(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 102739, 2318] NotebookOptionsPosition[ 100568, 2241] NotebookOutlinePosition[ 100956, 2258] CellTagsIndexPosition[ 100913, 2255] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[BoxData[ RowBox[{"ClearAll", "[", "\"\\"", "]"}]], "Input"], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Lambda]", "2"], "-", RowBox[{"4", "\[Beta]"}]}], ">", "0"}], TraditionalForm]], FormatType->"TraditionalForm"]], "Subsubsection", CellChangeTimes->{{3.82323452067421*^9, 3.823234533955266*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"w", "=", RowBox[{"Function", "[", RowBox[{"x", ",", RowBox[{ RowBox[{ SubscriptBox["c", "1"], RowBox[{"Cos", "[", RowBox[{"\[Omega]p", " ", "x"}], "]"}]}], "+", RowBox[{ SubscriptBox["c", "2"], RowBox[{"Cos", "[", RowBox[{"\[Omega]m", " ", "x"}], "]"}]}], "+", RowBox[{ SubscriptBox["c", "3"], RowBox[{"Sin", "[", RowBox[{"\[Omega]p", " ", "x"}], "]"}]}], "+", RowBox[{ SubscriptBox["c", "4"], RowBox[{"Sin", "[", RowBox[{"\[Omega]m", " ", "x"}], "]"}]}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"BC", "=", RowBox[{"{", RowBox[{ RowBox[{"w", "[", "1", "]"}], ",", RowBox[{"w", "[", RowBox[{"-", "1"}], "]"}], ",", RowBox[{ RowBox[{"w", "'"}], "[", "1", "]"}], ",", RowBox[{ RowBox[{"w", "'"}], "[", RowBox[{"-", "1"}], "]"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"matrix", " ", "of", " ", "coefficients"}], " ", "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"M", "=", RowBox[{"IdentityMatrix", "[", "4", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"For", "[", RowBox[{ RowBox[{"i", "=", "1"}], ",", RowBox[{"i", "\[LessEqual]", "4"}], ",", RowBox[{"i", "++"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"For", "[", RowBox[{ RowBox[{"j", "=", "1"}], ",", RowBox[{"j", "\[LessEqual]", "4"}], ",", RowBox[{"j", "++"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"M", "[", RowBox[{"[", RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", RowBox[{"Coefficient", "[", RowBox[{ RowBox[{"BC", "[", RowBox[{"[", "i", "]"}], "]"}], ",", SubscriptBox["c", "j"]}], "]"}]}], ";"}]}], "\[IndentingNewLine]", "]"}], ";"}]}], "\[IndentingNewLine]", "]"}], ";"}]}], "Input", CellChangeTimes->{{3.791611760994711*^9, 3.7916118740831747`*^9}, 3.791612168870183*^9, {3.791612422098874*^9, 3.791612423075547*^9}, { 3.791612542214115*^9, 3.791612555230419*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Factor", "[", RowBox[{"Det", "[", "M", "]"}], "]"}]], "Input", CellChangeTimes->{{3.791612151702128*^9, 3.791612155938212*^9}, { 3.791612247736882*^9, 3.791612302148965*^9}, {3.7916124083065023`*^9, 3.791612410673744*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"-", "4"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]p"}], " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]m", "]"}]}], "+", RowBox[{"\[Omega]m", " ", RowBox[{"Cos", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[Omega]m", " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]m", "]"}]}], "-", RowBox[{"\[Omega]p", " ", RowBox[{"Cos", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}]}], ")"}]}]], "Output", CellChangeTimes->{{3.791612156678718*^9, 3.7916121783079042`*^9}, { 3.791612250826696*^9, 3.791612302492021*^9}, 3.791612411056982*^9, 3.791612859942855*^9, 3.791613236891102*^9, 3.791613461229067*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Cond1", "=", RowBox[{ RowBox[{"\[Omega]m", " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]m", "]"}]}], "-", RowBox[{"\[Omega]p", " ", RowBox[{"Cos", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Cond2", "=", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]p"}], " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]m", "]"}]}], "+", RowBox[{"\[Omega]m", " ", RowBox[{"Cos", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{ "solving", " ", "for", " ", "the", " ", "coefficients", " ", "in", " ", "each", " ", "case"}], " ", "*)"}]}], "\[IndentingNewLine]", RowBox[{"SolCoeff1", "=", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"BC", "[", RowBox[{"[", "2", "]"}], "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{"BC", "[", RowBox[{"[", "3", "]"}], "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{"BC", "[", RowBox[{"[", "4", "]"}], "]"}], "\[Equal]", "0"}]}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["c", "2"], ",", SubscriptBox["c", "3"], ",", SubscriptBox["c", "4"]}], "}"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"SolCoeff2", "=", RowBox[{ RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"BC", "[", RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{"BC", "[", RowBox[{"[", "2", "]"}], "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{"BC", "[", RowBox[{"[", "4", "]"}], "]"}], "\[Equal]", "0"}]}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["c", "1"], ",", SubscriptBox["c", "2"], ",", SubscriptBox["c", "4"]}], "}"}]}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Omega]p", "=", RowBox[{"Sqrt", "[", FractionBox[ RowBox[{"(", RowBox[{"\[Lambda]", "+", RowBox[{"Sqrt", "[", RowBox[{ SuperscriptBox["\[Lambda]", "2"], "-", RowBox[{"4", "\[Beta]"}]}], "]"}]}], ")"}], "2"], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Omega]m", "=", RowBox[{"Sqrt", "[", FractionBox[ RowBox[{"(", RowBox[{"\[Lambda]", "-", RowBox[{"Sqrt", "[", RowBox[{ SuperscriptBox["\[Lambda]", "2"], "-", RowBox[{"4", "\[Beta]"}]}], "]"}]}], ")"}], "2"], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.7916124432424717`*^9, 3.7916124589604683`*^9}, { 3.79161283209475*^9, 3.791612839604773*^9}, {3.791613199617588*^9, 3.7916132304560623`*^9}, {3.791613357238571*^9, 3.7916133680069838`*^9}, { 3.79161339968863*^9, 3.791613420196672*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["c", "2"], "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{"\[Omega]p", " ", RowBox[{"Csc", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}], " ", SubscriptBox["c", "1"]}], "\[Omega]m"]}]}], ",", RowBox[{ SubscriptBox["c", "3"], "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]m"}], " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Cot", "[", "\[Omega]m", "]"}], " ", SubscriptBox["c", "1"]}], "+", RowBox[{"\[Omega]p", " ", SuperscriptBox[ RowBox[{"Cot", "[", "\[Omega]m", "]"}], "2"], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}], " ", SubscriptBox["c", "1"]}]}], RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]p"}], " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}]}], "+", RowBox[{"\[Omega]m", " ", RowBox[{"Cot", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}]}]]}]}], ",", RowBox[{ SubscriptBox["c", "4"], "\[Rule]", FractionBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]m"}], " ", "\[Omega]p", " ", SuperscriptBox[ RowBox[{"Cos", "[", "\[Omega]p", "]"}], "2"], " ", RowBox[{"Sec", "[", "\[Omega]m", "]"}]}], "+", RowBox[{ SuperscriptBox["\[Omega]p", "2"], " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Csc", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}]}], ")"}], " ", SubscriptBox["c", "1"]}], RowBox[{"\[Omega]m", " ", RowBox[{"(", RowBox[{ RowBox[{"\[Omega]m", " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}], "-", RowBox[{"\[Omega]p", " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Tan", "[", "\[Omega]m", "]"}]}]}], ")"}]}]]}]}], "}"}]], "Output", CellChangeTimes->{3.791612860002911*^9, 3.791613016134263*^9, 3.791613237681189*^9, 3.791613461277913*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ SubscriptBox["c", "1"], "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"Cot", "[", "\[Omega]m", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"-", "\[Omega]p"}], " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]m", "]"}], " ", SubscriptBox["c", "3"]}], "+", RowBox[{"\[Omega]m", " ", RowBox[{"Cos", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}], " ", SubscriptBox["c", "3"]}]}], ")"}]}], RowBox[{ RowBox[{"\[Omega]m", " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]m", "]"}]}], "-", RowBox[{"\[Omega]p", " ", RowBox[{"Cos", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}]}]]}]}], ",", RowBox[{ SubscriptBox["c", "2"], "\[Rule]", RowBox[{"-", FractionBox[ RowBox[{ RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", RowBox[{"Csc", "[", "\[Omega]m", "]"}], " ", RowBox[{"(", RowBox[{ RowBox[{"\[Omega]p", " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}], " ", SubscriptBox["c", "3"]}], "-", RowBox[{"\[Omega]m", " ", RowBox[{"Cot", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}], " ", SubscriptBox["c", "3"]}]}], ")"}]}], RowBox[{ RowBox[{"\[Omega]m", " ", RowBox[{"Cos", "[", "\[Omega]p", "]"}]}], "-", RowBox[{"\[Omega]p", " ", RowBox[{"Cot", "[", "\[Omega]m", "]"}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}]}]}]]}]}], ",", RowBox[{ SubscriptBox["c", "4"], "\[Rule]", RowBox[{ RowBox[{"-", RowBox[{"Csc", "[", "\[Omega]m", "]"}]}], " ", RowBox[{"Sin", "[", "\[Omega]p", "]"}], " ", SubscriptBox["c", "3"]}]}]}], "}"}]], "Output", CellChangeTimes->{3.791612860002911*^9, 3.791613016134263*^9, 3.791613237681189*^9, 3.791613461287404*^9}] }, Open ]], Cell["\<\ Note the stiffness of the foundation lives in the parameter \[Beta]\ \>", "Text", CellChangeTimes->{{3.79161247571152*^9, 3.791612484247334*^9}}] }, Closed]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ SuperscriptBox["\[Lambda]", "2"], "-", RowBox[{"4", "\[Beta]"}]}], "<", "0"}], TraditionalForm]], FormatType->"TraditionalForm"]], "Subsubsection", CellChangeTimes->{{3.82323452067421*^9, 3.8232345489225883`*^9}}], Cell[TextData[{ "We have ", Cell[BoxData[ FormBox[ RowBox[{ SuperscriptBox["\[Omega]", "2"], "=", RowBox[{ FractionBox[ RowBox[{"-", "\[Lambda]"}], "2"], "\\", "pm", " ", "\\", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"4", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]}]}]}], TraditionalForm]], FormatType->"TraditionalForm"], "] i\nTaking ", Cell[BoxData[ FormBox[ RowBox[{"\[Omega]", "=", "a"}], TraditionalForm]], FormatType->"TraditionalForm"], "+b i, can solve for a, b:" }], "Text", CellChangeTimes->{{3.82323799719888*^9, 3.8232380866045*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"S1", "=", RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["a1", "2"], "-", SuperscriptBox["b1", "2"]}], "\[Equal]", FractionBox[ RowBox[{"-", "\[Lambda]"}], "2"]}], ",", RowBox[{ RowBox[{"4", "a1", " ", "b1"}], "\[Equal]", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"4", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"a1", ",", "b1"}], "}"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{"S2", "=", RowBox[{"Solve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["a2", "2"], "-", SuperscriptBox["b2", "2"]}], "\[Equal]", FractionBox[ RowBox[{"-", "\[Lambda]"}], "2"]}], ",", RowBox[{ RowBox[{"4", "a2", " ", "b2"}], "\[Equal]", RowBox[{"-", RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"4", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], "]"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"a2", ",", "b2"}], "}"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.823234553052166*^9, 3.823234610903667*^9}, { 3.823235088207786*^9, 3.823235098836597*^9}, 3.823237639014359*^9, { 3.823237719597753*^9, 3.8232377412477827`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"a1", "\[Rule]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]]}]}], ",", RowBox[{"b1", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}], "-", RowBox[{ SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", "\[Lambda]", " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"a1", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]]}]}], ",", RowBox[{"b1", "\[Rule]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}], "+", RowBox[{ SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", "\[Lambda]", " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"a1", "\[Rule]", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox[ SqrtBox["\[Beta]"], "2"], "-", FractionBox["\[Lambda]", "4"]}]]}]}], ",", RowBox[{"b1", "\[Rule]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"], " ", SqrtBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}], "-", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", "\[Lambda]", " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"a1", "\[Rule]", SqrtBox[ RowBox[{ FractionBox[ SqrtBox["\[Beta]"], "2"], "-", FractionBox["\[Lambda]", "4"]}]]}], ",", RowBox[{"b1", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"], " ", SqrtBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}], "+", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", "\[Lambda]", " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], ")"}]}]]}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.823234611531666*^9, 3.8232350992184887`*^9, 3.823237643522438*^9, 3.823237741598793*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"a2", "\[Rule]", RowBox[{ FractionBox["1", "2"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]]}]}], ",", RowBox[{"b2", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}], "-", RowBox[{ SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", "\[Lambda]", " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"a2", "\[Rule]", RowBox[{ RowBox[{"-", FractionBox["1", "2"]}], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]]}]}], ",", RowBox[{"b2", "\[Rule]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"], " ", SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}], "+", RowBox[{ SqrtBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", "\[Lambda]", " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"a2", "\[Rule]", SqrtBox[ RowBox[{ FractionBox[ SqrtBox["\[Beta]"], "2"], "-", FractionBox["\[Lambda]", "4"]}]]}], ",", RowBox[{"b2", "\[Rule]", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", "2"}], " ", SqrtBox["\[Beta]"], " ", SqrtBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}], "-", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", "\[Lambda]", " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], ")"}]}]]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"a2", "\[Rule]", RowBox[{"-", SqrtBox[ RowBox[{ FractionBox[ SqrtBox["\[Beta]"], "2"], "-", FractionBox["\[Lambda]", "4"]}]]}]}], ",", RowBox[{"b2", "\[Rule]", FractionBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"], " ", SqrtBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}], "+", RowBox[{ SqrtBox[ RowBox[{ RowBox[{"2", " ", SqrtBox["\[Beta]"]}], "-", "\[Lambda]"}]], " ", "\[Lambda]", " ", SqrtBox[ RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}]]}]}], RowBox[{"2", " ", RowBox[{"(", RowBox[{ RowBox[{"4", " ", "\[Beta]"}], "-", SuperscriptBox["\[Lambda]", "2"]}], ")"}]}]]}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.823234611531666*^9, 3.8232350992184887`*^9, 3.823237643522438*^9, 3.823237741656933*^9}] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"w", "=", RowBox[{"Function", "[", RowBox[{"x", ",", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{"a1", " ", "x"}], "]"}], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["c", "1"], RowBox[{"Cos", "[", RowBox[{"b1", " ", "x"}], "]"}]}], "+", RowBox[{ SubscriptBox["c", "2"], RowBox[{"Sin", "[", RowBox[{"b2", " ", "x"}], "]"}]}]}], ")"}]}], "+", RowBox[{ RowBox[{"Exp", "[", RowBox[{"a2", " ", "x"}], "]"}], RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox["c", "3"], RowBox[{"Cos", "[", RowBox[{"b2", " ", "x"}], "]"}]}], "+", RowBox[{ SubscriptBox["c", "4"], RowBox[{"Sin", "[", RowBox[{"b2", " ", "x"}], "]"}]}]}], ")"}]}]}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"BC", "=", RowBox[{"{", RowBox[{ RowBox[{"w", "[", "1", "]"}], ",", RowBox[{"w", "[", RowBox[{"-", "1"}], "]"}], ",", RowBox[{ RowBox[{"w", "'"}], "[", "1", "]"}], ",", RowBox[{ RowBox[{"w", "'"}], "[", RowBox[{"-", "1"}], "]"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"(*", " ", RowBox[{"matrix", " ", "of", " ", "coefficients"}], " ", "*)"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"M", "=", RowBox[{"IdentityMatrix", "[", "4", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"For", "[", RowBox[{ RowBox[{"i", "=", "1"}], ",", RowBox[{"i", "\[LessEqual]", "4"}], ",", RowBox[{"i", "++"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"For", "[", RowBox[{ RowBox[{"j", "=", "1"}], ",", RowBox[{"j", "\[LessEqual]", "4"}], ",", RowBox[{"j", "++"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"M", "[", RowBox[{"[", RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", RowBox[{"Coefficient", "[", RowBox[{ RowBox[{"BC", "[", RowBox[{"[", "i", "]"}], "]"}], ",", SubscriptBox["c", "j"]}], "]"}]}], ";"}]}], "\[IndentingNewLine]", "]"}], ";"}]}], "\[IndentingNewLine]", "]"}], ";"}]}], "Input", CellChangeTimes->{{3.791611760994711*^9, 3.7916118740831747`*^9}, 3.791612168870183*^9, {3.791612422098874*^9, 3.791612423075547*^9}, { 3.791612542214115*^9, 3.791612555230419*^9}, {3.823234920787174*^9, 3.823234972209703*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Det", "[", "M", "]"}], "/.", RowBox[{"S1", "[", RowBox[{"[", "3", "]"}], "]"}]}], "/.", RowBox[{"S2", "[", RowBox[{"[", "3", "]"}], "]"}]}], "/.", RowBox[{"\[Beta]", "\[Rule]", "10"}]}], ",", RowBox[{"{", RowBox[{"\[Lambda]", ",", "0", ",", RowBox[{"Sqrt", "[", "40", "]"}]}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.823237963634912*^9, 3.823237975032565*^9}}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAAyYwPOeZSgT4Z6JDvU41twDuLutxW yF8/Cqxjb8yJbcD9piGREchvP6ktKuxEhm3A3jRV6+7Hfz+IZvncNX9twM77 bpjdx48/Q0FwnhdxbcBG3/vu1MefP4c0KLfaVG3AAlFCmtDHrz+ndMfxXxxt wOCJ5W/Ox78/SQo0CGyrbMA5gLJk/I7QP/Xf+E6+tmvA0bpAduWZ2D9t+k2O 5dJqwNSrZ6U1PuA/KmteiXP0acDJcFprA4XkP8gX42qQBGnAKcS3VcGC6D+l jv2qVSZowBKOwBsK1uw/fS8+uKI3Z8CNxKShkIrwP24AudHET2bAR4meR5SF 8j87ip1U9nllwEUJbltdq/Q/1sKWuhWVZMB50HKBnqz2PyWSeNRswmPAPbA3 2Maj+D+n89WO7PZiwEZL0py0xfo/01zyybIdYsCELaJzGsP8P3XC7XOIVmHA B8tHuEXr/j9ITiZcqYJgwI3A1hashABA5dJtO8ZtX8AxP6RacYEBQCUhuCd8 +V3Ad5tcVZmTAkAYH46bcm5cwFibL1l9kwNAzVk0CyUGW8DbeO0TxKgEQM5g 82gZiVnApmILZ/64BUBXoI/CpBxYwAzwQ8P0tgZANVta1GTRVsAUW2fWTcoH QD94HMvpc1XAt2ml8mLLCECaotVAxzZUwKKEQ6drxwlA9JPqLoYIU8AvfcwS 19gKQDxtfP1cylHAVxlwh/7XC0AgOGOwoapQwCGT/rKI7AxAHbzxVJv5TsAz Ge12BvwNQGDADiA/vUzA4EL2Q0D5DkAbBOBaeLlKwBgl9WPuBRBAF35tKMqd SMCNenyqGoYQQGRBVRhguEbAJtYzvcADEUC29X+Qou1EwJCgYCsYjBFAfQan XuIOQ8DIvBqeTQsSQMk3PxPpYUHA0UdKbDSVEkDSuLyx/Uc/wKckBz/5FRNA RCm+t70qPMChB/TdN5QTQDZJsPADPjnAbFlW2CcdFECkvFeKNjY2wAX9Rdf1 nBRAKjm5lMiDM8BvD6sxdScVQKPidEmsuzDA/SdAWG6vFUD3hXbv4UgswFiS YoNFLhZAZjP5/ICyJ8CEa/oJzrcWQOxUekKK/CLAfpYflTQ4F0CoLM+zeakd wJzHdOwUthdArvWLq7b1FcCLZz+fpj4YQKdh4DrVLgzAR1mXVha+GEB0JYhy Ecr8v4K/BV5PwBhA/u/6Ns1S/L++JXRliMIYQL7dEKqq2/u/NvJQdPrGGEAK RAyOyu36vySLCpLezxhA+ap96p0T+b8CvX3NpuEYQK/xVt6PZfW/viBkRDcF GUCMyfzZD0Xsv/qG0ktwBxlALyf9WOVe67827UBTqQkZQND3rlL9eOq/rbkd YhsOGUCbR7OZ9K3ov5xS13//FhlAGhH6rv8a5b96hEq7xygZQD4+mHUDA9y/ tuq4wgArGUBWubEc9z7av/JQJ8o5LRlAOH0i1W572L9pHQTZqzEZQBwi5kDq 9dS/WLa99o86GUBw74/nHuLLv5QcLP7IPBlA7K/oKkRiyL/QgpoFAj8ZQBwt Maxw48S/R093FHRDGUAQdx7svdG7v4K15RutRRlAUGC+CkHatL++G1Qj5kcZ QDCtToCjyau/+oHCKh9KGUAg8ypMv8WbvzboMDJYTBlAAACIWBYKu74Gsl2o "]]}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotRange-> NCache[{{0, 2 10^Rational[1, 2]}, {-236.41649606992794`, 0.}}, {{ 0, 6.324555320336759}, {-236.41649606992794`, 0.