Lectures 14 and 15: Interior point methods for inequality constrained optimization problems

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Nonconvex inequality-constrained problems

Attempt to find KKT points/local minimizers of (iCP).

Nonconvex inequality-constrained problems

 $\min_{x \in \mathbb{R}^n} f(x)$ subject to $c(x) \ge 0$, (iCP) where $f : \mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \dots, c_p) : \mathbb{R}^n \to \mathbb{R}^p$ smooth.

Attempt to find KKT points/local minimizers of (iCP).

The strictly feasible set: $\Omega^o := \{x : c(x) > 0\} = \{x : c_i(x) > 0 \text{ for all } i \in [1, \dots, p]\}.$ Assumption: $\Omega^o \neq \emptyset$. [SCQ (Slater)] $\min_{x \in \mathbb{R}^n} f(x)$ subject to $c(x) \ge 0$, (iCP) where $f : \mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \dots, c_p) : \mathbb{R}^n \to \mathbb{R}^p$ smooth.

Attempt to find KKT points/local minimizers of (iCP).

The strictly feasible set: $\Omega^o := \{x : c(x) > 0\} = \{x : c_i(x) > 0 \text{ for all } i \in [1, \dots, p]\}.$ Assumption: $\Omega^o \neq \emptyset$. [SCQ (Slater)]

For (each) $\mu > 0$, associate the logarithmic barrier subproblem

 $\min_{x\in \mathbb{R}^n} f_\mu(x) := f(x) - \mu \sum_{i=1}^p \log c_i(x) \, \, ext{subject to} \, \, c(x) > 0. \quad (\mathsf{iCP}_\mu)$

• (iCP_{μ}) is essentially an unconstrained problem as each $c_i(x) > 0$ is enforced by the corresponding log barrier term of f_{μ} .

The logarithmic barrier function for (iCP)

Assume $x(\mu)$ minimizes the barrier problem

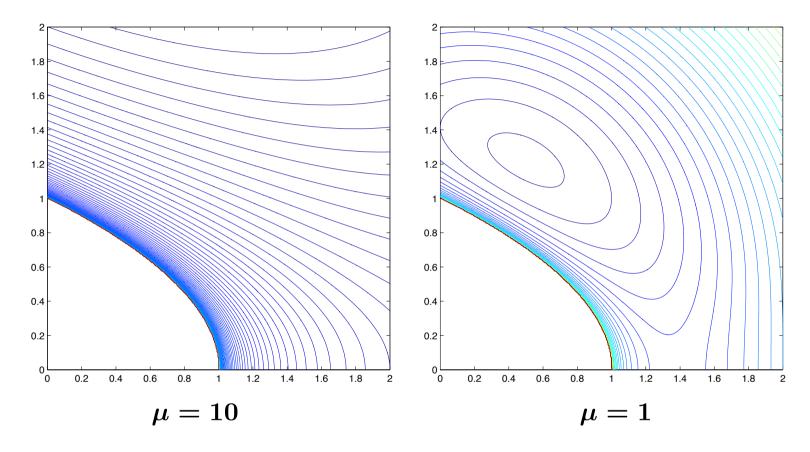
 $\min_{x\in\mathbb{R}^n}f_\mu(x)=f(x)-\mu\sum_{i=1}^n\log c_i(x)$ subject to c(x)>0. (iCP $_\mu$)

Since $(c_i(x) \to 0 \implies -\log c_i(x) \to +\infty)$, $x(\mu)$ must be "well inside" the feasible set Ω , "far" from the boundaries of Ω , especially when $\mu > 0$ is "large". Strict feasibility well-ensured!

When μ "small", $\mu \to 0$: the term f(x) "dominates" the log barrier terms in the objective of (iCP_{μ}) $\Longrightarrow x(\mu)$ "close" to the optimal boundary of Ω . [This also causes ill-conditioning ...]

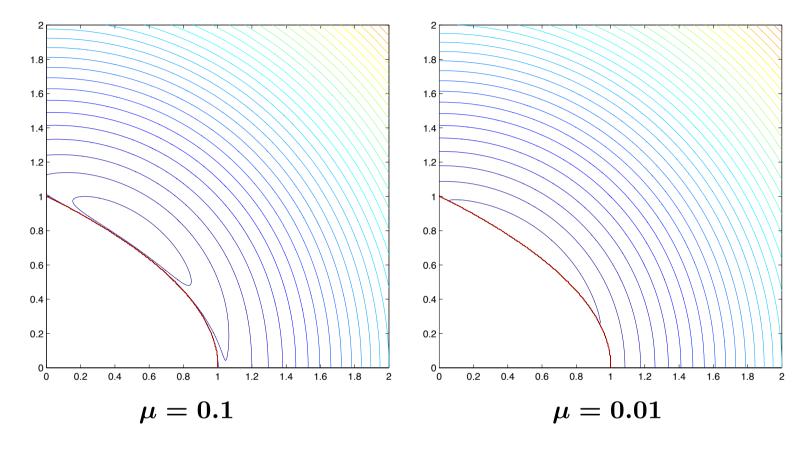
• Subject to conditions, some minimizers of f_{μ} converge to local solutions of (iCP), as $\mu \to 0$. But f_{μ} may have other stationary points, useless for our purposes.

Contours of the barrier function f_{μ} - an example



The barrier function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 \ge 1$, $f_\mu(x) := x_1^2 + x_2^2 - \mu \log(x_1 - x_2^2 - 1).$

Contours of the barrier function f_{μ} - an example...



