Lecture 16: SQP methods for equality
constrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization
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Nonlinear equality-constrained problems — again!

rrelli@ f(x) subjectto c(x) =0, (eCP)
where f: R® - R, ¢ = (c1,...,¢m) : R® — R™ are C! or C?

(when needed), with m < n; J(x) Jacobian of ¢, with rows ve;(x)7.

m easily generalized to inequality constraints ... but may be
better to use interior-point methods for these.

m (eCP): attempt to find local solutions or at least KKT points:
VeL(x,y) = Vf(zx) —J(x)'y=0 and c(x) =0 ()

where L(z,y) = f(z) — yTe(z) = f(z) — Y1, yici(x) Lagrangian.
(*) nonlinear and square system in z and y (linear in y) =
use Newton’s method for root finding, to find a change (s, w)

{0 (z,y)

Lecture 16: SQP methods for equality constrained optimization — p. 2/16



Newton iteration for KKT system

N(ewton step for the KKT system V4 L(x,y) = VFf(x) — J(x)Ty = 0; ¢c(x) =0 is:
(V2f(a:) — 3" yiViei(z) — J(:I:)T)

w

| J(x)s = —c(x)

which is equivalent to

( ViL(z,y) —J(@) ) ( . ) _ ( VaL(z,y) )
J(x) 0 w c(x)

or (With y"‘ =y -+ w) : [symmetric formulations also possible]

( ViL(@,y) —J(@)" ) ( s ) _ ( V(@) )
J(x) 0 yt c(x)

often approximate vc(x,y) with symmetric B

= —(Vf(z) — J(z)"y)
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An alternative interpretation

QP : miniEjLze m(s) := Vf(x)'s+ %STBS subjectto J(z)s = —c(x)
s€

m QP = quadratic program
m first-order model of constraints c(x + s)

m second-order model of objective f(x + s) ...but B
Includes curvature of constraints

Solution of (QP) satisfies KKT conditions with Lagrange
multipliers y+ € R™: V.m(s) = Vf(x) + Bs = J(z)Ty* and
J(xr)s = —c(x) &

B —J(x)T S _ Vf(x)
J(x) 0 yT c(x)
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Sequential quadratic programming - SQP

A basic SQP method

Given (z°%,4%), set k=0
Until “convergence” iterate:

B Compute a suitable symmetric BF using (z¥,y*)

B Frind the solution of (QPg)

s* arg neuﬁg VF(xF)Ts 4+ 1sTB*s subject to J(xF)s = —c(z®)
S

along with associated Lagrange multiplier estimates
yk+1

Bset Tl =gk + s and let ki=k+ 1. O

"convergence" verifies approximate KKT conditions for (eCP).

Lecture 16: SQP methods for equality constrained optimization — p. 5/16



Sequential quadratic programming - SQP...

Advantanges of SQP:
m simple
m fast
m quadratically convergent with B* = V2L (¥, y*)
m superlinearly convergent with good B* ~ v2Zc(x*, y*)
Issues with pure SQP  [similar to Newton’s method for unconstrained opt and systems]
®m how to choose B*?
m what if QP is unbounded from below? and when?
m how do we globalize the SQP iteration?
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Sequential quadratic programming - SQP...

For the QP,, subproblem:

mlnllrglze VF(xF)Ts + —s B*s subjectto J(z*)s = —c(z*)
sE

to be well-defined, we need:

B constraints to be consistent
m OK if J(=*) is full row rank (and so m < n).
B B* to be positive definite when J(z*)s = 0 —< NI B*N,
positive definite where the columns of v, form a basis for
the null space of J(z*) —

Bk —J(mk)T
J (%) 0

IS non-singular if J(z*) full row rank. [see next slide for explanations]
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Linesearch SQP methods

st = arg TIJ{Q VF(x*)Ts + 1sTB*s subjectto J(z*)s = —c(z*)
s€

Linesearch SQP:
B Set %11 = 2k 4+ aksk, where o* is chosen so that

(I)(wk + aksk,dk)“ <”<I)(£Bk,0'k)

where ®(z, o) IS a “suitable” merit function and o* are
parameters.