}}], PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.823237968860507*^9, 3.8232379763042917`*^9}}] }, Open ]], Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Det", "[", "M", "]"}], "/.", RowBox[{"S1", "[", RowBox[{"[", "3", "]"}], "]"}]}], "/.", RowBox[{"S2", "[", RowBox[{"[", "3", "]"}], "]"}]}], "/.", RowBox[{"\[Beta]", "\[Rule]", "b"}]}], ",", RowBox[{"{", RowBox[{"\[Lambda]", ",", "0", ",", RowBox[{"Sqrt", "[", RowBox[{"4", "b"}], "]"}]}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"b", ",", "10"}], "}"}], ",", "1", ",", "100"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.823237663120253*^9, 3.8232377034580107`*^9}, { 3.8232378028640823`*^9, 3.82323793234451*^9}}] }, Closed]], Cell[CellGroupData[{ Cell["For small \[Beta]:", "Subsubsection", CellChangeTimes->{{3.7916124896791773`*^9, 3.791612497671035*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Beta]", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"{", RowBox[{"Cond1", ",", "Cond2"}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"\[Lambda]", ",", RowBox[{"2", "\[Beta]"}], ",", RowBox[{"30", "\[Beta]"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Blue", ",", "Red"}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.791612499356618*^9, 3.7916125024390297`*^9}, { 3.791612587100358*^9, 3.791612636155053*^9}, {3.791613442469906*^9, 3.791613445044868*^9}}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1nk8lF8XAPCxln3mGVu2UETaxJhnaDiVJULSYklRIbJTSglJiVRKiETR Dy2EIkVukmhBESI7EUVZwsyU3vv+NZ/vZ57lPPece+5ROxBg78FPoVCq+SiU ///2qpdY4x+gPJ5zUhC0R1zZ6JwUGgWia5aPfjauRrJi9txVyyiQvdvzw5Rr PVr/T217jT4FNKXEX/K3NSDb6ck8J3MKTPSlPrdhfkSHR6oXfjpQQEScLH+8 oQWd+3Jl1zlvCqQmybjkSbWiqhpdgUcJFLCVoVZftPqMOp/wOVtmUoBNmAyN ow40e/9jUe9DChx+dS7FX/ULWnMtaJ94CwWem65y31jYjazObyzNHqLAXCld v6G3B3mG08RZsxSQ+XUzMYu/D2W6Fz/1WMIHzF96h7bL96Nnjqepf1byQdGj 5FsbM/pRm/X2Q1c38EHiu4dHlZUGkCRjUhq58sGVl4kNX6iDKEJIN1A+lw8i nqX9sm4dQukcSl3hEz7Ynhjy8IPJV1Q2/kHZ7A0fvDgkeeFf3lc00Rr4LugH H3hpuJv1BA2jfblFmu/W84NzrhzETYygE+lRp/ab8sPI9SAZL8tvKOWS3ae5 XfzQdUzh6+Psb6gx9Nfp5WH8ULZVxa/DbhQZW6zrPoX4ITD/qHdHxhhS+fYw aZ21ADAvjC4P/vsDGXZFjr3eKwDmgrpHKWbjaPeHbRv3BggAf+mhvv8ujKNL 5T8n4q4KwGN7jWe2shNo4fxaq8HPAiDvxg4pVfuJurUfUlI8BOHOxj3iEfG/ 0NW6Xom844Ig8Xy37P17v5C5B1Wx/IIgXOePXgh7+wsV3QpidBYLgqtOrJGQ yCSKkdM/rLIgCIvk27kC0ZNoldDTltwUIQhxVLPj95hC/dmjfU/uCgEHdX2T jppCKaAwUV8pBNtq30X1p08hSvjJxd8HhGA8MZpa0DSFWqbY7LVrhUGl8UfU SoNpdKLvZe6TOmFg+STXJMxNo7UR04/qO4UhQSSkuURyBg0pLq/uGBcGbuCI /G2NGWTrcPYLj74IAhslJDrsZ5B6owUV3BbBMRfV7vp7M+hNxfuw+vlFcJjd Grp6+28kn9pm3aEtAsaf1kQknJxFhqpnh3KNRGD0daFT3oVZ5HJXL/yIjQjE pw6xsm7MolsVifelgkTg19lVaisqZpFWn5WoebkIBOqdmsmcn0WkNqorMReF C6qi2zz95pBziZ9rlKMoTHjd/hdwcg6FGynN2RwWBR9HvuvOcXPohU2Y5uhF URB8LePQcmcObQnWO7u0VRTUj76uduycQw4VeZsSDooB+3uoZ4/JPDpuurvT 6agYfB2p0ZG0nkfpDYLBK2LFwLlhsFvNcR719O6//fKeGOw+mV7yO2AeeQoq UTiTYjAm35uzI3MehdokPveIEgfZJ+3SYrPzKKX3OGlyUwJy9m/+cuAqB+kb m3s/KpSA7qz7FqtucNDHDHr6ihcSkBAnP9WTw0HizoU8qUEJsItX96OUctCZ T4NVfVqSsMSNr9+gjYMC39iaRT+WBF3dKOHz0lwkqaUUOlsrCfzJ7/wnFbno wbnR3MPtkhAbV51rtoyLRjbHLN7BlYQnw1f6C3W5aF/V03fLQAp2furhnLPh oq2PltvXvpOCQ4fLX7id5qJvtKloVrcU3NCuDjsdy0XnAtGjggkpcJ+wdb50 kYv6ZQtE3y2mwsFQ537fNC5S+mTh+0iHCvOmrtomRVzkc6Ywxk+fCsoh3I01 pVz0bL3MzRVsKmRVxinpV3CR45WBhhu2VOAfKdnfVctFSban1sYEUeFi32Id y04uGvg7aGF8ggpLhZk7GL1ctK7Aym0+mgrydd0NkkNc1Cgmf8X3GhXmHJdR 4se5SPRNydTOJ1SwW/WLmfOPi6I2fyvV+EuFHuX2MwGqPHTDIlL7pjANWCoi YvHLeahsq+xNaSoNfr91abqsxUPjO0xjBJbR4Ge/4r6963jI2f2Wff8WGrQt xJTwm/BQqBfztaM9DVx8PTeFbeKhK76NrA97aEC/8C//ixkP1R/5o4r8afDY 66ipuzUPMc46/sy4RgOfQy8fnXPkIbu4nwekM2kw5feAs3cPD/lePNd2IY8G YtdV8tT28VB28uPnJ57R4OR/GRH+B3moKm2r7lQNDYxlXd7NefBQx82BO94N NDiVLFbr58VD1FxqgmMfDSZsHQRU/XhI517ev6ZR/H9hubdLAA+ZFxqHWEzT wE07+cXZIB46VebrbCBMgLsUNTrrKA+Nva7Xkl5FwO0wQ5XJcB4SeueacYFB wMEm75aUCB5SbZqVEjAhQGbjNFc7iocc2pfPTW4n4IAGrU/+DA8Ff6k47L2H gEvrvlYeieGhS732PX3uBGxbkWRVdZaHXo1E1TYdI2Bf2kSpwnke6vsux7I4 TcAq4yUlq+N4iPez8EFVPAEzpfIZa+J5SHbGTNXgGgEj2pPRyhd4aP18V1LB TRzP8OWjXGybPyGLNPIIkL/9Lro2gYe8KGInM4oIEK5yfxpxkYdiBLMn6M8I cEkS0tK8xENZi1kHLtQQsOPBpu4K7GfiH1r5GwgYE70xYnKZh9qohyxPtBFw 1+v4rhLsSemFysleAqxD1zLoiTwkviR5nfcoATEKlOQD2FrKq+70TRFQ+FDm zC3szWo1co5/CMiCWIkG7H0azheahOgQ+sph0zfsE9qTC+ZSdDjvFLp2Cjt5 9fngKnk6uEZWDYxhF+kuHWao0+HLtnnvZuz3jDKnAh06+Dz53JyPPcKyaVjO oMOxB3w6/tj8xkOQYUyHQQ/+KHVslU0nH9O30KEu0aG3FsfPMie0Lmynw8Gz PrsdsXda3b3Bv4cOGidTpjrw92uaRu78fJAOz6NWtO7Enmfvkij0pYOuXOPS arx+b5k6r88cpUOwPatbBTtDly/SKYIOBkvE5P3xevvrtDPXxtLB0+JzZyHO B2gU/BJMpENrk9a6fpy/QXmnA0W36XD0t16lAs7vY2Kt4rl7dGDIoEXqOP/n xIU+7XlEh5ZP/lKKsTy0klJstqiWDm/sdoUP4Pr5wzm30NVAh4sO3N9FuL4a p12elLTRQfHDrZ1B0bjeRhZr7/tGBz9J69G6SB4y7e/p15ukw7knbnr7cL3K fnmcLsKlw0RzSvwwruenjW7ipWLSMHFR5HxDGA9Rysp/iq2VhtQ/i5t/B/NQ 88NL+f1MafiyKey6Mt4fd+66738C0sCV0X3GxPtny01qywF7afgZW8XY7MND l2O8yp4elQbNFopc+QEecoswDrgcIQ1PJ/OqQ9xwvR6X1vKIlYZjJxXp6ng/ t/m8SKOmSYOGqF/Tbiecrx3ypw5VSsP54dpCtW089Mt6gsGulYYMWbUrIbhf vDR/NUE0SoNplMvBckse8jAMdKvqlYb3MzY8BVMeeqBWv1lGQAYSDihPmZI8 FKGY+WdMTAZuhFZar2Xg/iJzpPSFtAzk/RPpEV/PQzOLVVf4asqAS1pI3W0d HjL6dUy0xlIGHn4VzNNTwfmuWvExMFEGzvveE/1HwftJYs1XgXQZ2BoQ6NLw h4uEXfQ5KTky4CtZYHlxnos2c0DteZkMaG7ZpDrwk4sq9ZyDRLplYM/ix719 3Vz0MD+Blq0tCxHqvilGT7jIdu6qBkNPFt4Id/prlXDRD7M0Vv0GWejjkGcX FXCR1uB/+ye2yULM/LKkjGwuylZGxYahsiDvzjJbhs+Xa1cnt7e8lIWVlc+C 77ty0fr+OQ/P97LQ9Zr3+IUTF31YuxDGaZWFzP2VjfU7uEiiQTR76agsnCYE Cost8Hm1aPmUj5QcbNQfVhlZw0Vh4buvCrrIQQhv+7tvXA7a51nRzPgth/s3 p/dsHAc9W7pdL2NBDkgdVsHKaA6S7RhO4l8sD7WHq7trTnBQ01ZiV5OCPFSX 3j/f4sNBoOvd7gXyMPE2f8jLhoPU/sh23bggD0GWkmnBkhw0dCX4K5/6EnDe qMNhnp9H3s+15xtsFUBx6+3olS54PvFduHnVQQEidIcefLCfQ5cUWzY7uClA 53Cwg7/lHHocFn65L0gB7lmkbk40mEMLjCbN6WsKwHHZRgRQ59C1wiO75L8o QPrxy/Y3X86iF1mo5MAhRdBxKSIGVGeRbPQuv7lIJbBqrgrSfT2D+sNSCo/1 qcCumBVBFqGTKD/gbZZpgirwF9LW501+RwpcA25ZthpkOhXcFDs1hBRVCp99 +qAOAz1NHOWSdjQ+L7CsYmwZkNbzR+9TK5Ctn/uktZIGfGbsi7wWUm9ymFWy fcsWTWgW0lmsY9Nr4lDZ4yTutgKm54I8tuR+M/n0Wab+5GUtqH68Uvk+c9JE /YFOz6N72jAEYwZ2L3+b/JO3dk7tXglnHVp1Am9yTVK7nbyGRFfBnQBn0N/y z4TiZK7CXbYaPHtGSeeXfDDvxzas2LkG5Be9IVy5AlDNoi+YBq0FKJB11poT gpw137WVTNeBcctQn3PLIlgt0Rzr82UdvLRQ8d9aKQKqFvmsLC9dCG4tfpDv JQadDWcy8/nWw2le2GiavAQEU3a/H05dD9GB01N2mZIQcknOVmS5HiQZJYd/ H5UCI++eaL5KPZDuzaxoTqGCb9Y1sR5LfRg/uNXkgRINTpzeuPfnJ31YY3Rh acBlGhhY7eRYtetDz4OK2Q1XaDBJHErO7dCH/bw1qSJJNPC6k9Cwt0cfHove 18tKocGuunb2+xF9iA673lFxkwbrJPxV7nL1gWWc2vjsPg2+Xk/vPaDKgA3p T8SbXtPArmh6f5sPAwLoA7m2HBqEGey+LOLPgNrjBQ2PuTTIriyv3BDIAOnq 9sElf2gwU39KLucIAyL19Xr6FmhwvX9RQ8ApBqSpBokeECSgj1AiRS4zoEo2 a4OuFAEBR00lN5QwIAxo3/iXE3Cdl2sU8JgB/gonJ801CHhxWsQ7u4wB5puf jMZpEkBcaqxZXMGA/ZFpueLaBJTlOoa11jDAY1fhdqE1BCy0+w75tzKg4WDq 4RomniMMk5/dnmfAhZWtKcFW+JxurTEW5DHgmkL26wdbCTAPmnrp+ZcB7ZpE 6VdrfH/etnc6/AYQ0tHasGMbjk9GtKtUzAA+Xq2fUN1JgN2viL9vVAyA/f7i eMReAmi5XjBlagAHhlu6LAMI8N+Y+mqnhQEY3f3RuyeQgLddtVueWBqAnnDu bd8gAqLpy7aH2xrAEhXK/vgQAqaiuvcLOxrAivhTTWV4rmneY39GwccACt9t 9muJJOAabcPrTVcM4PO1wueKl/Hcc/jZl/AkA2j0sdCcxdaqISfLkg2gQ2om tCmRgIojDCWddAPwkU/5EHGVgIH2NcH0HANoWLHP40MyAesy1VSGHhtAj5yR vEkGAe9XLgo9+9kArt5wfGGVT0DKmbMXUCe2NqHHf5cAty6B25wuA+D0el0q x56+SHnv128Ao7IC/9TuE6AwyVHbPYa/b9uZ+pECArye/GjQ/GMAO6n3+Uwe ESBg2qxRv5QJAw0xTKXnBIQfOyI5p8aEuD3HBgqwZ+/JzmksZ0LU26zTxlUE fKPtqT+jxQSnzIIMF4Tj6x08bKLLhJVekeYJ1Ti+k78flm1iQqmzUcDTWgKk