The barrier function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 \ge 1$, $f_\mu(x) := x_1^2 + x_2^2 - \mu \log(x_1 - x_2^2 - 1).$

$$f_{\mu}(x) := f(x) - \mu \sum_{i=1}^{p} \log c_{i}(x) \Longrightarrow$$
$$\nabla f_{\mu}(x) = \nabla f(x) - \sum_{i=1}^{p} \frac{\mu}{c_{i}(x)} \nabla c_{i}(x) = \nabla f(x) - \mu J(x)^{\top} c^{-1}(x),$$
where $J(x)$ Jacobian of $c(x), c^{-1}(x) := (1/c_{1}(x), \dots, 1/c_{p}(x)).$

$$f_{\mu}(x) := f(x) - \mu \sum_{i=1}^{p} \log c_{i}(x) \Longrightarrow$$

$$\nabla f_{\mu}(x) = \nabla f(x) - \sum_{i=1}^{p} \frac{\mu}{c_{i}(x)} \nabla c_{i}(x) = \nabla f(x) - \mu J(x)^{\top} c^{-1}(x),$$
where $J(x)$ Jacobian of $c(x)$, $c^{-1}(x) := (1/c_{1}(x), \dots, 1/c_{p}(x)).$
First-order necessary optimality conditions for (iCP_{μ}) : [=uncons.]
$$x(\mu) \text{ minimizer of } f_{\mu} \Longrightarrow \nabla f_{\mu}(x(\mu)) = 0 \iff$$

$$\nabla f(x(\mu)) = \sum_{i=1}^{p} \frac{\mu}{c_i(x(\mu))} \nabla c_i(x(\mu)) \quad \text{with } \frac{\mu}{c_i(x(\mu))} > 0, \ i = \overline{1, p}.$$

$$f_{\mu}(x) := f(x) - \mu \sum_{i=1}^{p} \log c_{i}(x) \Longrightarrow$$
$$\nabla f_{\mu}(x) = \nabla f(x) - \sum_{i=1}^{p} \frac{\mu}{c_{i}(x)} \nabla c_{i}(x) = \nabla f(x) - \mu J(x)^{\top} c^{-1}(x),$$
where $J(x)$ Jacobian of $c(x)$, $c^{-1}(x) := (1/c_{1}(x), \dots, 1/c_{p}(x)).$ First-order necessary optimality conditions for (iCP_{μ}) : [=uncons.]

$$\begin{aligned} x(\mu) \text{ minimizer of } f_{\mu} &\Longrightarrow \nabla f_{\mu}(x(\mu)) = 0 \iff \\ \nabla f(x(\mu)) &= \sum_{i=1}^{p} \frac{\mu}{c_{i}(x(\mu))} \nabla c_{i}(x(\mu)) \quad \text{with } \frac{\mu}{c_{i}(x(\mu))} > 0, \ i = \overline{1, p}. \end{aligned}$$

First-order necessary optimality conditions for (iCP): [=KKT] If x^* KKT point of (iCP) $\implies \nabla f(x^*) = \sum_{i=1}^p \lambda_i^* \nabla c_i(x^*), \ \lambda^* \ge 0,$ $\lambda_i^* c_i(x^*) = 0, \ i = \overline{1, p}.$

$$f_{\mu}(x) := f(x) - \mu \sum_{i=1}^{p} \log c_i(x) \Longrightarrow$$
$$\nabla f_{\mu}(x) = \nabla f(x) - \sum_{i=1}^{p} \frac{\mu}{c_i(x)} \nabla c_i(x) = \nabla f(x) - \mu J(x)^{\top} c^{-1}(x),$$
where $J(x)$ Jacobian of $c(x), c^{-1}(x) := (1/c_1(x), \dots, 1/c_p(x)).$

First-order necessary optimality conditions for (iCP_{μ}) : [=uncons.] $x(\mu)$ minimizer of $f_{\mu} \Longrightarrow \nabla f_{\mu}(x(\mu)) = 0 \iff$ $\nabla f(x(\mu)) = \sum_{i=1}^{p} \frac{\mu}{c_{i}(x(\mu))} \nabla c_{i}(x(\mu))$ with $\frac{\mu}{c_{i}(x(\mu))} > 0, i = \overline{1, p}$. First-order necessary optimality conditions for (iCP): [=KKT] If x^{*} KKT point of (iCP) $\Longrightarrow \nabla f(x^{*}) = \sum_{i=1}^{p} \lambda_{i}^{*} \nabla c_{i}(x^{*}), \lambda^{*} \ge 0$,

 $\lambda_i^*c_i(x^*)=0,\,i=\overline{1,p}.$

Under what conditions $x(\mu)$ exist/well-defined and converge to x^* as $\mu \to 0$? Do $\frac{\mu}{c_i(x(\mu))} \to \lambda_i^*$, $i = \overline{1, p}$, as $\mu \to 0$?

The 'central' path of barrier minimizers exists locally

Under sufficient optimality conditions at x^* , the central path $\{x(\mu) : \mu_{\epsilon} > \mu > 0\}$ of (global) minimizers $x(\mu)$ of f_{μ} exists, for μ_{ϵ} sufficiently small, and $x(\mu) \to x^*$, as $\mu \to 0$.

