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Nonconvex inequality-constrained problems

min
x∈Rn

f(x) subject to c(x) ≥ 0, (iCP)

where f : Rn → R, c = (c1, . . . , cp) : Rn → Rp smooth.

Attempt to find KKT points/local minimizers of (iCP).
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Nonconvex inequality-constrained problems

min
x∈Rn

f(x) subject to c(x) ≥ 0, (iCP)

where f : Rn → R, c = (c1, . . . , cp) : Rn → Rp smooth.

Attempt to find KKT points/local minimizers of (iCP).

The strictly feasible set:
Ωo := {x : c(x) > 0} = {x : ci(x) > 0 for all i ∈ [1, . . . , p]}.

Assumption: Ωo $= ∅. [SCQ (Slater)]
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Nonconvex inequality-constrained problems

min
x∈Rn

f(x) subject to c(x) ≥ 0, (iCP)

where f : Rn → R, c = (c1, . . . , cp) : Rn → Rp smooth.

Attempt to find KKT points/local minimizers of (iCP).

The strictly feasible set:
Ωo := {x : c(x) > 0} = {x : ci(x) > 0 for all i ∈ [1, . . . , p]}.

Assumption: Ωo $= ∅. [SCQ (Slater)]

For (each) µ > 0, associate the logarithmic barrier subproblem

min
x∈Rn

fµ(x) := f(x) − µ
p∑

i=1

log ci(x) subject to c(x) > 0. (iCPµ)

• (iCPµ) is essentially an unconstrained problem as each
ci(x) > 0 is enforced by the corresponding log barrier term of fµ.

Lectures 14 and 15: Interior point methods for inequality constrained optimization problems – p. 2/25



The logarithmic barrier function for (iCP)

Assume x(µ) minimizes the barrier problem

min
x∈Rn

fµ(x) = f(x) − µ
n∑

i=1

log ci(x) subject to c(x) > 0. (iCPµ)

Since (ci(x) → 0 =⇒ − log ci(x) → +∞), x(µ) must be “well
inside” the feasible set Ω, “far” from the boundaries of Ω,
especially when µ > 0 is “large”. Strict feasibility well-ensured!

When µ “small”, µ → 0: the term f(x) “dominates” the log
barrier terms in the objective of (iCPµ) =⇒ x(µ) “close” to the
optimal boundary of Ω. [This also causes ill-conditioning ...]

• Subject to conditions, some minimizers of fµ converge to
local solutions of (iCP), as µ → 0. But fµ may have other
stationary points, useless for our purposes.
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Contours of the barrier function fµ - an example
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The barrier function for minx2
1 + x2

2 subject to x1 + x2
2 ≥ 1,

fµ(x) := x2
1 + x2

2 − µ log(x1 − x2
2 − 1).
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Contours of the barrier function fµ - an example...
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µ = 0.1 µ = 0.01

The barrier function for minx2
1 + x2

2 subject to x1 + x2
2 ≥ 1,

fµ(x) := x2
1 + x2

2 − µ log(x1 − x2
2 − 1).
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Optimality conditions for (iCP) and (iCPµ)

fµ(x) := f(x) − µ
∑p

i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)"c−1(x),

where J(x) Jacobian of c(x), c−1(x) := (1/c1(x), . . . , 1/cp(x)).
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Optimality conditions for (iCP) and (iCPµ)

fµ(x) := f(x) − µ
∑p

i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)"c−1(x),

where J(x) Jacobian of c(x), c−1(x) := (1/c1(x), . . . , 1/cp(x)).

First-order necessary optimality conditions for (iCPµ): [=uncons.]
x(µ) minimizer of fµ =⇒ ∇fµ(x(µ)) = 0 ⇐⇒
∇f(x(µ)) =

∑p
i=1

µ
ci(x(µ))

∇ci(x(µ)) with µ
ci(x(µ))

> 0, i = 1, p.
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Optimality conditions for (iCP) and (iCPµ)

fµ(x) := f(x) − µ
∑p

i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)"c−1(x),

where J(x) Jacobian of c(x), c−1(x) := (1/c1(x), . . . , 1/cp(x)).

First-order necessary optimality conditions for (iCPµ): [=uncons.]
x(µ) minimizer of fµ =⇒ ∇fµ(x(µ)) = 0 ⇐⇒
∇f(x(µ)) =

∑p
i=1

µ
ci(x(µ))

∇ci(x(µ)) with µ
ci(x(µ))

> 0, i = 1, p.

