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Nonlinear equality-constrained problems – again!

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → Rm are C1 or C2

(when needed), with m ≤ n; J(x) Jacobian of c, with rows ∇ci(x)T .

easily generalized to inequality constraints . . . but may be
better to use interior-point methods for these.

(eCP): attempt to find local solutions or at least KKT points:
∇xL(x, y) = ∇f(x) − J(x)Ty = 0 and c(x) = 0 (∗)

where L(x, y) = f(x) − yT c(x) = f(x) −
∑m

i=1 yici(x) Lagrangian.
(*) nonlinear and square system in x and y (linear in y) =⇒
use Newton’s method for root finding, to find a change (s, w)

to (x, y)
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Newton iteration for KKT system

Newton step for the KKT system ∇xL(x, y) = ∇f(x) − J(x)T y = 0; c(x) = 0 is:




(
∇2f(x) −

∑m
i=1 yi∇2ci(x) − J(x)T

)


 s

w



 = −(∇f(x) − J(x)Ty)

J(x)s = −c(x)

which is equivalent to


 ∇2
xL(x, y) −J(x)T

J(x) 0







 s

w



 = −



 ∇xL(x, y)

c(x)





or (with y+ = y + w) : [symmetric formulations also possible]


 ∇2L(x, y) −J(x)T

J(x) 0







 s

y+



 = −



 ∇f(x)

c(x)





often approximate ∇2
xL(x, y) with symmetric B
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An alternative interpretation

QP : minimize
s∈IRn

m(s) := ∇f(x)T s +
1

2
sTBs subject to J(x)s = −c(x)

QP = quadratic program
first-order model of constraints c(x + s)

second-order model of objective f(x + s) . . . but B
includes curvature of constraints

Solution of (QP) satisfies KKT conditions with Lagrange
multipliers y+ ∈ Rm: ∇sm(s) = ∇f(x) + Bs = J(x)Ty+ and
J(x)s = −c(x) ⇔



 B −J(x)T

J(x) 0







 s

y+



 = −



 ∇f(x)

c(x)




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Sequential quadratic programming - SQP

A basic SQP method
Given (x0, y0), set k = 0
Until “convergence” iterate:

Compute a suitable symmetric Bk using (xk, yk)

Find the solution of (QPk)

sk = arg min
s∈Rn

∇f(xk)T s + 1
2s

TBks subject to J(xk)s = −c(xk)

along with associated Lagrange multiplier estimates

yk+1.

Set xk+1 = xk + sk and let k := k + 1. !

"convergence" verifies approximate KKT conditions for (eCP).
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Sequential quadratic programming - SQP...

Advantanges of SQP:
simple
fast

quadratically convergent with Bk = ∇2L(xk, yk)

superlinearly convergent with good Bk ≈ ∇2L(xk, yk)

Issues with pure SQP [similar to Newton’s method for unconstrained opt and systems]

how to choose Bk?
what if QPk is unbounded from below? and when?
how do we globalize the SQP iteration?
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Sequential quadratic programming - SQP...

For the QPk subproblem:

minimize
s∈IRn

∇f(xk)T s +
1

2
sTBks subject to J(xk)s = −c(xk)

to be well-defined, we need:
constraints to be consistent

OK if J(xk) is full row rank (and so m ≤ n).
Bk to be positive definite when J(xk)s = 0 ⇐⇒ NT

k BkNk

positive definite where the columns of Nk form a basis for
the null space of J(xk) =⇒

 Bk −J(xk)T

J(xk) 0





is non-singular if J(xk) full row rank. [see next slide for explanations]
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Linesearch SQP methods

sk = arg min
s∈IRn

∇f(xk)T s + 1
2s

TBks subject to J(xk)s = −c(xk)

Linesearch SQP:
Set xk+1 = xk + αksk, where αk is chosen so that

Φ(xk + αksk,σk)“ <′′Φ(xk,σk)

where Φ(x,σ) is a “suitable” merit function and σk are
parameters.