HqZe/2rKBB3nLjfD1wScH2CdlrZgwpZ3mhbPsE9aRtgHb2XCq/q2ybI6/D1y i36v3smE1vRTL3LeEKD9SN7wPw8mnM0cttyK57js4Wfqnw4x4eW6trgKbCWF vWICh5mgHParamUjAZKnb3e5+TPh3e66xcJNOH+2KyOVjjGh3e2XYtEHAirH jF4lncff6/XDormFAIZKz4OX8UzQl7nTo/sJz3nbo5InE5jwc52MTyL27fJX ntuuMOEXw9LDqpWAc+dsRMTSmXC9ha+vGM+R29RdbaPvM0HFTWfOtoOAP4cb LvYVMCHg5dSVO9j5j4wajIuY0IZWzMxjU8zkrXmPmdCdISmV2UlAyaGPlkeq 8PdvhFsdX3D9FJnENb9gQpXb0DGNLgJEOQX162qYgCTc5AKxD8bHW4zXMaF3 r3QhXzcB0gWbzTw/4njf/TKS7cH78XdxzKsWJtS1fNjhiO1rrPpKvY0JYo2z emnYtU1/NvV2MsFc0cZGDs+9oVOl4DjEBL6wkq+CfQSoGy2PKhtmQgzHbiMb u+nMVSQ9yoRBg3yPI9haMgHGH8eZsD6tYnEvdgdTa4PVHBNEb0k/+68fr09U ysl8DhM268rt/YS9/o1ghfAfJrjesXzDN0BAvHM/q4ZCwmaxk38dsQ1ytoWp CZAQl3q9Nhp78Pvz8kghEooNljncx95wKp25QZQEjxvP2+axv9UuPpYuTkJR 9I9XyoN4/0keK5uXJGHDi9fhG7HHs3YwSukk2LErLc9iZ74U11ujTELB9CHn BWwrsZPBCUtJOPymIHXJEK7vHaPFY2okvCtQydLD3va1dl2eJglnXrwUd8f+ s1o/UEibBF6ebMgJ7PzQ7IcHdUiwprbnXMamLI5co7qOhM+Xet3LsB/YjftF rCchfWjL7zpsp7Q9BV36JGwx3G/3GVt44M0PQyYJR51YoSPYJSvJVWksEo4r DXj+xt4XkuszZ0SCmb+vOv9XnP9K6fu7jPH1VqP5EthlgmfGHgEJNs+9uXLY B20mtYnNJNwaXJBVww7f8ZBrYUZCyOF9p7WwU5z83p2yIGEu8FXPGuwiV52M R5YkvFhkslYf+63HqO/oVhK6tnYFk9hDPnnspbYkfPW8d9cIeyHIQ3KXHQkL l560sLHljy/rjbcn4ZkwMWmMvT6i/+GLnSSsV67nM8G2jsmKmt1NwvTqb0L/ /98zfu/2VU4k/LgV9ff/z4tKVFQ/sIeE5LGsb/9/X3pKx1TqXhKeX9hZ9/94 Hmek1jS4kpBFK0hbi92YveuawAG8vjLlrtrY3/LpHix3EjyNY5aoY/M//MgI 8CThJlu1bgm2Uull4f+8SNBvTveiYhtU2LR3HiZBrY5/QQjbrlosn+pHQum0 ZywXr/fhujfHzQNISDVqE5zAjmmItQwPIiHnkmtoH3Zmi5lCSQgJ3G+0ro/Y zb3VFcrHSTjRvzqmGPvH18iEHSdIUC4tfZ31//z+YO+NCyeBj5f9NwHbcP7p wkwUCfWNY1v+X087F441rTxDwp3pg3ttsf0FDW65nSWhpjzSk4l9m1qy8X0c Cez2rt3C2M9kAwn+BHy9Ftv4B67fT0prBpmXSHARjVD4iL1Y+15MzlUSEqZ7 i1Ox1dd67eq4RsLdHap+YdgbGJqaUqkk6P6OVHbGDtyYXXfiBgn867v2ymPH W7hdL7pJwsTZ+fHfeH/dsVHxHs4iITshJKQZ+7NTuqj9HRLW5dXuO48NwVdt tAtIGNiXUT6C97fzcTsV14ck/NkU+LsS+0iE5M9rxSSs5CzTuoKdHx+fSCnD 9WLtG2CATc2JbmmvIsGIbRP7/37S2xLsdO4DCT6srrEq3J9W/fwT9b2ZhNnr 43ER2CdEY/PtWvH120snN2BLb7wxp9BJgntrlWIZ7n9bCmuSHw7i/vBdpSsN 98ei89LNn2dJ6Nnvp7YC99e/OZkcNoeEDjtydwvuv1ZISy2Hh/vBhNKuCOyh 3xsC/SgsSNe7VPzhM67vgx6S/KIsOM+4MuLZTsBpdpmVjjILOvJtXZzwedDo CMGJS1kgtCuCPYXPD6Ujb9N+q7HA4r7hWBx22b2eb0iTBRrrynNLm/E8I7co duc6Ftwa2V+4gM8f+ymHmlObWVBlFS7hgM+vZXkcow/eLEgONStTw+el6s08 g5W+LHD8yN+U8go/P2mXbow/C14nH6oWxZaNLNYkQ/D7157X+/kS59/Bm3Yr nAWf3Bq33XuB61G4YzjgMgu2z/WdGq3A+8mz/IpUKQtQn/++hGK8Pi6eCd5P WBB17u+XriICCuylY2uesmB5yQ6DVdi5xoHhx6pY8IZWdbquEM97slqHeutY UCl8IPQXnifCX6dueNjJgqanb8bFcgkw1Tw2YksxBN/RxkbvNHx+dhwJieI3 hJD0e053ruP1vBj8r1jQELqWUMa6U3F8035yMiKGoHU7SNE2hYDkaneLLzRD qLrfV6OeRMCwi33eoWWG0KaSYXwzgYC4pNWHoswN4b+kjhPtEQTMmOtMF28x hMHn9X1Tp3C/5GpFDloZgqqZ+DYJ7PX7l6eabzME76UTpiYnCehco1gn7mgI fN8Lr6fi+W3V28Ur0rwNQfDQx5kleP5rpAwNFycYwtu2Rk1PNwJ83hS8IS4b wlMTvy5rV7y+V489CLliCBeIg8Hr9xGweZlYMCPFEJaKNZtw9xBQbrb+b3mW Iew6ouMe7oDnk/go+osSQ9A3cJ+wsiXgmLQyNH42hLxm4hvNCOdXa3fa2HIj qH6udtmWRoBOYYDEshVGUCPJfiVExf1KP+70Hm0jiC2vEKqUxP0UKr3frzYC OTH7Qg1x/DxHdcNCAyNQ0Bi/Pi6M4z8/0Rm0xQiGT2/9sQ3P96dGzylxfIzg fdwLO9dhGnTee5K16JERDOxR2PHwCQ2CO6QCnIw3QOhfa/6w7TT4uNNvMqp1 A3ywid26uIUKaTrP6hIOsIHRsOQqx5YKnaNHrvF7sCEmwbrzojUVFPLX7j9+ iA1P31moqFlRIX35f9yDvmzQYO5INzXDVk5cbRTKhsJjvYcijaiQIeWZNBrH BlHezOlXK6iQOU1zNS9mw8V99RzFf1LQU/xep/IRG8xJIT1BrhSoBMbO65ax Qd8xL2BsRgqyfvy5olzBBtfhtJmiMSm49XXk1cwrNli2FjE126TgdvvzlTmf 2bDkRvps8QMpGEg+Pif/hQ0bU5SSTuRJgfpOvVeXutlwzVWQtTFbCrI/5O89 McAGxdDY7PpU7DdJidt/4PhPjc+iaHx/rO3eugk2ONutHT1+Ct9vLrKSPcmG 1KSukbXHpSDnZUSN1iwbBs3+il33k4KhKFZi5jwbImrXr7f0koLlJjMu0jw2 mLY5eM4fkAL3v4Xa8X/ZsCanIf+/vVJwp8J79t8/Ngy7/+bYOUrB/wBbgQD4 "]]}, {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1nk8VWsXB/BjKmPmmTORqXtFVIaOZxWRsUREUomICGUsY8rrUiFXhUhk jqLMOUlCmUKKMg85x3B2UkR49/1rf76fvffa07N+a1NcLh51YycQCHvZCIT/ tiPUcgt8AwSsMteRUx+tSkTnpAoToHtPzzbzsUIkwXd09S8FAtTHbygGWJaj XZsU6yZtAlxuPRt8wqsSWf34nu9gTADbzfWftMka5PmtcYNlT4C5SwrclT/q 0Y0vScdunCeANp8VwaaajhqaNDkqEghw9cpm/UPr12iwis3RNJMARwyZLzt8 mtCv4g9PR8oIMDMal5599Q1ST/Fz5u8lQKfLe/vX/m9RpuuzGjdpNhjcO81U Z7Wh2uNRQn/U2EAkZE7Bof4d6rewdk/exwbkmPQjmdfeo227v4vRT7FB5Hws zYG9A4VzafpK5bHBEvnQQMW7LuSc91Tp/S52QHE9PJede1BoWmTYGSN26DGN fvQmvwel3jrSt3yMHQokJ7v+sHpQZyAWpRjCDq9mCdE2Yb3IwERjKIzODh1W Of51CX2IOFN2R8OCAwqG+VmJ1/vRkGoZIdWNE+iF/kiQaxAlt4wI5AdzAodC t7sjbRAZuwnJVsdzgmdU6j21gEH09KHf7sFnnHBuSsvIbWIQxUhqexI3OEEy P4QtofYL+ourpjcvlQtmuai/7hwbQqGjr/OqWrZA366DJdbbR9HO8B8VrYNb 4OCy5EyN/iialFVsHJjfAv5ela2b1qPIyv76lzXRrWDnp3NGKXwUUTtNhOD0 Vog8rZ822zeK2uraQ1pXtkJgq4tK+dUxJHW332JAlQc6dZsVUqvGkR75+mSe Pg/48LQ27mwbR06FWlcvW/KA+tqJxueD4+hhXWKxoB8PVJcvPIxaH0cqo2a8 xtU80JB9oXfHgQmko0pvKTfmBat5t+XplglkX5d/IOEsH3yd6mCuNU+iYCO7 QYcAPjgWZVFs9XESpXVw+ivH8oFB4Tn7pMlJNDxyJvt1ER+88YsbmWafQuc4 5Qi/v/OBv8nrlI8GUyjQMvGlWyQ/6KY2Rn6qmEKpI8E66IEA1PgcOcV3Zxpp GxifrygVANciGWnjh9PoQ4ZomvIrAVgy0Nx6+ck04ncsXROcEID27NuvC1um 0bW+iYZRlW1QwCt+JXxtGvm2WR2Mfr4NwkNcwgdPf0PmFYpHm98LQvZubutX 1Bk0I7wYrTskCFkOpnbh6jPohi+94smCIDAvGxzW1JtBYxJPeN9zC4GPcb5Z oPUMkuszuVCxQwi+zeU+DouYQXeswnbG+AlBImkuMn5gBkUazrzYvi4EvvN3 FWevM1C6SYTqgy3CcNarbJdBEgNVmks8EBMShkW11rrrGQw0b2MUw6EgDNwa TZ6L5Qzk6Prw6NghYXjXnOthOMJAu68fZ2WkCEO5a9Lv9t1MxHzbqiL2lwiM e50Oez3IRFzvT2XE7xaBTAhzqZ5kInLXL0EOJAImHDE/cxaYyP6T4vJ3axH4 xXXL2Il9Fr35FtncFSQCdM+ykKOqsyiLW9clvkkE+o2kpJ0CZpGtWWE6+wlR OPWteUJqyxxSMoqw/XxWFIQHDIsNts2hFdoxgdILorAo42jkJDGHMjTZIhzC RYEg2EiIUJpDE1IOLk+zRWHBsm7PWeM55P+NW9V5RhQyU14Ri2Pm0O0Yj8qa ADGI8h2NO7E2h06HG1y8HS4Gjo4pR6+zz6NdwWIqbrFioG7bE5fPM4/6vV7d F7ovBkee0499lJxHRBupMPd6MZiU+zjcrzWPSiithuIc4nBb5lx4gOc8eteg /ME3URwUebdIGPTMIw8B9SmONHHINJu4zjEwj7Y4af9OzRGHSuvmJ69G5pHh b6C8rBQHE8t5Her8PKrXcvTjGRKHEp+O19FbF1BZQYLwI1UJcLRwbHypt4BS kr9b976WADvmKRX99AW0a2zZ7Vy7BMjdvBJHyF5A3Ts3Qn5/lID3/nd2NeQt IIEO3kckhgRMB7t4U8sX0I2tiotegpKQkqvy+1brAgq5apfM6SQJjid1VtZ+ LCDnc3U9u39Kgti/Chr7D7JQLclaK2NDEqr/te8kmLGQxMD0HXZuKTD1Krtc Y8VCXeYix7pkpOCzZ/E38eMsBJrnP3mAFHz4atxyxZOFKH8kvqbHS0Gn0PFz GzdZaDLJf4qNKg15jmXWv7rw4825jT12SEMVOfnSUC8LZXBm5nVqS0ODxOyW hk8sZBvU5p5uIg1sfH63vEZYqNmJzNT2loZ/IhyDghdYKE+5c8G9WhqubolQ L+XC0PmXqisdVjKQ+cGjTIOMoasXNh4k28uA499vcnMoGLol22tof1oGLqQp MkQVMPQ85OrtUT8ZmKPHn53bjqGN3V1KP1JkgCjFNAjbgaGU0svHpL7IwM/v KjdJezCUf9J07euEDHDbrq2678VQLT8xO3tOBuzufm57ooOhEc+WObUNGdgx L3tbUx9DasoyMTSKLJ63wf3SgKFXWfRyF3dZICYMm/uYYqjXKuW4sq8s3OtX tbxphqHpdY+N2WBZ8ODpeVVojiE+JxGzgH9kgbMgkOOLJYbspNzGYp/IQtFU uijpKIZmE3mFnvyQhc+jj03VHfH7RyMv/P7IAvfBogXFExgSYlWc2MMlB9BZ IyHthKE9lifz6RJy8HpAaOn3SQxF8jw16NGVA2EdOULmGQxJRB/zXo7A9z94 gXw9MPTzuqNPSJwcvLkdyTpyHkN9cacuriXLgdSKU7O6J4buJJ3323wsB/r3 j86MeeHXyw4L2NouBwVchupKFzHEyo0OjPsoB2ffP9XEcHcWxAbxjciB9cLf blW+GEp4mhQiuCgHNmkmZ2j+GOJ59ThMUkoevF08u5UDMDTTVBR+nyIP09/a Ar/gbm0pi5DdIQ/uB3nsEwIxdKOrJopkIA9zlezvpoIwxD7ScV3ZVR54JWrS g0Ix9Gf95829T+Uhvq9jVTICQ1/Y1m7V1MjDyuPQrizctVyERP0mebifrfxd MRJDwQK8yahfHmiNWmTlKPz55YipJn/kwbyow5LvGv78ZIW7bVxESNPVLQ7D /VxR5Z65IBHyLVac53H7/7Ur7TCVCJPbBTvfxGBoQd840/4QEcbCPjBtbmCo A5lnDVgTwVdfUPYZ7hLDIw9PnCCC/6WOIr5YDHmZOz465UOEd/V289W4zQ6f yhkLIsIjsXOP+P6Hrycb19yzUUQICAivO4F7xtEnzz2FCBaPLIhLuFucL+Uz HhBBYecBz31xGMpzCS7wyifCoMkrYjRuV8/ooou1RNCN7Grm+gdDhj6xxd+b iPADS681xE31Tyi51EEEniR3uQjcYyGppUGjRAgjeO9YwB14aXDJnkGEqCts kcR4DPF7E/V1FongUsqXZoFb53ReywoHCcx1JKmPcHc6MAUG+ElwLX48qQ33 WRt12xpxEgzcrnq3gPuWceVoiDIJBA22pe9KwJAirCo5apAgoMJO2xp3ra6B t54uCYr99qR54z6iFV0hc4AEz8dvd8Tinvrr7e9VMxLE8x/sysIdqsQLX2xI 8Cpp78MXuIXIVjfqnEjw7Nmh/W2486ST29PdSCBp6lAxiHufaL/IVR8ShPSY LjNw9/DLODgFkcDj3KrAMm6PLc5Z+yJJIFpvtsJ2E++vzewpuTgS3FKVqeLF fef31I71JBIczzUxF8at8kPVfyiNBEWNz16I426Y865+mUOCyco9y5K4baef bTwoIcGSw3MhKdzMkZ9G4S9IUEXh5pDAHTmgG+/cQAJrJcGu/+pJ9IZ9MGgh QSklL4APd0l7oySpmwSvLxYus+Pe/5bLefMzCXgFfx5bwe+3n26aOzJGgpaH rkmzuC/U3GTSmSQIP99b9BU3e8UHjYc/SGBlLZfzHve9EvGgyD/495qUvlKN W7K3xPkpOxm6juZp5eAe7+qMIm8lw7pfekc87iftWG4iHxn+1PWY+uMObhNp JQiRweHI9kI73IZvtWd9xcjgueQ1p4N7W5PdtjEpMhSIRohJ486pT7NtpJBB r9xTohf//j419UGaSmSwMVv8XvLf+qkcTstWI0PV7dwXMf+tnzLqWJQWGVZj J1b+xn2/xIhzcS8ZLiXLhW7i69G18Jyyyz4yUFc/T3fiXn1U5H3gIBn8ezVu uONuzmpPLDclw/HpgFoN3IkZCxVUKzLU3k8aWsb7QSl11yq7PRlEAjN+ROC2 jqu90eRBBvFrMoFBeD/J3fhaqOVNBl9fTR0N3NPRG+05fmSwSH7Bmsb78+rV A6IxoWR4+T+zA1a4Cy6+yzJKIIP9h+AETry/eyja5zMTyQC8JzpLr+N51Ptg 10oKGUK1Dcn2uA/r+DUXPyDDT3+N5Ww8L34RpGZFyshQwl1/g4znCbki6vmF CjLEmAg410XjeeA2G/a2Cn9fapfMbXE/aGsQCn1Fhpz2cK9IPK+Mkt32jH0g g9/JOx8b8XzzMera1Osng9qdOH9L3Pd+6bSlDJKhmjtpx6dwfH448jsdmiBD 3Mv2pckwDCUrVESVLZFB06JqhXEF7//nhI4wSQqYzgd4peH5yuvumfpJlgJG r0lUbtza0n2nNMkUCKzOIlzG8/h/YfmLkyoU6F3l0THG81rD2ErKQo8C3T+7 c/vwfA//lH5W5iQFSk3SJNO8MSSzume18hEFijT9T7fj86eoX8fvYj4FGs9s 52OdxpBehd6McgkFnvwazhXE7XjBoP/eCwqIMxcLzJwxlDZ8sDy0lQK3CV78 Bfj8k2my9TRYoEDHl59cbDa4E/wHm3WpMCFZMaR5AK/vcdk63IAKq8tvZMX2 4/UPBrbuMaTCo+Ey1yWE198Iqcy3oMLZfwNlymh4fd+o5LhTVAhej/hbQBev dyzRzPI6FYymD5de2IkhWWJpbV83FTq99RYbZPB5FHDYdt9HKhzcHuVzRRpD i+3YfM4AFSSj7lnukcLn1xUtyqVxKiwFDu/JF8fzdKA6VniJCvZy+1sDhDDU ndJkayWpAHblMSFv8f+ZGL6BhZaTChAdQTMNGGah+RUOhTqmArhzHhhSuMJC DaE0zyiWAiz0PA5ICmKhxD+Bz0yWFGBIQTxn7RILaROYqG9dAa7/tmtqvsBC oVu7neaFFMGsTeigpjMLbZHISCXtVYR/hIUKzwELEbW0eWOuKUK33/OqY+ws ZOXt+t1Cbju8rK6Iv391AXnqllsfOqQEtkruW3Vt5pF9/bAD/2lluBTz3k5T ag71fRZvvXJbBaL1HPTUMpmIWrJjuKJIFRStGuatSQy0KWXheHdIDS7kruTI u35Dd4ccPCZ5/4KKOpX10/emEMHBmLiq8DewtQxJsz5PoBVvml6drTr0Mih+ ghNjqFFXdMPIbye4/ey+3cg2inLUZ1XljDRAOUJESW//V/S3QE+s1xcNmOKW 4N6U/4zIJgW6WR6aIJTdU7extw8NdlzLLGDbBU5VfTTexS7kT7Brn767CwZW JwOj01rQpVuSVjyKWqDmd2yqq5yO9M8PR7PVa8FVUK6a3nyCLmSl8A2bakPk l+Jl420n6KFR+0+y+rRBm2hf5VpaSj/y9MeZfq/d4EPGjvvtp9Nv6f1bm72y G4pDEbr07S09RXjf2wNJe+Bu+KYhW0YnncOoZ3sraS/kBZUuNHT20A9TT1lF F+8FYu3YzkPb++lnLb+rihjqgMEYb3tp3gB9pNff4Ua3DkS6dlwb7/xKV8j/ rd99XhduWrrF/o9/lG6kFPTNiqAHjstr3zTvjdE7CZPTzxL04NAZIcLAyjid rGJ3n6moD3wN8fJNrpP0waKqrK0V+hAyrP/uZd4U3X9A8KKDwT4oTtLOdPsw Tf9g6/098uM+4Gc/cEucfYZ+f0dtS4ILDZL3P7zHwc+gDzIup7C74f6672K4 EIMuU7DzTLA7DU5axo4uizHoaYqPV89eoEF991LytDxu+cS/9QNpYPN4dHfF TgY9Q/DcHUYcDRYPPDnPY8OgZ/4QPmX8jAYdIpl6hfcY9OFn7TvqK2gg9rj6 yHIGg070jV3RrKTB6DqRYJTNoGfN/UmSr6OBfGu+2kAhg/5w6tubpTc0aBFM f7JYy6Bnf3qplvOZBuoKH1zGvzLo4/8GL0t9oUFSxm4emTEGnWqr9ebWEA0k XawPHZli0B91F5wMHafBD5SQWD2Pu+1OovUcDbQvUg4Fb+Dnx1qdbFmgQeiM dUUuO5NONeZRo32nwUO/X5VdW5j0nNfhTSq/aGB2+UosRZBJn4zUTcxcoQHf urntIVEmXREtOYmt0UDkuW+NtyST7rpeqvrPOg3iOscqk2SZ9Ny68782N2nA /+9di+ckJv3/BdYtNQ== "]]}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{2., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotRange->{{2, 30}, {-1.7228872159954296`, 4.723873164977066}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.791612620555593*^9, 3.7916126364111223`*^9}, 3.791612860086319*^9, 3.791613461353451*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Sol\[Lambda]", "=", RowBox[{"FindRoot", "[", RowBox[{"Cond1", ",", RowBox[{"{", RowBox[{"\[Lambda]", ",", "10"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.7916127554388123`*^9, 3.7916127805339947`*^9}, { 3.791613447324769*^9, 3.791613447579132*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Lambda]", "\[Rule]", "10.173128214203256`"}], "}"}]], "Output", CellChangeTimes->{3.791612781524181*^9, 3.7916128601349363`*^9, 3.791613461413959*^9}] }, Open ]], Cell["\<\ Plotting the solution for the first buckling mode (for arbitrary amplitude)\ \>", "Text", CellChangeTimes->{{3.7916127376166*^9, 3.791612749895722*^9}, { 3.7916129004019213`*^9, 3.7916129106586027`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"w", "[", "x", "]"}], "/.", "SolCoeff1"}], "/.", "Sol\[Lambda]"}], "/.", RowBox[{ SubscriptBox["c", "1"], "\[Rule]", "1"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.791612869655609*^9, 3.791612918049996*^9}, 3.791613449765305*^9}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt2Xk4Vd/XAPAjRCokaRAJyVQRicQ6SlIiFCmEQoUkmVJmCZmnTIWUhIxX IWzzPPMlIUPIPERlyn233/Pef+7zedbaZ6977t7r7Oc5B2890DTZRBCEPw1B bHwfBY4JKnUWERsfklbuwTKf9/LKhg2vODog+cwccYGF3xs2ttjn0C8/fx8q puawXW8nvsiZlz8uqHprdHIjzuDB70CVfzR0gxgY3YiL0syGMwIl9u7r7sEN n1nNzNkBf7TtTrf3Yhv6KErv2QMnd3h+a+jC5qFtDXQ4AA71wQ5VbRv5zJN6 E3xQ8CyOo6QRO2jbIb0IQViFj5T8Guy5zdZKJUfg9EqBZk45NuuyEjNFHJwo NXNpxdg6Eb6zVZJQbNkZkJS/MR+cqd4jDeSP+bqoDGxplbwbjwHcXlHvhqZg v5XX3FqhAGXXtjP4v/tf/ZnDE2dBsUHwrGsMNp2945aXyvDMS2rwcQS2jX/x 1f0qUEUqujwKxvac2stZqgoXcg2+mD7HHvI76UfRAN8H968bumPfLHA9LHUF GoSe/L3utFH/nhmX6qug9jpCQvUR9tTzN3f26oDm88ZUCQNsttmg7Y4GEKrQ c+HIDWxZ+piqQkPoWB37KaCFreYgY1xhBNpWdPz7VLADbDWkJ2+D7nXZWOIk 9uCBcnh5F2J3Xji1Io59fa1r/L978L1R++uC6MbvJW2s9puD4Rlr9p+82KPn n7CV3gdjkQ9+jczYChazGpSH8G7kk3D1FuxKflGOR9YwGldRU0I3i1zPnKyv PvEI7rEP0FFWZpDrb9qPv6pswPIfh1P0KHaMstjtPQ5g3+x5/04xdvgPd397 F/CbtOtazJtB5CB9m8o5V3jDcE/BPWcGEbZSMtytrtAAqrteJeP8QZnAlFk3 4M3cVdQWguOOxk36yp7QFJS0Tf7ODCrpDaNjvesDw2mRdvVG+Hpc3j43OHxh ucZ3QEcPj699f2iuyhf4aR5QHmngfObvq6tH/cDx4Um9D7I4n+WeSfC+QBDQ rEllZ8X5FXOBlRkhcNqyYNcbJmxtZwaZvaGg4Zvmcowej/+lH9biEQpPy4Ku XFyZRvG/Pnma64VB2/Hrqy7D2E229aqcEeC0c+LiZN40GuiRl0xtjoKOjq0T pUbYmdErS4wJ4GacW5yqN40MB5kTeVQS4OjizdDwa9hlseOV/gngvTP79D3V aUTO17D7sL8BOU2dQFaZaSRmkCo1dzgRkprfShqwTqOSsIPdEqbvwKFOzmWt eAqp0+R7cZIpcOjGzyuj+VOoRFLLpCs4BdrGgwRbKFNooHy8jHk4BUS3DLcm pkwh13df0md9UmHwvC+/SsQUmmu4LOrQkwYXKztro+5PIUPu0och4RnAVfKA /eT+KeS9IpjwMTsbGthO2JzaPYUYz9pmyg5lg6PJSrsc2xRqsbzaRcuWA51M z0IVGXE9Vo/JM9Y5EKQVzaa5OIkE59dU7U5QgHaygvV+wyRe39OhWVW5ML5r 3/bEp5OIkdLVzMeeD7nmFfQsfRNo6dXuRzyiJSDNYyme1DWBOl43s0erlkBB x259ubYJJNhVzyT5oARK5Mwp5tUTSNlxqakmuwTqWNhu12RNIItH47k2sqUw kGNQ4uY1gSK70hobNcuAaW3FcfHYBJIcXslTiKoAQz/xuW73cdTSVs/x170W HCkhXo1O44iHxUbW7kMthPcu7C91GEdhEt8usbTUQp3opwvJluOIElLLGshV BxKNpxLtbowjKySwpyK/DjYzK2rvPD6OYqmro6t/6iEtULvw0uAYMiSEzxh4 NsFSyBNvBGNIUrv/363FVkhk/r43cnAUOb5Sbo649xViL4pbt/uMIKvbofsU