
C6.2/B2. Continuous Optimization

Problem Sheet 4 – Solution of Problem 1

Problem 1. The fundamental theorem of linear inequalities, also known as Farkas’ Lemma states that:
given any vectors b ∈ Rn and ai ∈ Rn, i ∈ {1, . . . ,m}, the set

{s : bT s < 0 and aTi s ≥ 0, i ∈ {1, . . . ,m}}

is empty if and only if

b ∈ C = {
m∑
i=1

aiyi : yi ≥ 0, i ∈ {1, . . . ,m}}.

(In other words, a vector b lies in the cone C generated by the vectors ai if and only if it cannot be
separated from the vectors ai by a separating hyperplane generated by s.) Use this lemma in the next
part of the problem (for appropriate choices of b, ai and m).

Suppose that f : Rn → R and c : Rn → Rp are C1 functions. Let x∗ be a local minimizer of

min
x
f(x) c(x) ≥ 0.

Show that, provided a suitable first-order constraint qualification holds, there exists a vector λ∗ ∈ Rp of
Lagrange multipliers such that

∇f(x∗) = J(x∗)Tλ∗, c(x∗) ≥ 0, λ∗ ≥ 0, λ∗i ci(x
∗) = 0, i ∈ {1, . . . , p}.

(These are the KKT conditions for inequality-constrained problems. Use ideas and approaches from the
proof of Theorem 16; note that we only need a first-order representation of the feasible path in the proof
of Theorem 16. Recall that it is sufficient to consider the active constraints at x∗.)

Solution. (For your interest, a proof of Farkas’ Lemma can be found in many textbooks; see for exam-
ple, page 131 of (the recommended reading) NIM Gould, An Introduction to Algorithms for Continuous
Optimization.) As in the lectures, we are going to consider feasible paths/perturbations around x∗. We
only need to consider active constraints at x∗ (namely, ci(x

∗) = 0, i ∈ A) since the inactive constraints
(ie, ci(x

∗) > 0) remain inactive/strictly satisfied for sufficiently small perturbations around x∗. So we
consider a vector-valued C2 function

x(α) = x∗ + αs+O(α2) such that x(0) = x∗ and ci(x(α)) ≥ 0 for α ≥ 0 suff. small and i ∈ A.

For i ∈ A, we require that
0 ≤ ci(x(α)) = ci(x

∗ + αs+O(α2))

= ci(x
∗) + α∇ci(x∗)T s+O(α2)

= α∇ci(x∗)T s+O(α2)

where in the last equality we used ci(x
∗) = 0. Dividing the last displayed relation by α > 0, we deduce

0 ≤ ∇ci(x∗)T s+O(α).
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Letting α −→ 0, we obtain
∇ci(x∗)T s ≥ 0, i ∈ A, (1)

which expresses the feasibility requirement on the directions s. Now expanding f(x(α)) (same as in the
proof of Theorem 19, except first-order expansion is sufficient), we obtain

f(x(α)) = f(x∗) + α∇f(x∗)T s+O(α2).

Along x(α), f(α) is essentially unconstrained and so x∗ cannot be a local minimizer if (we have the same
descent condition as in the unconstrained case, namely) ∇f(x∗)T s < 0. Thus, recalling (1), the set of
feasible descent directions

{s : ∇f(x∗)T s < 0 ∇ci(x∗)T s ≥ 0, i ∈ A}. (2)

must be empty if x∗ is a local minimizer. We can now apply Farkas’ Lemma to the set in (2) with
b = ∇f(x∗), ai = ∇ci(x∗) and m = |A|. We deduce that there exists multipliers λi ≥ 0, i ∈ A, such
that ∇f(x∗) =

∑
i∈A λi∇ci(x∗). Clearly, the complementarity conditions λici(x

∗) = 0 for all i hold for
the already-defined multipliers corresponding to the active constraints in ∈ A since for those, ci(x

∗) = 0.
For i /∈ A, let λi = 0. The feasibility requirement c(x∗) ≥ 0 is clearly true for any minimizer of the
constrained problem. End of solution.
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