The 'central' path of barrier minimizers exists locally

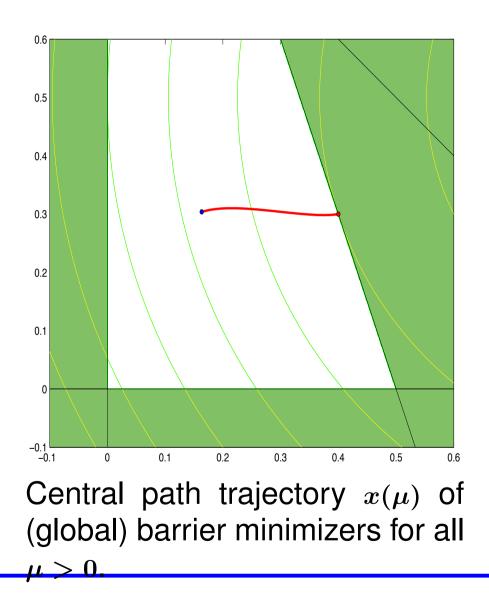
Under sufficient optimality conditions at x^* , the central path $\{x(\mu) : \mu_{\epsilon} > \mu > 0\}$ of (global) minimizers $x(\mu)$ of f_{μ} exists, for μ_{ϵ} sufficiently small, and $x(\mu) \rightarrow x^*$, as $\mu \rightarrow 0$. <u>Theorem 27.</u> (Local existence of central path) Assume that $\Omega^o \neq \emptyset$, and x^* is a local minimizer of (iCP) s. t.

(a)
$$\lambda_i^* > 0$$
 if $c_i(x^*) = 0$.

- (b) $\nabla c_i(x^*), i \in \mathcal{A} := \{i \in \{1, \dots, p\} : c_i(x^*) = 0\}$, are linearly independent. [LICQ]
- (c) $\exists \alpha > 0$ such that $s^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) s \geq \alpha ||s||^2$, where *s* such that $J(x^*)_{\mathcal{A}} s = 0$, and $\nabla^2_{xx} \mathcal{L}$ is the Hessian of the Lagrangian function of (iCP).

Then there exists a unique, continuously differentiable path (as a function of μ) of (global) minimizers $x(\mu)$ of f_{μ} for $\mu > 0$ sufficiently small, and $x(\mu) \rightarrow x^*$ as $\mu \rightarrow 0$.

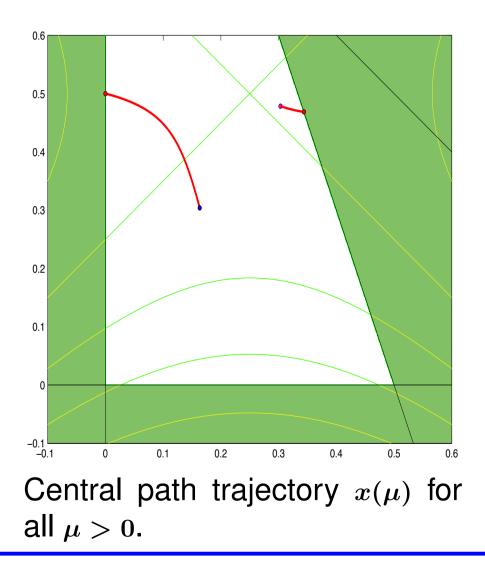
Central path trajectory



$$egin{aligned} \min(x_1-1)^2 + (x_2-0.5)^2 \ & ext{subject to} \ x_1+x_2 \leq 1 \ & ext{3}x_1+x_2 \leq 1.5 \ & (x_1,x_2) \geq 0 \end{aligned}$$

Lectures 14 and 15: Interior point methods for inequality constrained optimization problems - p. 8/25

Central path trajectory - nonconvex case



$$egin{aligned} \min{-2(x_1-0.25)^2+2(x_2-0.5)^2}\ & ext{subject to}\ &x_1+x_2\leq 1\ & ext{}\ &3x_1+x_2\leq 1.5\ &(x_1,x_2)\geq 0 \end{aligned}$$

Given $\mu^0 > 0$, let k = 0. Until "convergence" do:

Choose
$$0 < \mu^{k+1} < \mu^k$$
 .

 \blacksquare Find x_0^k such that $c(x_0^k)>0$ (possibly, $x_0^k:=x^k$).

Starting from x_0^k , use an unconstrained minimization algorithm to find an "approximate" minimizer x^{k+1} of $f_{\mu^{k+1}}$. Let k:=k+1.

Must have $\mu^k \to 0, \, k \to 0$. $\mu^{k+1} := 0.1 \mu^k, \, \mu^{k+1} := (\mu^k)^2$, etc.

Given $\mu^0 > 0$, let k = 0. Until "convergence" do:

Choose
$$0 < \mu^{k+1} < \mu^k$$
 .

 \blacksquare Find x_0^k such that $c(x_0^k)>0$ (possibly, $x_0^k:=x^k$).

Starting from x_0^k , use an unconstrained minimization algorithm to find an "approximate" minimizer x^{k+1} of $f_{\mu^{k+1}}$. Let k:=k+1.

Must have $\mu^k \rightarrow 0$, $k \rightarrow 0$. $\mu^{k+1} := 0.1 \mu^k$, $\mu^{k+1} := (\mu^k)^2$, etc.

Algorithms for minimizing f_{μ} :

• Linesearch methods: use special linesearch to cope with singularity of the log.

• Trust region methods: "shape" trust region to cope with contours of the singularity of the log. Reject points for which $c(x^k + s^k)$ is not positive.

<u>Theorem 28.</u> (Global convergence of barrier algorithm) Apply the basic barrier algorithm to the (iCP). Assume that $f, c \in C^1, \lambda_i^k = \frac{\mu^k}{c_i(x^k)}, i = \overline{1, p}$, where $c(x^k) > 0, \mu^k > 0$ and $\|\nabla f_{\mu^k}(x^k)\| \le \epsilon^k$, where $\epsilon^k \to 0, k \to \infty$

and also that $\mu^k \to 0$ as $k \to \infty$. Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i \in A$, are linearly independent, and where $\mathcal{A} := \{i : c_i(x^*) = 0\}$ (ie LICQ).

