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Nonconvex inequality-constrained problems

IIEIIiRI}L f(x) subjectto c(x) > 0, (iCP)

where f: R®* - R, ¢ = (c1,.--,¢p) : R® — RP smooth.

m Attempt to find KKT points/local minimizers of (iCP).
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Nonconvex inequality-constrained problems

IIEIIiRI}L f(x) subjectto c(x) > 0, (iCP)

where f: R®* - R, ¢ = (c1,.--,¢p) : R® — RP smooth.
m Attempt to find KKT points/local minimizers of (iCP).
m The strictly feasible set:

Q°:={x: c(x) >0} ={x: ci;(x) >0forallz € [1,...,p]}.
Assumption: ©° # 0. [SCQ (Slater)]
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Nonconvex inequality-constrained problems

IIEIIiRI}L f(x) subjectto c(x) > 0, (iCP)

where f: R®* - R, ¢ = (c1,.--,¢p) : R® — RP smooth.

m Attempt to find KKT points/local minimizers of (iCP).

m The strictly feasible set:
Q°:={x: c(x) >0} ={x: ci;(x) >0forallz € [1,...,p]}.
Assumption: ©° # 0. [SCQ (Slater)]

For (each) n > 0, associate the logarithmic barrier subproblem

p
min fu(z) := f(x) — ,u;log c;(x) subjectto c(z) > 0. (iCP,)

e (iCP,) is essentially an unconstrained problem as each
ci(x) > 0 is enforced by the corresponding log barrier term of f,,.
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The logarithmic barrier function for (iCP)

Assume z(p) minimizes the barrier problem

arzrel%qg% fu(z) = f(x) — u;::l log c;(z) subjectto c(z) > 0. (icpP,)
Since (ci(z) =0 = —logci(z) = +o0), (1) Must be “well
iInside” the feasible set , “far” from the boundaries of ©,

especially when p > o0 is “large”. Strict feasibility well-ensured!

When p “small”; n — 0: the term (=) “dominates” the log
barrier terms in the objective of (iICP,) = z(u) “close” to the
optimal boundary of €. [This also causes ill-conditioning ...]

e Subject to conditions, some minimizers of f, converge to
local solutions of (iCP), as » — 0. But £, may have other
stationary points, useless for our purposes.
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Contours of the barrier function f, - an example
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The barrier function for min 2 + z2 subject to =, + =2 > 1,
fu(x) := xf 4+ 23 — plog(x1 — 2 — 1).

Lectures 14 and 15: Interior point methods for inequality constrained optimization problems — p. 4/25



Contours of the barrier function f,, - an example...
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The barrier function for min 2 + z2 subject to =, + =2 > 1,
fu(x) := 22 + 22 — plog(xy — x2 — 1).
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Optimality conditions for (iCP) and (iCP,,)

fu(@) = f(2) — n Y, log ci(x) =
V(@) = V@) — Y0, Vei(a) = V(@) — pd(2) e (a),

i=1 ¢ ()

where J(zx) Jacobian of ¢(z), ¢t (x) := (1/c1(x),-..,1/cp(x)).
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Optimality conditions for (iCP) and (iCP,,)

fu(e) 1= 50) - P log ei(z) =
Viue) =Vf(z)— >, c (m)ch(m) Vi(x) —pd () c (),
where J(zx) Jacobian of ¢(z), ¢t (x) := (1/c1(x),-..,1/cp(x)).

First-order necessary optimality conditions for (iCP,,): [=uncons.]

x(p) minimizer of f, = Vf.(z(pn)) =0 <=
Vi(x(p) =2 iy s (m(“))VCZ(:B(u)) with (@ () ( Yy = 0,:=1,p.
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Optimality conditions for (iCP) and (iCP,,)

fu(e) 1= 50) - P log ei(z) =
Viue) =Vf(z)— >, c (m)ch(m) Vi(x) —pd () c (),
where J(zx) Jacobian of ¢(z), ¢t (x) := (1/c1(x),-..,1/cp(x)).