First-order necessary optimality conditions for (iCP): [=KKT]
If x∗ KKT point of (iCP) =⇒ ∇f(x∗) =

∑p
i=1 λ

∗
i∇ci(x∗), λ∗ ≥ 0,

λ∗
i ci(x

∗) = 0, i = 1, p.
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Optimality conditions for (iCP) and (iCPµ)

fµ(x) := f(x) − µ
∑p

i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)"c−1(x),

where J(x) Jacobian of c(x), c−1(x) := (1/c1(x), . . . , 1/cp(x)).

First-order necessary optimality conditions for (iCPµ): [=uncons.]
x(µ) minimizer of fµ =⇒ ∇fµ(x(µ)) = 0 ⇐⇒
∇f(x(µ)) =

∑p
i=1

µ
ci(x(µ))

∇ci(x(µ)) with µ
ci(x(µ))

> 0, i = 1, p.

First-order necessary optimality conditions for (iCP): [=KKT]
If x∗ KKT point of (iCP) =⇒ ∇f(x∗) =

∑p
i=1 λ

∗
i∇ci(x∗), λ∗ ≥ 0,

λ∗
i ci(x

∗) = 0, i = 1, p.

Under what conditions x(µ) exist/well-defined and converge
to x∗ as µ → 0? Do µ

ci(x(µ)) → λ∗
i , i = 1, p, as µ → 0?
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The ’central’ path of barrier minimizers exists locally

Under sufficient optimality conditions at x∗, the central path
{x(µ) : µε > µ > 0} of (global) minimizers x(µ) of fµ exists, for
µε sufficiently small, and x(µ) → x∗, as µ → 0.
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The ’central’ path of barrier minimizers exists locally

Under sufficient optimality conditions at x∗, the central path
{x(µ) : µε > µ > 0} of (global) minimizers x(µ) of fµ exists, for
µε sufficiently small, and x(µ) → x∗, as µ → 0.
Theorem 27. (Local existence of central path) Assume that
Ωo $= ∅, and x∗ is a local minimizer of (iCP) s. t.
(a) λ∗

i > 0 if ci(x∗) = 0.
(b) ∇ci(x∗), i ∈ A := {i ∈ {1, . . . , p} : ci(x∗) = 0}, are linearly

independent. [LICQ]
(c) ∃α > 0 such that s"∇2

xxL(x∗,λ∗)s ≥ α‖s‖2, where s such
that J(x∗)As = 0, and ∇2

xxL is the Hessian of the
Lagrangian function of (iCP).

Then there exists a unique, continuously differentiable path
(as a function of µ) of (global) minimizers x(µ) of fµ for µ > 0

sufficiently small, and x(µ) → x∗ as µ → 0. !
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Central path trajectory
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Central path trajectory x(µ) of
(global) barrier minimizers for all
µ > 0.

min(x1 − 1)2 + (x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0
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Central path trajectory - nonconvex case
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all µ > 0.

min−2(x1 − 0.25)2 + 2(x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0
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Basic barrier method

Given µ0 > 0, let k = 0. Until “convergence” do:

Choose 0 < µk+1 < µk.

Find xk
0 such that c(xk

0) > 0 (possibly, xk
0 := xk).

Starting from xk
0, use an unconstrained minimization

algorithm to find an “approximate” minimizer xk+1

of fµk+1. Let k := k + 1.

Must have µk → 0, k → 0. µk+1 := 0.1µk, µk+1 := (µk)2, etc.
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Basic barrier method

Given µ0 > 0, let k = 0. Until “convergence” do:

Choose 0 < µk+1 < µk.

Find xk
0 such that c(xk

0) > 0 (possibly, xk
0 := xk).

Starting from xk
0, use an unconstrained minimization

algorithm to find an “approximate” minimizer xk+1

of fµk+1. Let k := k + 1.

Must have µk → 0, k → 0. µk+1 := 0.1µk, µk+1 := (µk)2, etc.

Algorithms for minimizing fµ:
• Linesearch methods: use special linesearch to cope with
singularity of the log.
• Trust region methods: “shape” trust region to cope with
contours of the singularity of the log. Reject points for which
c(xk + sk) is not positive.
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A convergence result for the barrier algorithm

Theorem 28. (Global convergence of barrier algorithm)
Apply the basic barrier algorithm to the (iCP). Assume that

f, c ∈ C1, λk
i =

µk

ci(xk)
, i = 1, p, where c(xk) > 0, µk > 0 and

‖∇fµk(xk)‖ ≤ εk, where εk → 0, k → ∞

and also that µk → 0 as k → ∞. Moreover, assume that
xk → x∗, where ∇ci(x∗), i ∈ A, are linearly independent, and
where A := {i : ci(x∗) = 0} (ie LICQ).