Then x^* is a KKT point of (iCP) and $\lambda^k \to \lambda^*$, where λ^* is the vector of Lagrange multipliers of x^* .

<u>Theorem 28.</u> (Global convergence of barrier algorithm) Apply the basic barrier algorithm to the (iCP). Assume that $f, c \in C^1, \lambda_i^k = \frac{\mu^k}{c_i(x^k)}, i = \overline{1, p}$, where $c(x^k) > 0, \mu^k > 0$ and $\|\nabla f_{\mu^k}(x^k)\| \le \epsilon^k$, where $\epsilon^k \to 0, k \to \infty$

and also that $\mu^k \to 0$ as $k \to \infty$. Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i \in A$, are linearly independent, and where $\mathcal{A} := \{i : c_i(x^*) = 0\}$ (ie LICQ).

Then x^* is a KKT point of (iCP) and $\lambda^k \to \lambda^*$, where λ^* is the vector of Lagrange multipliers of x^* .

LICQ \Rightarrow the Jacobian of active constraints, $J_A(x^*)$ (has $\nabla c_i(x^*)^T$ on its rows) is full row rank and so $p_a := |\mathcal{A}| \leq n$ (recall comments in L12, Th 21)

Proof of Theorem 28.

■ LICQ \Rightarrow the $p_a \times n$ Jacobian $J_A(x^*)$ of active constraints, is full row rank \Rightarrow the pseudo-inverse

$$J_{\mathcal{A}}(x^*)^+ = (J_{\mathcal{A}}(x^*)J_{\mathcal{A}}(x^*)^T)^{-1}J_{\mathcal{A}}(x^*)$$

Proof of Theorem 28.

■ LICQ \Rightarrow the $p_a \times n$ Jacobian $J_A(x^*)$ of active constraints, is full row rank \Rightarrow the pseudo-inverse

$$J_{\mathcal{A}}(x^*)^+ = (J_{\mathcal{A}}(x^*)J_{\mathcal{A}}(x^*)^T)^{-1}J_{\mathcal{A}}(x^*)$$

■
$$\mathcal{A} = \{i : c_i(x^*) = 0\}$$
 (active set) and $\mathcal{I} = \{1, \dots, p\} \setminus \mathcal{A}$
(inactive). Since $c(x^k) > 0$ and $x^k \to x^*$, we have
 $c(x^*) \ge 0$, with $c_{\mathcal{A}}(x^*) = 0$ and $c_{\mathcal{I}}(x^*) > 0$. (feasibility of x^* .)

Proof of Theorem 28.

■ LICQ \Rightarrow the $p_a \times n$ Jacobian $J_A(x^*)$ of active constraints, is full row rank \Rightarrow the pseudo-inverse

$$J_{\mathcal{A}}(x^*)^+ = (J_{\mathcal{A}}(x^*)J_{\mathcal{A}}(x^*)^T)^{-1}J_{\mathcal{A}}(x^*)$$

•
$$\mathcal{A} = \{i : c_i(x^*) = 0\}$$
 (active set) and $\mathcal{I} = \{1, \dots, p\} \setminus \mathcal{A}$
(inactive). Since $c(x^k) > 0$ and $x^k \to x^*$, we have
 $c(x^*) \ge 0$, with $c_{\mathcal{A}}(x^*) = 0$ and $c_{\mathcal{I}}(x^*) > 0$. (feasibility of x^* .)
Define $\lambda^* = (\lambda_{\mathcal{A}}^*; \lambda_{\mathcal{I}}^*)$ as $\lambda_{\mathcal{A}}^* := J_{\mathcal{A}}(x^*)^+ \nabla f(x^*)$ and $\lambda_{\mathcal{I}}^* := 0$.
(complementarity $\lambda_i^* c_i(x^*) = 0$, $i \in \{1, \dots, p\}$ achieved.)

Proof of Theorem 28.

■ LICQ \Rightarrow the $p_a \times n$ Jacobian $J_A(x^*)$ of active constraints, is full row rank \Rightarrow the pseudo-inverse

$$J_{\mathcal{A}}(x^*)^+ = (J_{\mathcal{A}}(x^*)J_{\mathcal{A}}(x^*)^T)^{-1}J_{\mathcal{A}}(x^*)$$

■
$$\mathcal{A} = \{i : c_i(x^*) = 0\}$$
 (active set) and $\mathcal{I} = \{1, \dots, p\} \setminus \mathcal{A}$
(inactive). Since $c(x^k) > 0$ and $x^k \to x^*$, we have
 $c(x^*) \ge 0$, with $c_{\mathcal{A}}(x^*) = 0$ and $c_{\mathcal{I}}(x^*) > 0$. (feasibility of x^* .)
Define $\lambda^* = (\lambda_{\mathcal{A}}^*; \lambda_{\mathcal{I}}^*)$ as $\lambda_{\mathcal{A}}^* := J_{\mathcal{A}}(x^*)^+ \nabla f(x^*)$ and $\lambda_{\mathcal{I}}^* := 0$.
(complementarity $\lambda_i^* c_i(x^*) = 0$, $i \in \{1, \dots, p\}$ achieved.)
It remains to show that $\lambda^k \to \lambda^*$, namely, $\lambda_{\mathcal{A}}^k \to \lambda_{\mathcal{A}}^* \ge 0$ (ii)
and $\lambda_{\mathcal{A}}^k \to 0$ (i); as well as $\nabla f(x^*) = J_{\mathcal{A}}(x^*)^T \lambda_{\mathcal{A}}^*$.(iii)