HfvB3cLIQejCMLqVt7qrXvUHPKFNsbeeHkJ9Oz3Unpr+BCPXZv7O5EGkoukf /MtwEsKLRiJjzQZQ6gGmmSq9WSjoF9yWxvsdBYS/VM3/Ng98rOSZq697kE10 dJpG7wJkC3ubDf34ilL3uQmnLf+G/sosHimpTvRNk3v99uJfGBENP44+tSM9 1bSD2zOWYYfzB6mjNK2IO5KxKdB0FUSlZkXfLTSgNLd+gV/ta2B61MUlv68B ebEE3MvvXoM4AZa2xuoGpH8imNmpfw3Ydh+z/xPTgBop3Q7LE2vw969l6XnF BuSZ4x9XRfMPyvJntCbC6hHB0FqaefQf6MjNOB+TqkPsXF8W8579Aw/F6ZZ8 h2o03VXppSC4DmXKU5clb1cj6cpT19ZF14FQnWxKV61GedndKp/F1+Gp1nhD Im81KjytGMsluw52piM1/g1V6EN1M+WL6jrc9e4rMeKpQrY/beJPW6/DpYbG zC01FShozfaxct46+LY0HPPMrkAiNZ7qzwvXoaajPn09tgKRGZf4ykrW4Vxf bdrCwwok/Uzxs0jtOsjPVCb3cVYg48JC+6budRBjLY7PelCO2kSatDRW1mHX 1fSg67vLUHqWf7SiNBWyBV4UnKMtQxOBuSklslRQX74zLD5bingHi/fLABV8 Xx+UZqouRXUiLHwHlKiwPhbWX2BXihgvbklAV6gw6vTk6P7OErRZ8k6yhiUV LC8HRxYJIZSHps5S4qmQvHhxKpwGobgPJqsFiVQYiqIjLbuL0VVXWC1KooL2 sP1Pbp9iFP+AtzUvjQrw+KaU61gRUms7VuqWRwXWRJGOM+8Lkd6eoh2Gzbje P5UsNfwFaNeYV9yFFSoEpLwpk1/OR2d6eH4z/6OC+U0X29zGfDTAqd3WTKUC f5V0zxu7fFRvJsH6ZhNBRoSnJjnV5KG5phjHVQaCdJQMlpOw+IyEhRXNz7AR pPbY/bkP5Gd0sTSb320nQUrEXkzk2fUZvX8/FFPETpBTtHRbmIs/IRW6fWXH dhPkzXa7jjGWT2hihn14iZPAPUfP/HUOBRXXNItzHyJIbgEZ7l3eFGRmsPJK WoAgV7t3tb7Qo6D8aNcy9cMESVFolnpMT0F5z/QlHIUIUmDHmU1Xr+Ug85y0 1KwjBMmUeThqy2oW+nLONCf7BEG+6xnxH/dMRx2HRQRXzxLkt6ccca8k0hFL aLlSsSJBMnOfz9QY+ogeVY8ZupwjSDvD5LZ8+IjoB3c/X1UiSKURs92+K6lI 8WV3eM8FghybmY0XtvqAtrVwhp+6TJD7g3iyv3N/QAurPdp92OriGuUhjclo 8qT+Dmd1gsx7lD2yIpyMFstorPI1CNJnyUa4fiQJWU0+b959lSCFN63kmOu+ RW7ve/5Y6+D7kyhceYDpLfpO7T7+GztEUbezPS8RuRxXN7G9TpArXoVLshyJ aAXxfXxwgyDrt7rIbWtNQJsNaCpV9AiS+JihVuKSgE53Xc0qwpZUGzCwOZqA 6jNEQ4/oE2RskIJ774t4pOuxLMVwkyC/CjMGXPd/jSKesq8lGBAkef9eZunE K5QgGBZMa0iQyRl1bULKr9D24ErO29iPJf13r2yKRX4M37fvNyLIffJsCdEO Ucj5romp7S2CdHd9VL6pMxIJnZ59XYU9WdYxYiYRiYK2Pq7fdZsgC8+/FJad iUCKHnJEOra+xn5Kz+0wdGX+aWelMV4vC79lbCtCkd8YswW9CUE+jWhGzIdC 0XCx3Zaz2LE97vUKo8Ho628/3TxsUWc9jR6lYOT8j5t1DvsLj1SXzfsgpHdc reGQKV4v9W2Vl1sDkHq6uu4L7A5Wr1b3EH90z3zr0S/YC1oyfblX/BBSOM44 jn18IG6Rs9MHid6ObJO/Q5Aah64Ql196o8iFsjJTbCuzzdvcdZ6j34fFCvyw MxYt+Ma+eaK3iunFbdhNMjzHOGM90G+F9Ppf2DPO7afU9N3Rie3N/ax3CXJ7 hZeSG7cb6jHasiqKrcNm8/YuckE3bLW5zmO/jP32pUnBCR36m6FkgN0poNAu WeGIsllZ7W2x2bPeT0QrOSAnk4fpPthXZJk30dTaIrqdzVMx2CGVNnvvqDxC DZn8x9OwWy73iDU2WqFb6pbOBdjcFI8g03gLpOuU3FqFHVOjjo6/u4O05FpE WrH39HHNrH+4hf6w/PDrxhb58Z9MhL4u+jXzfbEfW2Cb1cujdzQQnVrZ7WFs 1w7BDs5yOfRnn1/3KLYoS58Z/RF+iCmS1f65Uf+8exzrkjK07W7tHsGeu3z4 1wNrbXj+7JLxEPaTUKU6c0lDyOhN/92Lve78OCbumAmo3V/2/2/j+mZpFu3C ZvCQ5uiRBmxa7X45BoEHcLRPrb0Eu5zH5/krVmtIKb7pmoPtGcFrdTLABpi/ G0q+xVbaVqjTutUegqZ1ZkOwGdy1FMx9HoPZXpUsF+yavzNC9AxPYYDhtKMZ tu99b7Y4T2c41S128Qp20nyQ0343Vyg/fOzgKew7d4RNP627QxKD0TANtjKv /Q0POU94c+xNyxD+vwX7ytXUnz4D5k2MFaXYE5r6JyeWn4PRjlslj7HrtqeI fJb2gXrKnVpN7NSaPwc87X0hpZnSLYRtIR/EyP3bD67ZqbK24fWouty7NiER AOel06USsY9ShOY/WwfCRJ+rsTX2UtjglOBSEKQ6pXYyYeczPfmvzDYU7G84 c/Dj/RB/ZFd7Bm8YSIkEsA3g/eWlntES2xwGIKpWFIV9NeJHvZ1QBNy8e+zA Zuy5g5fKhPsiIU6thaMc798uxVG02zcKVHw/+VpgF99xLaI7GQ0a96gfd2K/ +EjJ+x4UA18buWl1cT8QkOHKCFF8DZ7ibhONuJ9s0/uc5jL/GrqmjHuNsRec NVIsXsfB7f7nzsu4/xgOlWnyPY0H7+ObOzixjwr+Vf33XwLUdRpXK+L+VZtj oJjl8xZ6atunD+N+eLpStPzwwFsIczJbiLpGkJmdywqvpd7BlUz71C3YEcuh 8OLHOzh5LVpiSIsgjaHmlInce5hJT0q2v0KQ1Dox8b3zH4D9h5iqpBpBWvf+ ywg8nwJ0h7oD3FQJcnS67ujm1ymQV9/5rOESQTawmoguXEwFna/xYboqBBmt HXW48W0ahOmekr2pTJAnhmi43XQyYGflUu9vBVx/wbV5sQ8Z8EltmOYItkDI x4qB5QyQKvojfIskyK0JaSfiVTNhPPO6b5U8Qa6p6/RSZzKBQznXw16WIPsy M4SQeDbsiLwQ6ChJkHFWNyvkPlNAj7fi5Wb8fIzV25Ie3k+BjNrraet8BBmp THk5zZAL5ULqDYu8BBnEw2T+SicX1H6aHuvhwfunJXfHv+VcKDge4BO0nyCN xLYbFJ7+DB7mY7Wv8POab+7L8qmyfJjNE7NVJHC/bTzruTidD4kRHaJV+HzQ mVLPnL63AAIkSqbW8fnB16SH7+DDAtCMlhu79ZsKc99WVBl4vkBmY/nw4jgV iitl3rQ7FYLE+94MhTYq3Ij5fNFCBoHB+uMszzgqUBzgv0MmCJx2bFGViKUC s3a1QX8QApsrD937IqlQytplozmGQLM/o5g/hArsZ59cjlUpgdE5/UhnTyo8 yYt+7L5SApsnH2Ya3qXChcTuRjWdMrj50id3RBTX8yzdtPJ+GdwtWIviFKJC 5F0PqqxHGTzVvWCkeogKY0eOiAull0GhJSX2LRcVvPNcw2jpyqEz9u/wQWYq 1DQe1s3LKIenxbyZOjPrcH7JduwgQyXw7rzKjlLx+VGVjfZ3bjWobT3Xl7Vv HQKMtswv11ZDxfVTO09zrMNXW6J/va8aXNL+/S3bsQ5mr2cKGDfXgGWhSlsV I86frbPer10De46VjCX9+Qdfgz2Gzv6pgXBVt/Da1n9g1rlYGiJVB2cCe3vi 8fk50KDLVexzA3BayOzp/rEG1Wpc29XZWsELmmyU9FZh+uAu57bodkjZmyP7 qnQZbG1EjAI5OiE2WuEx09Yl6Opl1TSt+QquTN7ansx/wPDx6Z8Ml3rApEhi gItrEcpFTvqW03+HM5cHn83Pz4PAlsKxt8oDUDB0SoSsmwWuQvNz9N6DMKp4 RNWkdhKIlU0frIeGYEnuwnF775/wV6PoZuWhYbC3Uwmj+fQDeiQNOA95joBD m+Uvr6h+sLrGuoO3dxR4KQpf/nh+hb1hwzp0XGMg6iwZsBbQBum68e8XHMYh Pkzf1K+pFiS7+FY2O4/D/h2hL9H7Wvii+f7SPo9xyPPa82+bWy3UXEifJ/3H YSA9yvePRC38OFkoG5AwDpJZ7yn0Mfi+sn9tFqwbh0xpDZ39ltXg3sCypM85 AZ4xZmxmgpVwTc5FuaZoAnQGn0iazZZA7+9RlrKyCbwOlLJZW0rgVrpa15fq CeiwELJoyywBiwPcphmtEyDa+DfzvXUJuNMUeUSMTECezE5/yVkE6ZUrxcbb J0E5tCNUZXsx0KnZnaDRn4SBe3cObntUAL6bv6+tGE0C61r2+hnZAmBB5yoW TSdBUOfu5mzaAtgntuvKmNUkGEaXVkuH58MxNopVs+cklKSuP5woyIMbnfOp r9KwGYNPjLN+hqyb93lPreH5blnyJf/MgVu5c1zxNFPQkpZK35udA+zbbPZu ZpiCoOVNFVecc8Au35G1bccUJGcVbWPhyIFT7N7r9w5PQabpefVPytlQVvvm W5TmFEif3WTZXpAJHZJfQ5aTpyDeZ7xO8V0qPHuhG2CQPgWktk5K56VUkBr6 7lOZg+O5Z6wXFlMgMnDENbgYzxfNtbtJKQX0J35ZCnVMwVwJ3xGm+WQYjduu cp06Ba5dedWZBkmwxHSWNl9rGlj/rmtcSEoAthnmsLIb09ByNpWV0zgBRFq/ 8TcYTIPhL7O1O7wJeF9bK/Xfw366N/xRfDyU873xoXeeBqL8OCVJMQ4CTtOw aiZNw0ClznN3xxhIPtAYr5uK85dTv0TSx0Dppihxk0wc3xP+Lyk4GhZrxK44 FOA49QlzWloU3NAyjHjdNA3xgsd26c68hEOWaP/kn2lwNeW8bxQfBvIaLz4u ruL4dEMBrWwY6Ehek18nZsBQYck3rjMUfFdmDHZsnYGSzQYMFayhMOfFnXjy wAyQH/fllAUFQ2Gck5DneRyv/iGj7uIPne4XCvwvYTtX/e5q94NZk10qLzVm wPVwGK+WsB/win60SNHF4yVSdcT6fOF5Xm9GywPsNen++ze8QbNVVoorcgaI 0MVlnhwPYJLdWlr4Cl+PZV5hhMMDSt9+U9FLxPnTKS37ndxBzOGxUUw69kk1 rVF1N2A+8NlvbyUePzL5oVHEGaq8vXbn1+H51apvh+xzAqdfWm90WrA1ppqA +SlMVS5+ftmD7ZH5UYvOEWotjv/Y9Wtj/Jafj0TswLWTxjL3L3bcSKCngi1I k61LV/9h9wmkuujZQNJOK+YwxlkgZtjWTiRYg2fBRxm2A9jnT7Oo11vCaX6n iix+bCrtK16l+7Dgf+myhjC2Al9DQ5053DKaNA46ga21IP5h/i6QjEJBzJew 99jd8cm9DUsPl/ala2D3njLicbkFGT3V71SvYbNuWgjSNALuDNMvfrewpS/K U4/chM49Ukqid7F5OfjXWPTA352+tf4+Ng9L7Ef6G7Cm9XaU6TH23SjDY6La QEGPHqY4YwvmixL6V8Fc6OzaBU9sCq+vV4ImfFsb3OETiH065c69ejUINs2K FQzHtlCOza9TAeUW18M10dgDISJ288rwOfGAHEMS9hQT04ncs2C5fbY6KRXb WzzkpKYCCNgXayplYWdONaoekYe+Af++kU/YNcVbN9OfgrCL+nefFWJb8ZS8 FJGCSxTRBf4y7ORQyqaE40DLveZUUY09lyLhX3cUCp7XMxo3bvgLS9WcIFjP R4fStmPHl6ymU/hAWNeMO/Ertquoj78oNwxWyHw48x2b5Nu6R4QDIo9ukRz6 seHlhMVaZlCP/FrsNr6R7x5hRKEFxk3JFw7ObjiN67vwH3lkbt9RsohNCLto UH7I2/2nZGC4smE6dzdKufz/v7+A/72/kBaT+z8HeTrT "]]}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-1, 1}, {0., 2.0512224900227927`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.791612918777816*^9, 3.7916134617127533`*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["For large \[Beta]:", "Subsubsection", CellChangeTimes->{{3.7916124896791773`*^9, 3.791612497671035*^9}, { 3.791612943162299*^9, 