Then x∗ is a KKT point of (iCP) and λk → λ∗, where λ∗ is the
vector of Lagrange multipliers of x∗. !
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A convergence result for the barrier algorithm

Theorem 28. (Global convergence of barrier algorithm)
Apply the basic barrier algorithm to the (iCP). Assume that

f, c ∈ C1, λk
i =

µk

ci(xk)
, i = 1, p, where c(xk) > 0, µk > 0 and

‖∇fµk(xk)‖ ≤ εk, where εk → 0, k → ∞

and also that µk → 0 as k → ∞. Moreover, assume that
xk → x∗, where ∇ci(x∗), i ∈ A, are linearly independent, and
where A := {i : ci(x∗) = 0} (ie LICQ).

Then x∗ is a KKT point of (iCP) and λk → λ∗, where λ∗ is the
vector of Lagrange multipliers of x∗. !

LICQ ⇒ the Jacobian of active constraints, JA(x∗) (has
∇ci(x∗)T on its rows) is full row rank and so pa := |A| ≤ n

(recall comments in L12, Th 21)
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A convergence result for the barrier algorithm

Proof of Theorem 28.
LICQ ⇒ the pa × n Jacobian JA(x∗) of active constraints,
is full row rank ⇒ the pseudo-inverse

JA(x∗)+ = (JA(x∗)JA(x∗)T )−1JA(x∗)

is well defined. Since xk → x∗, JA(xk)+ is also
well-defined, continuous and bounded for all k suff. large.
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A convergence result for the barrier algorithm

Proof of Theorem 28.
LICQ ⇒ the pa × n Jacobian JA(x∗) of active constraints,
is full row rank ⇒ the pseudo-inverse

JA(x∗)+ = (JA(x∗)JA(x∗)T )−1JA(x∗)

is well defined. Since xk → x∗, JA(xk)+ is also
well-defined, continuous and bounded for all k suff. large.
A = {i : ci(x∗) = 0} (active set) and I = {1, . . . , p} \ A
(inactive). Since c(xk) > 0 and xk → x∗, we have
c(x∗) ≥ 0, with cA(x∗) = 0 and cI(x∗) > 0. (feasibility of x∗.)
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A convergence result for the barrier algorithm

Proof of Theorem 28.
LICQ ⇒ the pa × n Jacobian JA(x∗) of active constraints,
is full row rank ⇒ the pseudo-inverse

JA(x∗)+ = (JA(x∗)JA(x∗)T )−1JA(x∗)

is well defined. Since xk → x∗, JA(xk)+ is also
well-defined, continuous and bounded for all k suff. large.
A = {i : ci(x∗) = 0} (active set) and I = {1, . . . , p} \ A
(inactive). Since c(xk) > 0 and xk → x∗, we have
c(x∗) ≥ 0, with cA(x∗) = 0 and cI(x∗) > 0. (feasibility of x∗.)
Define λ∗ = (λ∗

A;λ∗
I) as λ∗

A := JA(x∗)+∇f(x∗) and λ∗
I := 0.

(complementarity λ∗
i ci(x

∗) = 0, i ∈ {1, . . . , p} achieved.)
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A convergence result for the barrier algorithm

Proof of Theorem 28.
LICQ ⇒ the pa × n Jacobian JA(x∗) of active constraints,
is full row rank ⇒ the pseudo-inverse

JA(x∗)+ = (JA(x∗)JA(x∗)T )−1JA(x∗)

is well defined. Since xk → x∗, JA(xk)+ is also
well-defined, continuous and bounded for all k suff. large.
A = {i : ci(x∗) = 0} (active set) and I = {1, . . . , p} \ A
(inactive). Since c(xk) > 0 and xk → x∗, we have
c(x∗) ≥ 0, with cA(x∗) = 0 and cI(x∗) > 0. (feasibility of x∗.)
Define λ∗ = (λ∗

A;λ∗
I) as λ∗

A := JA(x∗)+∇f(x∗) and λ∗
I := 0.