First-order necessary optimality conditions for (iCP,,): [=uncons.]

x(p) minimizer of f, = Vf.(z(pn)) =0 <=
Vi(x(p) =2 iy s (m(“))VCZ(:B(u)) with (@ () ( Yy = 0,i=1,p.

First-order necessary optimality conditions for (iICP): [=KKT]

If z* KKT point of (iCP) = Vf(z*) = *Vei(x*), A* > 0,
Afci(x*) =0,i=1,p.

7,17,
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Optimality conditions for (iCP) and (iCP,,)

fu(e) 1= 50) - P log ei(z) =
Viue) =Vf(z)— >, c (m)ch(m) Vi(x) —pd () c (),
where J(zx) Jacobian of ¢(z), ¢t (x) := (1/c1(x),-..,1/cp(x)).

First-order necessary optimality conditions for (iCP,,): [=uncons.]

x(p) minimizer of f, = Vf.(z(pn)) =0 <=
Vi(x(p) =2 iy s (m(“))VCZ(:B(u)) with (@ () ( Yy = 0,i=1,p.

First-order necessary optimality conditions for (ICP): [=KKT]

If x* KKT point of (ICP) = v f(z*) = >F_, \*Vei(z*), A* > 0,
Afci(x*) =0,i=1,p.

Under what conditions =(u) exist/well-defined and converge

toz* as p — 07 Do iy = A5, i =1,p,as p— 07
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The ‘central’ path of barrier minimizers exists locally

Under sufficient optimality conditions at =*, the central path
{x(p) : pe > p > 0} of (global) minimizers x(u) of f,, exists, for
pe Sufficiently small, and z(p) — =*, as u — 0.
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The ‘central’ path of barrier minimizers exists locally

Under sufficient optimality conditions at =*, the central path
{x(p) : pe > p > 0} of (global) minimizers x(u) of f,, exists, for
pe Sufficiently small, and z(p) — =*, as u — 0.

Theorem 27. (Local existence of central path) Assume that
Q° #£ (0, and x> is a local minimizer of (iCP) s. t.

(@) Ar > 0if ¢;(z*) = 0.

(b) Vei(z*),i e A:={i e {1,...,p}:c;(z*) = 0}, are linearly
independent. [LICQ]

(C) 3a > 0 such that sTV2_L(z*,A*)s > «f|s||?, where s such
that J(z*)4s = 0, and v2_c is the Hessian of the
Lagrangian function of (iCP).

Then there exists a unique, continuously differentiable path
(as a function of u) of (global) minimizers z(u) of £, for u > 0
sufficiently small, and =(px) — =* as u — 0. O
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Central path trajectory

min(x; — 1)? + (x2 — 0.5)2
subjectto z; + x5, <1
3r1 +x2 < 1.5
(x1,22) >0

-0.1
-0.1 0 0.1 02 0.3 0.4 05 0.6

Central path trajectory z(u) of
(global) barrier minimizers for all
= 0
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Central path trajectory - nonconvex case

min —2(x; — 0.25)? + 2(x5 — 0.5)2
subjectto z; + x5, <1
3r,1 +x2 < 1.5
(x1,22) >0

Central path trajectory x(u) for
all > o.
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Basic barrier method

Given pu® >0, let k=0. Until “convergence” do:

B Choose 0 < pFtl < uk.

MFrind xf such that c(zk) >0 (possibly, zf:=zF).

B Starting from 33’6’, use an unconstrained minimization

algorithm to find an “approximate” minimizer rhtl
of f“k+1. Let k:=k+ 1.

Must have p* — 0, k — 0. pkt! .= 0.1uF, p**1 := (uk)?, etc.
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Basic barrier method

Given pu® >0, let k=0. Until “convergence” do:

B Choose 0 < pFtl < uk.

MFrind xf such that c(zk) >0 (possibly, zf:=zF).

B Starting from 33’6’, use an unconstrained minimization

algorithm to find an “approximate” minimizer rhtl
of f“k+1. Let k:=k+ 1.

Must have p* — 0, k — 0. pkt! .= 0.1uF, p**1 := (uk)?, etc.

