Proof of Second Order Necessary Optimality Conditions for Constrained Problems Theorem 19

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

<u>Theorem 19</u> (Second-order necessary conditions) Let some CQ hold for (CP). Let x^* be a local minimizer of (CP), and (y^*, λ^*) Lagrange multipliers of the KKT conditions at x^* . Then

 $s^T \nabla^2_{xx} \mathcal{L}(x^*, y^*, \lambda^*) s \ge 0$ for all $s \in F(\lambda^*)$,

where $\mathcal{L}(x, y, \lambda) = f(x) - y^T c_E(x) - \lambda^T c_I(x)$ is the Lagrangian function.

Proof of Theorem 19 (for equality constraints only) [NON-EXAMINABLE]: Let $I = \emptyset$ and so $\mathcal{F}(x^*) = F(\lambda^*)$. We have to show that

 $s^T \nabla^2_{xx} \mathcal{L}(x^*, y^*, \lambda^*) s \ge 0$ for all s such that $J_E(x^*) s = 0$.

As in the proof of Th16, we consider feasible perturbations/paths $x(\alpha)$ around x^* , where α (sufficiently small) scalar, $x(\alpha) \in C^2(\mathbb{R}^n)$ and

Second-order optimality conditions...

Proof of Theorem 19 (for equality constraints only) (continued) $x(0) = x^*, x(\alpha) = x^* + \alpha s + \frac{1}{2}\alpha^2 p + \mathcal{O}(\alpha^3), \text{ and } c(x(\alpha)) = 0^{(\dagger)}.$ (†) requires constraint qualifications, namely, assuming the existence of $s \neq 0, p \neq 0$ with above properties.

For any $i \in E$, by Taylor's theorem for $c_i(x(\alpha))$ around x^* ,

$$\begin{array}{lll} 0 &=& c_i(x(\alpha)) = c_i(x^* + \alpha s + \frac{1}{2}\alpha^2 p + \mathcal{O}(\alpha^3)) \\ &=& c_i(x^*) + \nabla c_i(x^*)^T (\alpha s + \frac{1}{2}\alpha^2 p) + \frac{1}{2}\alpha^2 s^T \nabla^2 c_i(x^*) s + \mathcal{O}(\alpha^3) \\ &=& \alpha \nabla c_i(x^*)^T s + \frac{1}{2}\alpha^2 \left[\nabla c_i(x^*)^T p + s^T \nabla^2 c_i(x^*) s \right] + \mathcal{O}(\alpha^3). \end{array}$$

where we used $c_i(x^*) = 0$. Thus for all $i \in E$,

$$\begin{aligned} \nabla c_i(x^*)^T s &= 0 \text{ and } \nabla c_i(x^*)^T p + s^T \nabla^2 c_i(x^*) s = 0, \\ \text{and so } J_E(x^*)s &= 0. \text{ Now expanding } f, \text{ we deduce} \\ f(x(\alpha)) &= f(x^*) + \nabla f(x^*)^T (\alpha s + \frac{1}{2}\alpha^2 p) + \frac{1}{2}\alpha^2 s^T \nabla^2 f(x^*) s + \mathcal{O}(\alpha^3) \\ &= f(x^*) + \alpha \nabla f(x^*)^T s + \frac{1}{2}\alpha^2 \left[\nabla f(x^*)^T p + s^T \nabla^2 f(x^*) s \right] + \mathcal{O}(\alpha^3). \end{aligned}$$

Proof of Theorem 19 (for equality constraints only):(continued) As x^* is a local minimizer, we must have that

$$abla f(x^*)^T p + s^T
abla^2 f(x^*) s \ge 0.$$
 (*)

From the KKT conditions, $\nabla f(x^*) = J_E(x^*)^T y^*$ and so

$$abla f(x^*)^T p = (y^*)^T J_E(x^*) p = -\sum_{i \in E} y_i^* s^T \nabla^2 c_i(x^*) s.$$
 (**)

From (*) and (**), we deduce

$$egin{array}{rcl} 0 &\leq & s^T
abla^2 f(x^*) s - \sum_{i \in E} y_i^* s^T
abla^2 c_i(x^*) s \ &= & s^T [
abla^2 f(x^*) - \sum_{i \in E}
abla^2 c_i(x^*)] s \ &= & s^T
abla^2_{xx} \mathcal{L}(x^*,y^*) s. & \Box \end{array}$$