(complementarity λ∗
i ci(x

∗) = 0, i ∈ {1, . . . , p} achieved.)
It remains to show that λk → λ∗, namely, λk

A → λ∗
A ≥ 0 (ii)

and λk
A → 0 (i); as well as ∇f(x∗) = JA(x∗)Tλ∗

A.(iii)
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

(i) Let i ∈ I. Then λk
i =

µk

ci(xk)
−→

0

ci(x∗)
= 0 as k → ∞,

where we used that µk → 0 and ci(xk) → ci(x∗) > 0. Thus
λk
I → 0.
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

(i) Let i ∈ I. Then λk
i =

µk

ci(xk)
−→

0

ci(x∗)
= 0 as k → ∞,

where we used that µk → 0 and ci(xk) → ci(x∗) > 0. Thus
λk
I → 0.

(ii) Note that J(xk)T = (JA(xk)T JI(xk)T ) and λk = (λk
A; λk

I)

and so J(xk)Tλk = JA(xk)Tλk
A + JI(xk)Tλk

I. By triangle
inequality,
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

(i) Let i ∈ I. Then λk
i =

µk

ci(xk)
−→

0

ci(x∗)
= 0 as k → ∞,

where we used that µk → 0 and ci(xk) → ci(x∗) > 0. Thus
λk
I → 0.

(ii) Note that J(xk)T = (JA(xk)T JI(xk)T ) and λk = (λk
A; λk

I)

and so J(xk)Tλk = JA(xk)Tλk
A + JI(xk)Tλk

I. By triangle
inequality,

‖∇f(xk) − JA(xk)Tλk
A‖ ≤ ‖∇f(xk) − J(xk)Tλk‖ + ‖JI(xk)Tλk

I‖

= ‖∇fµk(xk)‖ + ‖JI(xk)Tλk
I‖ ≤ ‖∇fµk(xk)‖ + ‖JI(xk)‖ · ‖λk

I‖

≤ εk + ‖JI(xk)‖ · ‖λk
I‖ −→ 0 + ‖J(x∗)‖ · 0 = 0, (♦)

as k → ∞ due to εk → 0, JI(xk) → J(x∗) and (i).

Lectures 14 and 15: Interior point methods for inequality constrained optimization problems – p. 13/25



A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)
Since JA(xk)+JA(xk)T = I,
‖JA(xk)+∇f(xk) − λk

A‖ = ‖JA(xk)+(∇f(xk) − JA(xk)Tλk
A)‖

≤ ‖JA(xk)+‖ · ‖∇f(xk) − JA(xk)Tλk
A‖ −→ ‖JA(x∗)+‖ · 0 = 0, (♦♦)

as k → ∞; where we used (♦), xk → x∗ and continuity of J+
A .
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)
Since JA(xk)+JA(xk)T = I,
‖JA(xk)+∇f(xk) − λk

A‖ = ‖JA(xk)+(∇f(xk) − JA(xk)Tλk
A)‖

≤ ‖JA(xk)+‖ · ‖∇f(xk) − JA(xk)Tλk
A‖ −→ ‖JA(x∗)+‖ · 0 = 0, (♦♦)

as k → ∞; where we used (♦), xk → x∗ and continuity of J+
A .

Recalling def. λ∗
A = JA(x∗)+∇f(x∗), and triangle ineq.,

‖λk
A − λ∗

A‖ ≤ ‖λk
A − JA(xk)+∇f(xk)‖

+‖JA(xk)+∇f(xk) − JA(x∗)+∇f(x∗)‖

−→ 0,

as

k → ∞; where we used (♦♦), xk → x∗ and continuity of ∇f

and J+
A .
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)
Since JA(xk)+JA(xk)T = I,
‖JA(xk)+∇f(xk) − λk

A‖ = ‖JA(xk)+(∇f(xk) − JA(xk)Tλk
A)‖

≤ ‖JA(xk)+‖ · ‖∇f(xk) − JA(xk)Tλk
A‖ −→ ‖JA(x∗)+‖ · 0 = 0, (♦♦)

as k → ∞; where we used (♦), xk → x∗ and continuity of J+
A .

Recalling def. λ∗
A = JA(x∗)+∇f(x∗), and triangle ineq.,

‖λk
A − λ∗

A‖ ≤ ‖λk
A − JA(xk)+∇f(xk)‖

+‖JA(xk)+∇f(xk) − JA(x∗)+∇f(x∗)‖

−→ 0,

as

k → ∞; where we used (♦♦), xk → x∗ and continuity of ∇f

and J+
A . Thus λk

A → λ∗
A, and since λk > 0 by definition, we

must have that λ∗
A ≥ 0.
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

(iii) Due to xk → x∗, continuity of ∇f and JA, and λk
A → λ∗

A,
we have that
∇f(xk) − JA(xk)Tλk

A −→ ∇f(x∗) − JA(x∗)Tλ∗
A.