Algorithms for minimizing f£.,:

e Linesearch methods: use special linesearch to cope with
singularity of the log.

e Trust region methods: “shape” trust region to cope with

contours of the singularity of the log. Reject points for which
c(z® 4 s*) Is not positive.
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A convergence result for the barrier algorithm

Theorem 28. (Global convergence of barrier algorithm)
Apply the basic barrier algorithm to the (iCP). Assume that
k

7
ci(xk)’

|V fux ()| < €, where €¥ — 0,k — oo

foceCl, A\ = i = 1, p, where c¢(z*) > 0, u* > 0 and

and also that u* — 0 as k — oo. Moreover, assume that
xzk — x*, where ve;(x*), i € A, are linearly independent, and
where A := {i: ¢;(=*) = 0} (ie LICQ).

Then z* is a KKT point of (iCP) and X* — X*, where X\* is the
vector of Lagrange multipliers of z*. O
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A convergence result for the barrier algorithm

Theorem 28. (Global convergence of barrier algorithm)

Apply the basic barrier algorithm to the (iCP). Assume that
e

ci(xk)’

|V fux ()| < €, where €¥ — 0,k — oo

foceCl, A\ = i = 1, p, where c¢(z*) > 0, u* > 0 and

and also that u* — 0 as k — oo. Moreover, assume that
xzk — x*, where ve;(x*), i € A, are linearly independent, and
where A := {i: ¢;(=*) = 0} (ie LICQ).

Then z* is a KKT point of (iCP) and X* — X*, where X\* is the
vector of Lagrange multipliers of z*. O

LICQ = the Jacobian of active constraints, J4(=*) (has
Ve;(z*)T on its rows) is full row rank and so p, := |A| < n
(recall comments in L12, Th 21)
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A convergence result for the barrier algorithm

Proof of Theorem 28.

m LICQ = the p, x n Jacobian J4(z*) of active constraints,
Is full row rank = the pseudo-inverse

Ja(x*)t = (Ja(z")Ja(z*)") " Ja(z")

is well defined. Since z* — x*, J4(x*)T is also
well-defined, continuous and bounded for all & suff. large.
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A convergence result for the barrier algorithm

Proof of Theorem 28.

m LICQ = the p, x n Jacobian J4(z*) of active constraints,
Is full row rank = the pseudo-inverse

Ja(z*)" = (Ja(z*)Ja(z*)") " Ja(z")
is well defined. Since z* — x*, J4(x*)T is also
well-defined, continuous and bounded for all & suff. large.

BA={i:c(z*) =0} (active set) and 7 = {1,...,p} \ A
(inactive). Since c(z*) > 0 and z* — =*, we have
c(x*) > 0, With c4(z*) = 0 and cz(z*) > 0. (feasibility of z*.)
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A convergence result for the barrier algorithm

Proof of Theorem 28.

m LICQ = the p, x n Jacobian J4(z*) of active constraints,
Is full row rank = the pseudo-inverse

Ja(z*)" = (Ja(z*)Ja(z*)") " Ja(z")
is well defined. Since z* — x*, J4(x*)T is also
well-defined, continuous and bounded for all & suff. large.

BA={i:c(z*) =0} (active set) and 7 = {1,...,p} \ A
(inactive). Since c(z*) > 0 and z* — =*, we have
c(x*) > 0, With c4(z*) = 0 and cz(z*) > 0. (feasibility of z*.)

Define A* = (A\%; A%) as A% := Ja(z*) TV f(z*) and Az := 0.
(complementarity Afc;(z*) =0, i € {1,...,p} achieved.)
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A convergence result for the barrier algorithm

Proof of Theorem 28.

m LICQ = the p, x n Jacobian J4(z*) of active constraints,
Is full row rank = the pseudo-inverse

Ja(x*)t = (Ja(z")Ja(z*)") " Ja(z")

is well defined. Since z* — x*, J4(x*)T is also
well-defined, continuous and bounded for all & suff. large.