 $\begin{array}{l} \hline \begin{array}{l} \mbox{Proof of Theorem 28.} \end{tabular} (\mbox{i)} \\ \mbox{(i)} \end{tabular} \mbox{Let } i \in \mathcal{I}. \end{tabular} \mbox{Then } \lambda_i^k = \frac{\mu^k}{c_i(x^k)} \longrightarrow \frac{0}{c_i(x^*)} = 0 \end{tabular} \mbox{as } k \to \infty, \\ \end{tabular} \\ \mbox{where we used that } \mu^k \to 0 \end{tabular} \end{tabular} \mbox{and } c_i(x^k) \to c_i(x^*) > 0. \end{tabular} \end{tabular} \end{tabular}$

Proof of Theorem 28. (continued)

- (i) Let $i \in \mathcal{I}$. Then $\lambda_i^k = \frac{\mu^k}{c_i(x^k)} \longrightarrow \frac{0}{c_i(x^*)} = 0$ as $k \to \infty$, where we used that $\mu^k \to 0$ and $c_i(x^k) \to c_i(x^*) > 0$. Thus $\lambda_{\mathcal{I}}^k \to 0$.
- (ii) Note that $J(x^k)^T = (J_{\mathcal{A}}(x^k)^T J_{\mathcal{I}}(x^k)^T)$ and $\lambda^k = (\lambda^k_{\mathcal{A}}; \lambda^k_{\mathcal{I}})$ and so $J(x^k)^T \lambda^k = J_{\mathcal{A}}(x^k)^T \lambda^k_{\mathcal{A}} + J_{\mathcal{I}}(x^k)^T \lambda^k_{\mathcal{I}}$. By triangle inequality,

Proof of Theorem 28. (continued)

(i) Let
$$i \in \mathcal{I}$$
. Then $\lambda_i^k = \frac{\mu^k}{c_i(x^k)} \longrightarrow \frac{0}{c_i(x^*)} = 0$ as $k \to \infty$,
where we used that $\mu^k \to 0$ and $c_i(x^k) \to c_i(x^*) > 0$. Thus $\lambda_{\mathcal{I}}^k \to 0$.

(ii) Note that $J(x^k)^T = (J_{\mathcal{A}}(x^k)^T J_{\mathcal{I}}(x^k)^T)$ and $\lambda^k = (\lambda^k_{\mathcal{A}}; \lambda^k_{\mathcal{I}})$ and so $J(x^k)^T \lambda^k = J_{\mathcal{A}}(x^k)^T \lambda^k_{\mathcal{A}} + J_{\mathcal{I}}(x^k)^T \lambda^k_{\mathcal{I}}$. By triangle inequality,

$$\begin{split} \|\nabla f(x^k) - J_{\mathcal{A}}(x^k)^T \lambda_{\mathcal{A}}^k \| &\leq \|\nabla f(x^k) - J(x^k)^T \lambda^k \| + \|J_{\mathcal{I}}(x^k)^T \lambda_{\mathcal{I}}^k \| \\ &= \|\nabla f_{\mu^k}(x^k)\| + \|J_{\mathcal{I}}(x^k)^T \lambda_{\mathcal{I}}^k \| \leq \|\nabla f_{\mu^k}(x^k)\| + \|J_{\mathcal{I}}(x^k)\| \cdot \|\lambda_{\mathcal{I}}^k \| \\ &\leq \epsilon^k + \|J_{\mathcal{I}}(x^k)\| \cdot \|\lambda_{\mathcal{I}}^k \| \longrightarrow 0 + \|J(x^*)\| \cdot 0 = 0, \quad (\diamondsuit) \\ \text{as } k \to \infty \text{ due to } \epsilon^k \to 0, \ J_{\mathcal{I}}(x^k) \to J(x^*) \text{ and (i).} \end{split}$$

Proof of Theorem 28. (continued) Since $J_{\mathcal{A}}(x^k)^+ J_{\mathcal{A}}(x^k)^T = I$, $\|J_{\mathcal{A}}(x^k)^+ \nabla f(x^k) - \lambda_{\mathcal{A}}^k\| = \|J_{\mathcal{A}}(x^k)^+ (\nabla f(x^k) - J_{\mathcal{A}}(x^k)^T \lambda_{\mathcal{A}}^k)\|$ $\leq \|J_{\mathcal{A}}(x^k)^+\| \cdot \|\nabla f(x^k) - J_{\mathcal{A}}(x^k)^T \lambda_{\mathcal{A}}^k\| \longrightarrow \|J_{\mathcal{A}}(x^*)^+\| \cdot 0 = 0, (\Diamond \Diamond)$

as $k \to \infty$; where we used (\Diamond), $x^k \to x^*$ and continuity of $J^+_{\mathcal{A}}$.

Proof of Theorem 28. (continued) Since $J_{\mathcal{A}}(x^k)^+ J_{\mathcal{A}}(x^k)^T = I$, $\|J_{\mathcal{A}}(x^k)^+ \nabla f(x^k) - \lambda_{\mathcal{A}}^k\| = \|J_{\mathcal{A}}(x^k)^+ (\nabla f(x^k) - J_{\mathcal{A}}(x^k)^T \lambda_{\mathcal{A}}^k)\|$ $\leq \|J_{\mathcal{A}}(x^k)^+\| \cdot \|\nabla f(x^k) - J_{\mathcal{A}}(x^k)^T \lambda_{\mathcal{A}}^k\| \longrightarrow \|J_{\mathcal{A}}(x^*)^+\| \cdot 0 = 0, \ (\Diamond \Diamond)$

as $k \to \infty$; where we used (\Diamond), $x^k \to x^*$ and continuity of $J^+_{\mathcal{A}}$.