Recall unconstrained GLM: crucial that s* is a descent
direction for ®(x, o) at =*.
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Suitable merit functions for SQP

Recall the quadratic penalty function:

B(z,0) = f(2) + 5 lle(@)]

Theorem 30: Suppose that B is positive definite on the
feasible set of Q P, and that (s*, y**!) are the SQP search
direction and its associated Lagrange multiplier estimates at
x®. Then if * is not a KKT point of (eCP), then s* is a
descent direction for the quadratic penalty function ®(x, o*)
at * whenever

e o lle@®)]
— k+11 °
|yt
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Suitable merit functions for SQP ...

Proof of Theorem 30:
SQP direction s* and associated multiplier estimates y*+! satisfy

BFsk — J(a*) Tyt = —Vf(zF) (1)

J(@*)s® = —c(a") (2)
(1) + (2) — (Sk)TVf(CEk) — _(Sk)TBk:Sk: + (Sk)TJ(mk)Tyk+1
— _(Sk)TBk:Sk . C(wk)Tyk+1 (3)

(2) = c(a*)"T(")s" = —[le(™)|I*. (4)
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Suitable merit functions for SQP ...

Proof of Theorem 30: (continued) @(z) = f(=) + sz llc(@)?
Since z* is not KKT, then either ¢(z*) # 0 and so from (4),

sk #£ 0. Or there is no y such that v f(z*) = J(z*)Ty; in
particular, v f(z*) # J(z*)Ty*+* and so from (1), Bks* £ 0 and
SO s* £ 0 since B* is positive definite in the feasible set
{s:J(x*)s = —c(zF)}. It remains to show that

(s TV, .®(z*, o*) < 0. To see this, calculate

()T VB (2, o) = (sk)T(Vf(w"’) + J(kac(wk))

IIC(w"")II2

wT, by (3), (4)

c(z®)||? :
< —c(xk)Tyktt — le(@ )” , since (s*)TBksk >0

— —(s*)TBksk — c(a*)Tyk+! —

k
3||c(mk>||<||yk+l|| e )”>, by Cauchy-Schwarz

<0 and so s*is descent for ®(x*, o%). O
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Suitable merit functions for SQP ...

Other suitable merit functions:

The non-differentiable exact penalty function: [widely used]
U(z,p) = f(z) + pllc(z)||, where || - || can be any norm and p > o.
m recall that minimizers of (eCP) correspond to those of ¥ (x, p)
for p sufficiently large (and finite! p > ||y*||);
m equivalent of Th 30 holds (p* > ||y**+1||).
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The Maratos effect

m merit function may prevent acceptance of the full SQP step
(so o* #£ 1) arbitrarily close to z* — slow convergence
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f(z) = 2(x2 4+ 22 — 1) — z; and ¢(z) = =2 + z2 — 1, solution:
z* = (1,0), y* = 3. Here: ¢, non-differentiable exact penalty
function (p = 1) but other merit fcts. have similar behaviour.
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Avoiding the Maratos effect

The Maratos effect occurs because the curvature of the
constraints is not adequately represented by linearisation in
the SQP model:

c(z® + s*) = O(||s*|1?)
— need to correct for this curvature

Use a second-order correction from z* + s*:
c(z® 4+ s* + s&) = o(||s"11?).

Also, do not want to destroy potential for fast convergence
—> sk = o(sh).

B minimum norm solution to ¢(z* + s*) + J(z* + s*)sk, = 0;
or to c(z* + s*) + J(z*)sk =0
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Second-order corrections in action

f(x) =2(2? + 22 — 1) —z; and c(z) = 22 + =2 — 1, solution:
9 — (1,0), y* = 3.

m fast convergence
m :* 4 s* 4+ s% reduces # — global convergence
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Topics not covered - for constrained optimization

m trust-region SQP methods
m the S¢,QP method
m the filter-SQP approach

m active-set methods for linearly-constrained nonlinear
problems (ie, generalization of simplex methods from the
LP to the nonlinear case)
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