof of Theorem 22. The first part of Th 22, namely,
convergence of y* to y* = J(=*) TV f(x*) follows exactly as in
the proof of Theorem 21 (penalty method convergence).
(Note that the assumption o — 0 is not needed for this part
of the proof of Th 21.)

It remains to show that under the additional assumptions on
u* and o*, z* Is feasible for the constraints. To see this, use
the definition of y* = u* — c(2*)/o* to deduce
c(z®) = o (u* — y*) and so

le(@®)|| = o®|lu® — y*|| < a*|ly* — y*|| + o®[|u* —y*||  (7)

On the LHS of (*): ||c(z®)|| = ||e(=*)]| @S z* — z*.
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A convergence result for the augmented Lagrangian

Proof of Theorem 22.(continued)
le(@®)]| = o |lu® — y*|| < o®|ly* — y*|| + o®[|uf —y*|| ()
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A convergence result for the augmented Lagrangian

Proof of Theorem 22.(continued)
le(@®)]| = o |lu® — y*|| < o®|ly* — y*|| + o®[|uf —y*|| ()

For the RHS of (*):

(i) If o — 0 and ||u*|| < M for all & > o0, then by triangle ineq.,
o llu® — y*|| < o®lu”| + o®lly*|| < (M + [ly*|)) — 0

Since y* — y*, o¥||y* — y*|| — 0 as {o*} is bounded above.
So the RHS of (*) converges to zero as k£ — ~c.
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A convergence result for the augmented Lagrangian

Proof of Theorem 22.(continued)
le(@®)]| = o |lu® — y*|| < o®|ly* — y*|| + o®[|uf —y*|| ()

For the RHS of (*):

(i) If o — 0 and ||u*|| < M for all & > o0, then by triangle ineq.,
o llu® — y*|| < o®lu”| + o®lly*|| < (M + [ly*|)) — 0

Since y* — y*, o¥||y* — y*|| — 0 as {o*} is bounded above.
So the RHS of (*) converges to zero as k£ — ~c.

(i) else, if u* — y* and |o*| < & for all £ > o0, then
¥ lluf —y*|| < F|lu* —y*|| — 0.
Since y* — y*, o*|ly* — y*|| < Flly* —y*|| — o.

Lecture 13: Augmented Lagrangian methods for constrained optimization problems — p. 6/10



A convergence result for the augmented Lagrangian

Proof of Theorem 22.(continued)
le(@®)]| = o |lu® — y*|| < o®|ly* — y*|| + o®[|uf —y*|| ()

For the RHS of (*):

(i) If o — 0 and ||u*|| < M for all & > o0, then by triangle ineq.,
o llu® — y*|| < o®lu”| + o®lly*|| < (M + [ly*|)) — 0

Since y* — y*, o¥||y* — y*|| — 0 as {o*} is bounded above.
So the RHS of (*) converges to zero as k£ — ~c.

(i) else, if u* — y* and |o*| < & for all £ > o0, then

¥ lluf —y*|| < F|lu* —y*|| — 0.

Since y* — y*, o*|ly* — y*|| < Flly* —y*|| — o.

Thus in both cases, LHS of (*) and RHS of (*) in the limit are
equal and so ¢(z*) = 0. O

Note that Augmented Lagrangian may converge to KKT
points without o* — 0, which limits the ill-conditioning.
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Contours of the augmented Lagrangian - an example
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T —I—azg — 1 for fixed o = 1.

P®(z,u,0) =22 + 22 —u(xr + 22 — 1) + 5= (1 + x5 — 1)2.
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Contours of the augmented Lagrangian - an example...
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Augmented Lagrangian methods

Th 22 — convergence guaranteed if v* fixed and o* — 0
[similar to quadratic penalty methods]

— y* — y* and ¢(z¥) — 0

B check if ||e(z*)]| < n* where n* — 0

mif SO, set ukt! = y* and og*t! = o*

[recall expression of y* in Th 22]
m if not, set v**+! = «* and o**! < ro* for some r € (0,1)
B reasonable: n* = (o*)%-110-93 where j iterations since o*
last changed

Under such rules, can ensure that o* is eventually unchanged
under modest assumptions, and (fast) linear convergence.

When o* is sufficiently large, need also to ensure that
V2®(x*, u, oF) is positive (semi-)definite.
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A basic augmented Lagrangian method

Given 62 >0 and u°, let Ek=0. Until

“convergence” do:

H Set 77"’ and eFtl,
If |le(z®)|| < n*, set uFtt =¢y* and ol =0
Otherwise, set uPt! =uF and oFt! < rok.

B Starting from :13’5 (possibly, :13’5 = k)

unconstrained minimization algorithm to find an
“approximate” minimizer xFT! of &(.,urTL, k1)
for which ||Vg®(zFt!, uktl, gktl)|| < eb+1,

Let k:=k+1. O

m Often choose 7 = min(0.1, vV ok)

m Reasonable: €& = (o%)7+1, where j iterations since o*
last changed

k

, use an
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