BA={i:c(z*) =0} (active set) and 7 = {1,...,p} \ A
(inactive). Since c(z*) > 0 and z* — =*, we have
c(x*) > 0, With c4(z*) = 0 and cz(z*) > 0. (feasibility of z*.)
Define A* = (A\%; A%) as A% := Ja(z*) TV f(z*) and Az := 0.
(complementarity Afc;(z*) =0, i € {1,...,p} achieved.)
It remains to show that A* — A*, namely, A% — x* > o (ii)
and Xk, — 0 (i); as well as Vf(z*) = Ja(z*)TA%.(iil)
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

k
(i) Leti e z. Then Ak = & \ —0as k — oo,
¢ ci(x®) ci(x*)
where we used that x* — 0 and ¢;(z*) — c;(=*) > 0. Thus

Ak — 0.
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

k

(i) Leti e 7. Then xk = v~ ) _pask— oo,
¢ ci(x®) ci(x*)
where we used that x* — 0 and ¢;(z*) — c;(=*) > 0. Thus
Ak — 0.

(i) Note that J(z*)T = (Ja(z®)T Jz(2*)T) and Xk = (Ak; Ak)
and so J(z*)TA* = J4(x*)TAk + Jz(z*)TAL. By trlangle
inequality,
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

k

(i) Leti e 7. Then xk = v~ ) _pask— oo,
¢ ci(x®) ci(x*)
where we used that x* — 0 and ¢;(z*) — c;(=*) > 0. Thus
Ak — 0.

(i) Note that J(z*)T = (Ja(z®)T Jz(2*)T) and Xk = (Ak; Ak)
and so J(z*)TA* = J4(x*)TAk + Jz(z*)TAL. By trlangle
inequality,

IV£(@*) — Ja(@®)T ALl < NIV F(@*) = T(@®)TAR) + [|Jz(=") T Az
= [V fue (@) | + 1Tz (@®)TAZI < NV fue (@®)I + 11Tz (2®) || - [IAZ]

< €8+ [Iz(@) | - IAZ] — 0+ [T (z*)][ -0 =10, (O)
as k — oo due to € — 0, Jz(z*) — J(=*) and (i).
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)
Since Ja(x*)tJa(x*)T =1,
[Ja(@®)TVf(xF) = A5l = |Ta(@®)T(VF(x*) — Ja(z®)TA5)|]
< |NTa@) TN - IV F (&) — Ta(@®) NG| — [[Ja(z*) T -0 =0, (00)

as k — oo; where we used (0), ¥ — =* and continuity of J7.
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)
Since Ja(x*)tJa(x*)T =1,
[Ja(@®)TVf(xF) = A5l = |Ta(@®)T(VF(x*) — Ja(z®)TA5)|]
< |NTa@) TN - IV F (&) — Ta(@®) NG| — [[Ja(z*) T -0 =0, (00)

as k — oo; where we used (0), ¥ — =* and continuity of J7.

Recalling def. A%, = J4(z*) TV f(2*), and triangle ineq.,
A = 2% <IN = Ja(@®) TV f(2¥)]]
+H|Ja(xF) TV f(2*) — Ja(z*) TV f(x*)] as
— 0,

k — oo; Where we used (¢0), ¥ — x* and continuity of v f
and J7.
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)
Since Ja(x*)tJa(x*)T =1,
[Ja(@®)TVf(xF) = A5l = |Ta(@®)T(VF(x*) — Ja(z®)TA5)|]
< |NTa@) TN - IV F (&) — Ta(@®) NG| — [[Ja(z*) T -0 =0, (00)

as k — oo; where we used (0), ¥ — =* and continuity of J7.

Recalling def. A%, = J4(z*) TV f(2*), and triangle ineq.,
A = 2% <IN = Ja(@®) TV f(2¥)]]
+H|Ja(xF) TV f(2*) — Ja(z*) TV f(x*)] as

— 0,
k — oo; Where we used (¢0), ¥ — x* and continuity of v f
and J§. Thus Xk — X%, and since X* > 0 by definition, we
must have that A% > o.