Recalling def. $\lambda_{\mathcal{A}}^* = J_{\mathcal{A}}(x^*)^+ \nabla f(x^*)$, and triangle ineq., $\|\lambda_{\mathcal{A}}^k - \lambda_{\mathcal{A}}^*\| \leq \|\lambda_{\mathcal{A}}^k - J_{\mathcal{A}}(x^k)^+ \nabla f(x^k)\|$ $+ \|J_{\mathcal{A}}(x^k)^+ \nabla f(x^k) - J_{\mathcal{A}}(x^*)^+ \nabla f(x^*)\|$ as $\longrightarrow 0$, $k \to \infty$; where we used $(\Diamond \Diamond)$, $x^k \to x^*$ and continuity of ∇f and $J_{\mathcal{A}}^+$.

Proof of Theorem 28. (continued) Since $J_{\mathcal{A}}(x^k)^+ J_{\mathcal{A}}(x^k)^T = I$, $\|J_{\mathcal{A}}(x^k)^+ \nabla f(x^k) - \lambda_{\mathcal{A}}^k\| = \|J_{\mathcal{A}}(x^k)^+ (\nabla f(x^k) - J_{\mathcal{A}}(x^k)^T \lambda_{\mathcal{A}}^k)\|$ $\leq \|J_{\mathcal{A}}(x^k)^+\| \cdot \|\nabla f(x^k) - J_{\mathcal{A}}(x^k)^T \lambda_{\mathcal{A}}^k\| \longrightarrow \|J_{\mathcal{A}}(x^*)^+\| \cdot 0 = 0, \ (\Diamond \Diamond)$

as $k \to \infty$; where we used (\Diamond), $x^k \to x^*$ and continuity of $J^+_{\mathcal{A}}$.

Recalling def. $\lambda_{\mathcal{A}}^* = J_{\mathcal{A}}(x^*)^+ \nabla f(x^*)$, and triangle ineq., $\|\lambda_{\mathcal{A}}^k - \lambda_{\mathcal{A}}^*\| \leq \|\lambda_{\mathcal{A}}^k - J_{\mathcal{A}}(x^k)^+ \nabla f(x^k)\|$ $+ \|J_{\mathcal{A}}(x^k)^+ \nabla f(x^k) - J_{\mathcal{A}}(x^*)^+ \nabla f(x^*)\|$ as

 $\longrightarrow 0,$

 $k \to \infty$; where we used $(\Diamond \Diamond)$, $x^k \to x^*$ and continuity of ∇f and $J^+_{\mathcal{A}}$. Thus $\lambda^k_{\mathcal{A}} \to \lambda^*_{\mathcal{A}}$, and since $\lambda^k > 0$ by definition, we must have that $\lambda^*_{\mathcal{A}} \ge 0$.

Proof of Theorem 28. (continued)

(iii) Due to $x^k \to x^*$, continuity of ∇f and J_A , and $\lambda_A^k \to \lambda_A^*$, we have that $\nabla f(x^k) - J_A(x^k)^T \lambda_A^k \longrightarrow \nabla f(x^*) - J_A(x^*)^T \lambda_A^*$. On the other hand, (\Diamond) implies $\nabla f(x^k) - J_A(x^k)^T \lambda_A^k \longrightarrow 0$,

and so $\nabla f(x^*) - J_{\mathcal{A}}(x^*)^T \lambda_{\mathcal{A}}^* = 0.$

Minimizing the barrier function f_{μ}

Use Newton-type methods with linesearch or trust-region.

$$f_{\mu}(x) := f(x) - \mu \sum_{i=1}^{p} \log c_i(x) \Longrightarrow$$

 $abla f_{\mu}(x) =
abla f(x) - \sum_{i=1}^{p} \frac{\mu}{c_i(x)}
abla c_i(x) =
abla f(x) - \mu J(x)^{\top} c^{-1}(x),$ where J(x) is the Jacobian of c(x). Let $C^j(x) := \text{diag}(c^j(x)).$

Minimizing the barrier function f_{μ}

Use Newton-type methods with linesearch or trust-region.

$$f_{\mu}(x) := f(x) - \mu \sum_{i=1}^{p} \log c_i(x) \Longrightarrow$$

 $abla f_{\mu}(x) =
abla f(x) - \sum_{i=1}^{p} \frac{\mu}{c_i(x)}
abla c_i(x) =
abla f(x) - \mu J(x)^{\top} c^{-1}(x),$ where J(x) is the Jacobian of c(x). Let $C^j(x) := \text{diag}(c^j(x)).$

$$egin{aligned}
abla^2 f_\mu(x) &=
abla^2 f(x) - \sum_{i=1}^p rac{\mu}{c_i(x)}
abla^2 c_i(x) + \sum_{i=1}^p rac{\mu}{c_i(x)^2}
abla c_i(x)
abla c_i(x)^ op \ &= \ &
abla^2 f(x) - \sum_{i=1}^p rac{\mu}{c_i(x)}
abla^2 c_i(x) + \mu J(x)^ op C^{-2}(x) J(x). \end{aligned}$$

Minimizing the barrier function f_{μ}

Use Newton-type methods with linesearch or trust-region.