On the other hand, (♦) implies ∇f(xk) − JA(xk)Tλk
A −→ 0,

and so ∇f(x∗) − JA(x∗)Tλ∗
A = 0.
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Minimizing the barrier function fµ

Use Newton-type methods with linesearch or trust-region.
fµ(x) := f(x) − µ

∑p
i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)!c−1(x),

where J(x) is the Jacobian of c(x). Let Cj(x) := diag(cj(x)).
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Minimizing the barrier function fµ

Use Newton-type methods with linesearch or trust-region.
fµ(x) := f(x) − µ

∑p
i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)!c−1(x),

where J(x) is the Jacobian of c(x). Let Cj(x) := diag(cj(x)).

∇2fµ(x) = ∇2f(x) −
p∑

i=1

µ

ci(x)
∇2ci(x) +

p∑

i=1

µ

ci(x)2
∇ci(x)∇ci(x)

!

= ∇2f(x) −
p∑

i=1

µ

ci(x)
∇2ci(x) + µJ(x)!C−2(x)J(x).
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Minimizing the barrier function fµ

Use Newton-type methods with linesearch or trust-region.
fµ(x) := f(x) − µ

∑p
i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)!c−1(x),

where J(x) is the Jacobian of c(x). Let Cj(x) := diag(cj(x)).

∇2fµ(x) = ∇2f(x) −
p∑

i=1

µ

ci(x)
∇2ci(x) +

p∑

i=1

µ

ci(x)2
∇ci(x)∇ci(x)

!

= ∇2f(x) −
p∑

i=1

µ

ci(x)
∇2ci(x) + µJ(x)!C−2(x)J(x).

Given x such that c(x) > 0, the Newton direction for fµ solves

∇2fµ(x)s = −∇fµ(x) [µ = µk+1]

Estimates of the Lagrange multipliers: λi(x) := µ/ci(x), i = 1, p.
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Minimizing the barrier function fµ ...

=⇒ ∇fµ(x) = ∇f(x) − J(x)Tλ(x) = ∇xL(x,λ(x))

=⇒ gradient of Lagrangian of (iCP) at (x,λ(x)).

Recall: the Lagragian function of (iCP)

L(x,λ) := f(x) −
p∑

i=1

λici(x).
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Minimizing the barrier function fµ ...

=⇒ ∇fµ(x) = ∇f(x) − J(x)Tλ(x) = ∇xL(x,λ(x))

=⇒ gradient of Lagrangian of (iCP) at (x,λ(x)).

Recall: the Lagragian function of (iCP)

L(x,λ) := f(x) −
p∑

i=1

λici(x).

=⇒ ∇2fµ(x) = ∇2L(x,λ(x)) + µJ(x)"C−2(x)J(x),

As µ → 0, assuming that ci(x) → ci(x∗) at the same rate as µ,
we deduce

µ

ci(x)2
→ ∞ for all i ∈ A (active),

µ

ci(x)2
→ 0 for all i ∈ I (inactive),

and so the condition number of µJ(x)"C−2(x)J(x) → ∞ as
µ → 0.
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Potential difficulties

I. Ill-conditioning of the Hessian of fµ
Asymptotic estimates of the eigenvalues of ∇2fµk(xk):
’Fact’ (Th 5.2, Gould Ref.) =⇒

• pa = |A| eigenvalues of ∇2fµk(xk) tend to infinity as
k → ∞.
• the condition number of ∇2fµk(xk) is O(1/µk)

=⇒ it blows up as k → ∞.
=⇒ may not be able to compute xk accurately.

This is the main reason for the barrier methods falling out of
favour with the nonlinear optimization community in the
1960s.
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Potential difficulties ...

II. Poor starting points
Recall we need xk

0 starting point for the (approximate)
minimization of fµk+1 , after the barrier parameter µk has been
decreased to µk+1.
It can be shown that the current computed iterate xk appears
to be a very poor choice of starting point xk

0, in the sense that
the full Newton step xk + sk will be asymptotically infeasible
(i. e., c(xk + sk) < 0) whenever µk+1 < 0.5µk (i. e., for any
meaningful decrease in µk). Thus the barrier method is
unlikely to converge fast.