Lectures 14 and 15: Interior point methods for inequality constrained optimization problems — p. 14/25



A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

(i) Due to z* — z*, continuity of vV and J4, and Xk — X%,
we have that
Vf(xF) — Ja(xF)T A — Vf(x*) — Ja(z*)T XY,

On the other hand, (¢) implies Vv f(z*) — Ja(z*)TA% — 0,
and so Vf(z*) — Ja(z*)TA* = 0.
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Minimizing the barrier function f,

Use Newton-type methods with linesearch or trust-region.
fu(x) := f(x) — p > i_, log ci(x) =
Vfu(@) = V(@) = i o Veile) = V@) — pd (@) e (@),

where J(z) is the Jacobian of ¢(z). Let C7(x) := diag(c? (z)).
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Minimizing the barrier function f,

Use Newton-type methods with linesearch or trust-region.
fu(z) == f(w) — pu i, logci(x) =
Viuw(e) = Vf(x) — > i > (w)ch(:c) Vf(x) —pJ(z)' c (),
where J(z) is the Jacobian of ¢(z). Let C7(x) := diag(c? (z)).

V2fu(x) = V2f(x) — Z o cz(a:)—l—z e )2Vci(a3)Vci(az)T

= V@) - c.“m Vv2ei(z) + pd(2)TC 2 (x) I (z).
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Minimizing the barrier function f,

Use Newton-type methods with linesearch or trust-region.
fu(z) == f(w) — pu i, logci(x) =
Viuw(e) = Vf(x) — > i > (w)ch(:c) Vf(z) — pd(z) c(z),
where J(z) is the Jacobian of ¢(z). Let C7(x) := diag(c? (z)).

V2fu(x) = V2f(x) — Z o cz(a:)—l—z e )2Vci(a3)Vci(az)T
= V@) - C.Zc)vzci(w) + ud(2)TC~2(2)J ().

Given z such that ¢(x) > 0, the Newton direction for f,, solves

Vifu(z)s = =V fu(z) [ = pttY
Estimates of the Lagrange multipliers: \;(x) := p/c;(x), i = 1, p.
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Minimizing the barrier function f, ...

— Vfu(z) = Vf(z) — J(2)TA(z) = V. L(z, A\(x))
— gradient of Lagrangian of (iCP) at (z, A(x)).

Recall: the Lagragian function of (iCP)

L(x, ) := f(x) — Z ic; ().
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Minimizing the barrier function f, ...

— Vfu(z) = Vf(z) — J(2)TA(z) = V. L(z, A\(x))
— gradient of Lagrangian of (iCP) at (z, A(x)).

Recall: the Lagragian function of (iCP)
b
L(z,A) == f(z) — > Aics().
1=1

— V2f,(z) = V2L(2,A(@)) + pJ(2) T C~2(2)J (x),

As p — 0, assuming that ¢;(z) — ¢;(z*) at the same rate as p,
we deduce

K » oo for all i € A (active),
ci(x)?

a » 0 for all i € 7 (inactive),
c;(x)?

and so the condition number of puJ(z)"C—2(x)J(x) — oo aS
—p—=10

Lectures 14 and 15: Interior point methods for inequality constrained optimization problems — p. 17/25



Potential difficulties

. lll-conditioning of the Hessian of f,
Asymptotic estimates of the eigenvalues of V2, (z*):
'Fact’ (Th 5.2, Gould Ref.) —-

e p, = |A| eigenvalues of V2 . (x*) tend to infinity as
k — oo.
e the condition number of V2 £ . (z*) is O(1/u*)

— It blows up as k£ — oo.

— may not be able to compute =* accurately.

This is the main reason for the barrier methods falling out of
favour with the nonlinear optimization community in the
1960s.
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Potential difficulties ...

Il. Poor starting points

Recall we need zf starting point for the (approximate)
minimization of f,.+1, after the barrier parameter 1* has been
decreased to p*+1.

It can be shown that the current computed iterate z* appears
to be a very poor choice of starting point ¥, in the sense that
the full Newton step z* + s* will be asymptotically infeasible
(i. e., c(z® + s*) < 0) whenever p**+1 < 0.5u* (i. e., for any
meaningful decrease in p*). Thus the barrier method is
unlikely to converge fast.