$$f_{\mu}(x) := f(x) - \mu \sum_{i=1}^{p} \log c_i(x) \Longrightarrow$$

 $abla f_{\mu}(x) =
abla f(x) - \sum_{i=1}^{p} \frac{\mu}{c_i(x)}
abla c_i(x) =
abla f(x) - \mu J(x)^{\top} c^{-1}(x),$ where J(x) is the Jacobian of c(x). Let $C^j(x) := \text{diag}(c^j(x)).$

$$egin{aligned}
abla^2 f_\mu(x) &=
abla^2 f(x) - \sum_{i=1}^p rac{\mu}{c_i(x)}
abla^2 c_i(x) + \sum_{i=1}^p rac{\mu}{c_i(x)^2}
abla c_i(x)
abla c_i(x)^ op \ &= \
abla^2 f(x) - \sum_{i=1}^p rac{\mu}{c_i(x)}
abla^2 c_i(x) + \mu J(x)^ op C^{-2}(x) J(x). \end{aligned}$$

Given x such that c(x) > 0, the Newton direction for f_{μ} solves

$$abla^2 f_\mu(x) s = -
abla f_\mu(x) \qquad [\mu = \mu^{k+1}]$$
Estimates of the Lagrange multipliers: $\lambda_i(x) := \mu/c_i(x), \, i = \overline{1,p}.$

Minimizing the barrier function f_{μ} ...

 $\implies \nabla f_{\mu}(x) = \nabla f(x) - J(x)^{T} \lambda(x) = \nabla_{x} \mathcal{L}(x, \lambda(x))$ $\implies \text{gradient of Lagrangian of (iCP) at } (x, \lambda(x)).$ Recall: the Lagragian function of (iCP)

$$\mathcal{L}(x,\lambda):=f(x)-\sum_{i=1}^p\lambda_i c_i(x).$$

Minimizing the barrier function f_{μ} ...

 $\implies \nabla f_{\mu}(x) = \nabla f(x) - J(x)^{T} \lambda(x) = \nabla_{x} \mathcal{L}(x, \lambda(x))$ $\implies \text{gradient of Lagrangian of (iCP) at } (x, \lambda(x)).$

Recall: the Lagragian function of (iCP)

$$\mathcal{L}(x,\lambda) := f(x) - \sum_{i=1}^{p} \lambda_i c_i(x).$$

$$\Longrightarrow \nabla^2 f_{\mu}(x) = \nabla^2 \mathcal{L}(x, \lambda(x)) + \mu J(x)^{\top} C^{-2}(x) J(x),$$

As $\mu \to 0$, assuming that $c_i(x) \to c_i(x^*)$ at the same rate as μ , we deduce

$$egin{aligned} & rac{\mu}{c_i(x)^2}
ightarrow \infty ext{ for all } i \in \mathcal{A} ext{ (active),} \ & rac{\mu}{c_i(x)^2}
ightarrow 0 ext{ for all } i \in \mathcal{I} ext{ (inactive),} \end{aligned}$$

and so the condition number of $\mu J(x)^{ op} C^{-2}(x) J(x) o \infty$ as

Lectures 14 and 15: Interior point methods for inequality constrained optimization problems - p. 17/25

I. III-conditioning of the Hessian of f_{μ}

Asymptotic estimates of the eigenvalues of $\nabla^2 f_{\mu^k}(x^k)$: 'Fact' (Th 5.2, Gould Ref.) \Longrightarrow

• $p_a = |\mathcal{A}|$ eigenvalues of $\nabla^2 f_{\mu^k}(x^k)$ tend to infinity as $k \to \infty$.

- ullet the condition number of $abla^2 f_{\mu^k}(x^k)$ is $\mathcal{O}(1/\mu^k)$
 - \Longrightarrow it blows up as $k \to \infty$.
 - \implies may not be able to compute x^k accurately.

This is the main reason for the barrier methods falling out of favour with the nonlinear optimization community in the 1960s.

II. Poor starting points

Recall we need x_0^k starting point for the (approximate) minimization of $f_{\mu^{k+1}}$, after the barrier parameter μ^k has been decreased to μ^{k+1} .

It can be shown that the current computed iterate x^k appears to be a very poor choice of starting point x_0^k , in the sense that the full Newton step $x^k + s^k$ will be asymptotically infeasible (i. e., $c(x^k + s^k) < 0$) whenever $\mu^{k+1} < 0.5\mu^k$ (i. e., for any meaningful decrease in μ^k). Thus the barrier method is unlikely to converge fast.

Solution to troubles I & II: use primal-dual IPMs.

Perturbed optimality conditions

Recall first order necessary conditions for (iCP_{μ}) : $x(\mu)$ local minimizer of $f_{\mu} \Longrightarrow \nabla f_{\mu}(x(\mu)) = 0 \iff$ $\nabla f(x(\mu)) = \mu J(x(\mu))^{\top} c^{-1}(x(\mu))$. Let $\lambda(\mu) := \mu c^{-1}(x(\mu))$.

Thus $(x(\mu), \lambda(\mu))$ satisfy:

$$\left\{ egin{array}{ll}
abla f(x) - J(x)^{ op}\lambda = 0, \ c_i(x)\lambda_i = \mu, \ i = \overline{1,p}, \end{array}
ight. ({\sf OPT}_\mu) \ c(x) > 0, \quad \lambda > 0. \end{array}
ight.$$

Compare with the KKT system for (iCP):

$$\left\{ egin{array}{ll}
abla f(x) - J(x)^ op \lambda = 0, \ c_i(x)\lambda_i = 0, \ i = \overline{1,p}, \end{array}
ight.$$
 (KKT) $c(x) \geq 0, \quad \lambda \geq 0.$

Primal-dual path-following methods (1990s)