Solution to troubles I & II: use primal-dual IPMs.
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Perturbed optimality conditions

Recall first order necessary conditions for (iCPµ):
x(µ) local minimizer of fµ =⇒ ∇fµ(x(µ)) = 0 ⇐⇒
∇f(x(µ)) = µJ(x(µ))!c−1(x(µ)). Let λ(µ) := µc−1(x(µ)).

Thus (x(µ),λ(µ)) satisfy:
{

∇f(x) − J(x)!λ = 0,

ci(x)λi = µ, i = 1, p, (OPTµ)

c(x) > 0, λ > 0.

Compare with the KKT system for (iCP):
{

∇f(x) − J(x)!λ = 0,

ci(x)λi = 0, i = 1, p, (KKT)

c(x) ≥ 0, λ ≥ 0.
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Primal-dual path-following methods (1990s)

Satisfy c(x) > 0 and λ > 0, and use Newton’s method to
solve the system e := (1, . . . , 1)T

{
∇f(x) − J(x)!λ = 0,

C(x)λ = µe, (OPTµ)

i. e., the Newton direction (dx, dλ) satisfies
(

∇2L(x,λ) −J(x)!

ΛJ(x) C(x)

)(
dx

dλ

)
= −

(
∇f(x) − J(x)!λ

C(x)λ − µe

)
,

where Λ := diag(λ). Eliminating dλ, we deduce

(∇2L(x, s)+J(x)!C−1(x)ΛJ(x))dx = −(∇f(x)−µJ(x)!c−1(x)).
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Primal-dual versus primal methods

Primal-dual:

(∇2L(x,λ) + J(x)!C−1(x)ΛJ(x))dxpd = −∇L(x,λ(x)).

Primal:

(∇2L(x,λ(x))+J(x)!C−1(x)Λ(x)J(x))dxp = −∇L(x,λ(x)),

where λ(x) := µc−1(x).

=⇒ In PD methods, changes to the estimates s of the
Lagrange multipliers are computed explicitly on each iteration.
In primal methods, they are updated from implicit information.
Makes a huge difference!
• For PD IPMs, xk

0 := xk is a good starting point for the
subproblem solution. Ill-conditioning of the Hessian can be
‘overlooked’ by solving in the right subspaces.
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Ill-conditioning revisited (non-examinable)

Ill-conditioning does not imply can’t solve equations accurately!
Assume λ∗

i > 0 if c(x∗) = 0. Let I = {i : ci(x∗) > 0}. Drop x.


 ∇2L −J"

ΛJ" C







 dx

dλ



 = −



 ∇f − J"λ

Cλ − µe



 =⇒



 ∇2L + J!
I C−1

I ΛIJI −J!
A

JA CAΛ−1
A







 dx

dλA



 = −



 ∇f − J!
AsA − µJIc

−1
I

cA(x) − µλ−1
A





Note C−1
I (x) and Λ−1

A bounded above (as x → x∗). Thus, in the limit,


 ∇2L −J"
A

J"
A 0







 dx

dλA



 = −



 ∇f − J"
AλA − µJIc

−1
I

0



 .

Note that this approach needs an accurate prediction of the
active A and inactive I sets ‘asymptotically’ during the run of
a primal-dual algorithm (not so easy!)
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Primal-dual path-following methods

Choice of barrier parameter: µk+1 = O((µk)2)

=⇒ Fast (superlinear) asymptotic convergence!

Several Newton iterations are performed for each value of µ
(with linesearch or trust-region).

In implementations, it is essential to keep iterates away from
boundaries early in the algorithm (else iterates may get
trapped near the boundary ⇒ slow convergence!)

The computation of initial starting point x0 satisfying
c(x0) > 0 is nontrivial. Various heuristics exist.

Powerful software available: IPOPT, KNITRO etc.

Linear Programming (LP): IPMs solve LP in polynomial time!
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The simplex versus interior point methods for LP

worst-case complexity: exponential versus polynomial for
LP (in problem dimension/length of input);

the Klee-Minty example (1972): the simplex method
has exponential running time in the worst-case; linear
polynomial in the average case
IPMs: Karmarkar (1984), A New Polynomial-Time
Algorithm for Linear Programming, Combinatorica.
Khachiyan (the ellipsoid method, 1979).
Renegar (best-known worst-case complexity bound).
Central path is unique and global; Newton’s method
for barrier function can be precisely quantified.

IPMs solve very large-scale LPs;
numerically-observed average complexity:
log(LP dimension) iterations.

each IPM iteration more expensive than the simplex one.
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