Solution to troubles | & II: use primal-dual IPMs.
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Perturbed optimality conditions

Recall first order necessary conditions for (iCP,,):

z(p) local minimizer of f, = Vf,(x(pn)) = 0 <
Vi(z(p) = pd (z(p) T (z(w)). Let A(u) = pe (z(u)).

Thus (x(u), X(p)) satisty:
{Vﬂm—JwWA:m
Cz(m)kz — M, 1= ma (OPTM)
c(x) >0, A>0.

Compare with the KKT system for (iCP):
Vi) —J(x)'A=0,
{ ci(x)\; =0, i =1, p, (KKT)
c(x) >0, A>0.
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Primal-dual path-following methods (1990s)

Satisfy ¢(x) > 0 and XA > 0, and use Newton’s method to

solve the system e:=(1,...,1)T
Vf(x)—J(x)' X =0,
C(x)\ = pe, (OPT,)

.. e., the Newton direction (dx, d\) satisfies

V2L(xz,\) —J(z)' de \ [ Vf(z) - J(x) "X
AJ(x) C(x) dx | C(z)\ — pe ’

where A := diag(\). Eliminating d\, we deduce
(V2L(z, 5)+J (x) C™Hz) AT (x))dz = —(V f(z)—pd (z) ' (2)).
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Primal-dual versus primal methods

Primal-dual:

(V2L(z, ) + J(z) ' C ™ Hx)AJT (x))dxP? = —V L(xz, A\(x)).
Primal:
(V2L (z, Mz))+J ()T C Y (z)A(z)J (z))dzP = —V L(z, A(z)),

where \(z) := pc™i(x).

— In PD methods, changes to the estimates s of the
Lagrange multipliers are computed explicitly on each iteration.
In primal methods, they are updated from implicit information.
Makes a huge difference!

e For PD IPMs, z¥ := z* is a good starting point for the
subproblem solution. lll-conditioning of the Hessian can be
‘overlooked’ by solving in the right subspaces.
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lll-conditioning revisited (non-examinable)

lll-conditioning does not imply can’t solve equations accurately!
Assume X* > 0 if c(z*) = 0. Let Z = {i : ¢;(=*) > 0}. Drop =.

vie —JTt dx Vf—JT A
= — —
AJT C d\ C\ — e
V3L 4+ JC7 ' AzJz —JA de |\ Vf—Jdisa— pJzest
Ja CaAy dia ca(x) — pr;"
Note ¢z *'(x) and A* bounded above (as = — =*). Thus, in the limit,

vie —J} dr | Vf—JiAa— pdzes?
J} 0 dA 4 0 '

Note that this approach needs an accurate prediction of the
active A and inactive Z sets ‘asymptotically’ during the run of
a primal-dual algorithm (not so easy!)
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Primal-dual path-following methods

Choice of barrier parameter: p*+1 = O((u*F)?)
— Fast (superlinear) asymptotic convergence!

Several Newton iterations are performed for each value of
(with linesearch or trust-region).

In Iimplementations, it is essential to keep iterates away from
boundaries early in the algorithm (else iterates may get
trapped near the boundary = slow convergence!)

The computation of initial starting point =% satisfying
c(z%) > 0 is nontrivial. Various heuristics exist.

Powerful software available: IPOPT, KNITRO etc.
Linear Programming (LP): IPMs solve LP in polynomial time!
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The simplex versus interior point methods for LP

m worst-case complexity: exponential versus polynomial for
LP (in problem dimension/length of input);

m the Klee-Minty example (1972): the simplex method
has exponential running time in the worst-case; linear
polynomial in the average case

m [PMs: Karmarkar (1984), A New Polynomial-Time
Algorithm for Linear Programming, Combinatorica.
Khachiyan (the ellipsoid method, 1979).

Renegar (best-known worst-case complexity bound).
Central path is unique and global; Newton’s method
for barrier function can be precisely quantified.

m |[PMs solve very large-scale LPs;

m numerically-observed average complexity:
log(LP dimension) iterations.

m each IPM iteration more expensive than the simplex one.
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