Satisfy c(x) > 0 and $\lambda > 0$, and use Newton's method to solve the system $e := (1, ..., 1)^T$

$$\left\{ \begin{array}{ll} \nabla f(x) - J(x)^\top \lambda = 0, \\ C(x)\lambda = \mu e, \end{array} \right. \qquad (\mathsf{OPT}_{\mu})$$

i. e., the Newton direction $(dx, d\lambda)$ satisfies

$$egin{pmatrix}
abla^2 \mathcal{L}(x,\lambda) & -J(x)^{ op} \ \Lambda J(x) & C(x) \end{pmatrix} egin{pmatrix} dx \ d\lambda \end{pmatrix} = - \left(egin{array}{c}
abla f(x) - J(x)^{ op} \lambda \ C(x) \lambda - \mu e \end{array}
ight),$$

where $\Lambda := \operatorname{diag}(\lambda)$. Eliminating $d\lambda$, we deduce $(\nabla^2 \mathcal{L}(x,s) + J(x)^\top C^{-1}(x)\Lambda J(x))dx = -(\nabla f(x) - \mu J(x)^\top c^{-1}(x)).$

Primal-dual versus primal methods

Primal-dual:

$$(\nabla^2 \mathcal{L}(x, \lambda) + J(x)^\top C^{-1}(x) \Lambda J(x)) dx^{pd} = -\nabla \mathcal{L}(x, \lambda(x)).$$

Primal:

$$(\nabla^2 \mathcal{L}(x, \lambda(x)) + J(x)^\top C^{-1}(x) \Lambda(x) J(x)) dx^p = -\nabla \mathcal{L}(x, \lambda(x)),$$

where
$$\lambda(x) := \mu c^{-1}(x)$$
.

 \implies In PD methods, changes to the estimates *s* of the Lagrange multipliers are computed explicitly on each iteration. In primal methods, they are updated from implicit information. Makes a huge difference!

• For PD IPMs, $x_0^k := x^k$ is a good starting point for the subproblem solution. Ill-conditioning of the Hessian can be 'overlooked' by solving in the right subspaces.

Ill-conditioning revisited (non-examinable)

Ill-conditioning does not imply can't solve equations accurately! Assume $\lambda_i^* > 0$ if $c(x^*) = 0$. Let $\mathcal{I} = \{i : c_i(x^*) > 0\}$. Drop x.

$$egin{pmatrix} & \left(egin{array}{ccc}
abla^2 \mathcal{L} & -J^{ op} \ \Lambda J^{ op} & C \end{array}
ight) \left(egin{array}{ccc} dx \ d\lambda \end{array}
ight) = - \left(egin{array}{ccc}
abla f - J^{ op} \lambda \ C\lambda - \mu e \end{array}
ight) \Longrightarrow \ & \left(egin{array}{cccc}
abla^2 \mathcal{L} + J_{\mathcal{I}}^{ op} C_{\mathcal{I}}^{-1} \Lambda_{\mathcal{I}} J_{\mathcal{I}} & -J_{\mathcal{A}}^{ op} \ J_{\mathcal{A}} \end{array}
ight) \left(egin{array}{cccc} dx \ d\lambda_{\mathcal{A}} \end{array}
ight) = - \left(egin{array}{cccc}
abla f - J_{\mathcal{A}}^{ op} s_{\mathcal{A}} - \mu J_{\mathcal{I}} c_{\mathcal{I}}^{-1} \ c_{\mathcal{A}}(x) - \mu \lambda_{\mathcal{A}}^{-1} \end{array}
ight) \end{split}$$

Note $C_{\mathcal{I}}^{-1}(x)$ and $\Lambda_{\mathcal{A}}^{-1}$ bounded above (as $x \to x^*$). Thus, in the limit,

$$\left(egin{array}{ccc}
abla^2 \mathcal{L} & -J_\mathcal{A}^{ op} \ J_\mathcal{A}^{ op} & 0 \end{array}
ight) \left(egin{array}{ccc} dx \ d\lambda_\mathcal{A} \end{array}
ight) = - \left(egin{array}{ccc}
abla f - J_\mathcal{A}^{ op} \lambda_\mathcal{A} - \mu J_\mathcal{I} c_\mathcal{I}^{-1} \ 0 \end{array}
ight).$$

Note that this approach needs an accurate prediction of the active \mathcal{A} and inactive \mathcal{I} sets 'asymptotically' during the run of a primal-dual algorithm (not so easy!)

Primal-dual path-following methods

Choice of barrier parameter: $\mu^{k+1} = \mathcal{O}((\mu^k)^2)$

⇒ Fast (superlinear) asymptotic convergence!

Several Newton iterations are performed for each value of μ (with linesearch or trust-region).

In implementations, it is essential to keep iterates away from boundaries early in the algorithm (else iterates may get trapped near the boundary \Rightarrow slow convergence!)

The computation of initial starting point x^0 satisfying $c(x^0) > 0$ is nontrivial. Various heuristics exist.

Powerful software available: IPOPT, KNITRO etc.

Linear Programming (LP): IPMs solve LP in polynomial time!

The simplex versus interior point methods for LP

worst-case complexity: exponential versus polynomial for LP (in problem dimension/length of input);

- the Klee-Minty example (1972): the simplex method has exponential running time in the worst-case; linear polynomial in the average case
- IPMs: Karmarkar (1984), A New Polynomial-Time Algorithm for Linear Programming, Combinatorica. Khachiyan (the ellipsoid method, 1979).

Renegar (best-known worst-case complexity bound). Central path is unique and global; Newton's method for barrier function can be precisely quantified.

- IPMs solve very large-scale LPs;
 - numerically-observed average complexity: log(LP dimension) iterations.

each IPM iteration more expensive than the simplex one.