Recall unconstrained GLM: crucial that sk is a descent
direction for Φ(x,σk) at xk.
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Suitable merit functions for SQP

Recall the quadratic penalty function:

Φ(x,σ) = f(x) +
1

2σ
‖c(x)‖2

Theorem 30: Suppose that Bk is positive definite on the
feasible set of QPk, and that (sk, yk+1) are the SQP search
direction and its associated Lagrange multiplier estimates at
xk. Then if xk is not a KKT point of (eCP), then sk is a
descent direction for the quadratic penalty function Φ(x,σk)

at xk whenever
σk ≤

‖c(xk)‖
‖yk+1‖

.
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Suitable merit functions for SQP ...

Proof of Theorem 30:
SQP direction sk and associated multiplier estimates yk+1 satisfy

Bksk − J(xk)Tyk+1 = −∇f(xk) (1)

J(xk)sk = −c(xk) (2)

(1) + (2) =⇒ (sk)T∇f(xk) = −(sk)TBksk + (sk)TJ(xk)Tyk+1

= −(sk)TBksk − c(xk)Tyk+1 (3)

(2) =⇒ c(xk)TJ(xk)sk = −‖c(xk)‖2. (4)
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Suitable merit functions for SQP ...

Proof of Theorem 30: (continued) Φ(x) = f(x) + 1
2σk ‖c(x)‖2

Since xk is not KKT, then either c(xk) ,= 0 and so from (4),
sk ,= 0. Or there is no y such that ∇f(xk) = J(xk)Ty; in
particular, ∇f(xk) ,= J(xk)Tyk+1 and so from (1), Bksk ,= 0 and
so sk ,= 0 since Bk is positive definite in the feasible set
{s : J(xk)s = −c(xk)}. It remains to show that
(sk)T∇xΦ(xk,σk) < 0. To see this, calculate

(sk)T∇xΦ(xk,σk) = (sk)T
(
∇f(xk) +

1

σk
J(xk)T c(xk)

)

= −(sk)TBksk − c(xk)Tyk+1 −
‖c(xk)‖2

σk
, by (3), (4)

< −c(xk)Tyk+1 −
‖c(xk)‖2

σk
, since (sk)TBksk > 0

≤ ‖c(xk)‖
(
‖yk+1‖ −

‖c(xk)‖
σk

)
, by Cauchy-Schwarz

≤ 0 and so sk is descent for Φ(xk,σk). "
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Suitable merit functions for SQP ...

Other suitable merit functions:
The non-differentiable exact penalty function: [widely used]

Ψ(x, ρ) = f(x) + ρ‖c(x)‖, where ‖ · ‖ can be any norm and ρ > 0.
recall that minimizers of (eCP) correspond to those of Ψ(x, ρ)

for ρ sufficiently large (and finite! ρ > ‖y∗‖);
equivalent of Th 30 holds (ρk ≥ ‖yk+1‖).
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The Maratos effect

merit function may prevent acceptance of the full SQP step
(so αk ,= 1) arbitrarily close to x∗ =⇒ slow convergence
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2 . Here: $1 non-differentiable exact penalty
function (ρ = 1) but other merit fcts. have similar behaviour.
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Avoiding the Maratos effect

The Maratos effect occurs because the curvature of the
constraints is not adequately represented by linearisation in
the SQP model:

c(xk + sk) = O(‖sk‖2)

=⇒ need to correct for this curvature

Use a second-order correction from xk + sk:

c(xk + sk + skC) = o(‖sk‖2).

Also, do not want to destroy potential for fast convergence
=⇒ skC = o(sk).

minimum norm solution to c(xk + sk) + J(xk + sk)skC = 0;
or to c(xk + sk) + J(xk)skC = 0
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Second-order corrections in action
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2 .
fast convergence
xk + sk + sk

C reduces Φ =⇒ global convergence
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Topics not covered - for constrained optimization

trust-region SQP methods
the S$pQP method
the filter-SQP approach
active-set methods for linearly-constrained nonlinear
problems (ie, generalization of simplex methods from the
LP to the nonlinear case)
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