3.791612943672538*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Beta]", "=", "100"}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"Evaluate", "[", RowBox[{"{", RowBox[{"Cond1", ",", "Cond2"}], "}"}], "]"}], ",", RowBox[{"{", RowBox[{"\[Lambda]", ",", RowBox[{"2", RowBox[{"Sqrt", "[", "\[Beta]", "]"}]}], ",", RowBox[{"1", "\[Beta]"}]}], "}"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{"Blue", ",", "Red"}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.791612499356618*^9, 3.7916125024390297`*^9}, { 3.791612587100358*^9, 3.791612636155053*^9}, {3.7916129464734488`*^9, 3.791612969096425*^9}, {3.7916130462081203`*^9, 3.791613096884317*^9}, { 3.791613165316496*^9, 3.791613172529838*^9}, {3.791613452413403*^9, 3.79161345451466*^9}}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwVl3k4lG8Xx+3MjEIklaSyRIqKQcl9mBmEMA/ZIlJJWX6SpIUilIoshSgk uxKSRJrbUsrSqhSJJEplX2Zsvc/7z8z1uZ5r7vss3/M9z6zx+I84KMDHx6dE fvz/W2TzgZV8fNowwnK8kZzvz9EWe7/UTEQb1ghSjTgt3Zz93UaSceLa4HJS xu2gVz8noaKE+mmJNmROU46aOv3m4JjVworLyecDf+45Bw9zhg7E/ju0Whvq Hc1DBC6OclYZzPPuK2uD+Yq/FjvXjXMspX0mpjdoQ4zey1ifGxOcU4MdQ2iL Nsi9+Hzr++gkJ792568LetogM79yunfzNKc9pfL7a0NtMD5j7KTnyuVomyZ9 crPQhirbFO7LczOc/QrC7/PY2lAWmVknGTLLSZg81jrsoA2hIaeKJHznOMN3 2HVnD5D57Ttf+EljgaNwGj9pPKINfzLvWIQvLHAsCc1HEke1YZ//YOnDxn+c Qr5FdzNCyPyCFD7cuM2HP7Wfzh04rw2lz8z8WbN8WPT+YKbmJW3oUf/Becbm xwdcX1znJGmDZ0BVtfAUP07Q1o0TvaUNP68c+bycKYBrabmXrO9ow+OLB/rv XhXAClXnz3bf1wbius6eN6sF8SdZdPjfC21YfNDgEp+qEBYZurff9LU2FCY/ /LnsgBDWeSa/9+oHbegMcQwMzBDCCcdmiNW92hC3/1AgSAljyzcPDdCsNpTE cudxrzA+laeke4FfB3g5DUN50iK4IDRx82tRHQiLFlE2ZohgkY1HVdxkdMDA sd3gcboIxtEakmc36kC+bYjUA1NRPOSeRm3cqgO9Fhdi9f8Txav0qMIS23RA 8aHH7crrovhU/wAv3UQHUF0up7pbFGsz7nx/6qYD0bqGShFeYthjxZKvIp46 cOStz9zZi2I4fvTcJysfHbAf4L67kyeGhzL2tn4N1oHFN6Pag76L4YK55Y8W 4nUgPHB1RyObgmOdisZaU3TAo8HeK9uXggMrDDbdytCBrzV13UUXKdjQ3y1n +z0dcHnx5OuuJxS8rnWkh1quA4aqJ9ePtlGwmHq4fEeVDuSKKfa9+UPB775n Jwa/0IEHx0ZSdq+g4kdAf236mqyHVMlmAS0qvnmrkbrsow70qLWFzjCp+JDD YNjD72S+Z5Yqf/Gh4rkmTf+xBR1YaXuMxSmn4m+qtUW1wnTQ+LQwo/yMip9H EANx4nSoFWsqGG2j4njD43s1V9DB67HOQN0YFQeliaQuKNIhc+gup5WPhl24 yR9aVelgrZyvYraYhlXKqix9dOgwtO0//+uqNEyTsLy43YAO1zovLPHdSsMj 3l31VAYdHqwWrq8xpOEqZb7tBTZ0oLIuq763peGM8PigYAc6aLV3K910peGI 7rVlpnvpMLdjW0O/Jw1b32Cp9XvT4UaQ8F+xYBrWnvp44GEAHbY2+Tn3naXh FbZemREn6fB5ScGWnRdo+N99XqftOTpUBF600I+l4T7xy8vWXaDDZKONf8U1 Gn55WN52LIYOwlwpj7pUGi5+fi+29hodAvT4Pu3NpOHEdagpLo0OoztfnI3J oeHgc2+E3bPosES0Z966kIZdu/YZaRbQQdfn/d+8Yho23jZ+ZuE+HTrMY3uT ymh4fXJEZWsFHSo/ZHkqVNDwoomlEzdryPu0YubQYxoes8nT9Gkg66E6oTBf TcOf7ul5b2+mwwgaAIenNFxDbcqlvqODjOaKV9aYhrMO7en9/Il8PrJqw89a Gr7Q8GdVQTcdjl5JfrimnoZ91oQ6BffToacgsGGeZCJU4rrpXzqIL1XID2mg Yd3OzDeyE3Q4wcovzCJZXm+LeP8MHZ4LCUj6kSxwvd70Ib8ueJqvkf1G/n5g 1O58hJguMDw2Tc7V0XCLVf9TWwld4AXc664j7y8tOjGzVlYX+oJyBbTJ+JLE KPQxeV3Qq2qOZJPxnz6YerR2nS6UD6dfln9Cw+51G+7FqevCzO9rm5PI/Fmr a366bdYF02V6cRyyPupnrJQ09XRBI3tn9Y0HNCz5udttwVAX+G98q1UuoeFJ naNprSxdCH0cU3zgLqk/41tsNUtdUBZoTk7Pp+EGq5eikYQuEDP8/5Kyafja oTWBBm668Hvxf2efp9Hw3LFd6ikHdUHk/YjGvyQa3n/uZM+4ty70y6wP48XT 8JYbby2LgnVBVKFBmU7qJzVnXkD0LJkPVhw/GUbD/GVqjz0idSG/yXhf+Gka ftMUprwiQRd0vknMffejYb+5zQsXi3Th7VBW1jxBwx/F9pb3lepCWgHv30kL Gt6x9NIRqNSFS9Vfj2MGDYtv6v043aALHmMp24rJ+ShyS7jv+VUXLqRvS1WQ ouGfdWPuTCk9eHgyPbe9joptXissy1ymBx6pncsMK8n57zRvnV2lB3oZS6ZP 3KPiqIks/QfqeiAh17TUK5mKlVRsl6xl6sHn4xFyZoepeF/0g/p/QXpQ7e3m HyhMxS+ud5/cE6IHw7MXDHdxKVgri6b16LwedFa1ref/TcF81ftv+sXpQcKB XYvnXlNw+h/p410FerBPqYfPPIWCO6wDVaq/6EFsudTv22sp+Fx+zdBUrx6w vp1fUyRNwSr8oo+2/NKDpE2WkslCFBxQdsO0cFIPYo62Bcv1i2HqUo7XjcX6 YHRHe7yJ9NNtHZSiE6APqhHCz3RVxHDqgQxN7Wx9UE7q+UFIieI9J5v07nlv g2+3CjeE3RfCkZJ1if/JG0DO6piowf55jtnFg9dtSnbAVinfXvG+MU6Zb2E3 vycCq7ycTVtcv3JcN9/+1BkNwM0ghqMl6pDY4/iw+SsAP08S5rcV6lE5hKuv jgN44y7WIrSxAVFt9p/xSAKoHA64WWz6HD3yU1b8lQUQXJezLDywCUndLTg0 VQ2gtNXh+M/db9EzlbIpySHyfKlCMWPTz8i/OCtjyyjAKznPri31n5E8PdHM bgLA7PE76QbDDhTACkxNngGYsldZ3KjdiVYfoBsqiBqBwsv7Gyzku9DJ21WR GxSNYCBr7fkknx60Ub5exoQwgqSCij1VQn2ovJ+5t2i3EYxcG7exNOpD20qf 50k6GUGg4uLqOyF9yMykaVunmxHwcpWKsyb7kIf/W3d/XyPwjV3j3t37AyU1 dN9NvWgEaX9azEzLBtA/nznm8FMjaOPLywpW+o2idENj7eqM4IL+hECG028k LsD36fEzI5B5FcyOjv2NViQLeke0GMEi47fJBdO/kXYtNX55hxH8Z3P5z7LG P8hr6fIuxqQRHOtbfy7HeQi9rdE5nrLBGFLKT9VuKhxBcj1Cc/WbjKElcvGv E5wR5C7QFj682Rjsmq6n5baNoBGTgDgTPWMoqTmSXr4wgiTeFBdNMI1hKiiR ksgeRbt6VXtt9hoDwWGscxobRS9FVlhT4o3BeMtuR5riOJJU+/VB+5ox9MZx C4W3jCNHi0oX92RjaHP/HPeDMY5+XrU/8uiWMbzoy19pf2gciS5PjDxYaAwf nbbZz9wdR6wN4k9q640he3Bpu83WCVRrvbD+1JQx3DqW8papMYnWy32pvM4z ht+6yyOKtk2i2J7HZqVzxkAPiF7KM5tELkePe/0UYMDHiEXfzA5OIm7Cnzx7 CQbs91Dzr745ibQ+dqhsXc8AxniK8bDIFEpOr6yw2sAAoWB992fSU2jBM8nk yCYGDAUkx4crTqGWabbnbW0G5IXsMSzTn0Jey1/mSBgxoHSdlvrAkSmU6fJI 6Y8TA+q9mLWFL6aQqPL1clFXBmQkHBoafz+F/P4GMNe5M8Dhwo3/lLqnkEHo pgPOngzQl3hydvvkFPqUkXPnRQADNpwxtzNWnEaS3xPX5lxmwK/3qzsrjk6j E0VHy3AsA4aF//qeOD2Nvh6zNv4Sz4DpHQ0ZqyOn0V0hmod0CgMuCJROqKRM IzOV8Nth2SRHXRyTqplG5w77K+6tYUBIaPcHVwEuqgvstqnBDPBf0jlmSeMi oXNWYfINDLjttbl2tQwXRSdp9HY0MaDqUnGsvzIXJdT/vOPwiQF14gOVHBMu anvl0FbRyQBvcxeNVisuWtbxXEi2mwFTesOXn9pz0c2R7INtPxggPfho4y5P LspZtU+VPc6AYOmgdysiuOjn+jcOJVNkvjuVQ8wuc5G6NrooMcOAIJ8qtnMC FxWbr/rVyseEh72OKeqZXFR54nOh+WImxETrngmt4qKmt+xNTDUm0E2+vJz5 xUXiXXjvHQ0mFD6nffcb5iKrn5pXBbSYsH/KoLBxgoveLywawXQmCBxSPaj6 j4u+bGgq3cFkQsaJmXOZS3hIQVe/96YpE3r5m+e3LeMhd+P8JXPmTPjvX4lf 1Uoe+uEYdayKzYSpXdE2Xko8NBRprKPrxoQrQRulwrR5SCu+9GCSBxOa25Q2 MPV4KOCmYtLkQSZIr20O+7Odh6bLFqYe+DDB7LI69a8xD2176qsq7c+E71Gh ViwTHjrz8otDwDEmiMk8mgjfyUN8PVWVWqeYkHDs2JViax4y/q3262oIEz66 dsXdJHgocipl+fA5Mp+/0/L+u3mIuujEqXsXmLA12n+s0ZmHLOX6C8UvM0FT ccHK0pWHYtft7vSOZYK8XZpThRsPSW/baqB+nQl5t55nbD/AQ7K3hgusU5hw SCGiYKsnD63gu7vseBp5XgJ9UMaLhxSfK41zbjNhi6KnVqI3DympfXP/kU32 49ovlpYvD6leufWKms8E2Vt+ZRV+PLSJkC3cXUzGW/a25OxRHtry8N2y06VM UOH+IuoCeEhH7mpkZjkTBjcF+wwd4yG90xbjzx4xocylQFjoOA8ZfBXd97uK Ceffl6gIBvEQGDW8knzKhKj1L9p/k8zIPmdAr2XCI3XNNU9P8JCJ6I7CPQ1M SP28gXYqmIfMj/CWhTUyYXYPNX31SR6yan0YmdvEhNIp+d5iktlaAePNrUw4 JfikW/UUD9klbto3+oYJrwZYGZdIdpwafCXbxoQS2mq1dpJdnPIMDNpJPb4p jVx0mofcnuwv3NdB6uWiX81Gkj1WK8pd6GJCom/zJ12SPcO/RN7tYUJxErNn A8lHfqSMv/3OhKDRPV8oJPua7d433c8Eju6ND2/J8/2LpF7LDzKB2x/ddp7k wMWvDIz/MsFSt/bbapKDj14qPDTChKYln4RzyfhPt5nIxYwz4Za4705ZkkN1 BaPKppgAjkoP/cn8w1M54+088n6cx35I1idq/vS++TlSnxm5qn1k/aLd9V6v 5WPB5Q8f0DxZ7yv1EwZmgizw5Qxn8ZEcp1Ja6CvCAo5mudP/+3Mt2lcukcIC 2YM/fZ6T/Uv+oxZVKc6CbH6HHxfJ/qaXZe0TlGZBfuV6tVay/1lL3V6vl2XB 5prtItakPnKCV+6wWs4C/T8/vatJ/dw1vCZ3YzULBqyKJmxJfZXctol6upYF z+mpaudI/T0QWjTxXZkFYrc/UpNJfVY1Rb7epMGC9Jx1UxHuPPR0o/EOO00W CD+gL3HZy0O1cQuFJ7ew4LzczYVVLjz0wv5EVIMeC37k3vDxcOChj71eO5xZ LDBzk7k5ZMlDHSzlorNmLNCut9BfZc5DXfnf5HIsWHDJt3mYbspDfX7OE8Ns FhS4nGzdYMRDYzMWRZF7WVAW4mMlT87728wbj4f2saBYrdvISYuM32Sg0eEg C3b3uS2EaJD9TQjvU/NhgYvgVoGzpF/8VHu86tVJFoCXWIS7NA81vhbR0A1h QUZS/uKuxTyUe9xuW+Y5Flg5G9cZUXnoQO2wfcAFFrhGvGir5+OhbkeVONnr 5POW9bNFf7jo6cKx9LMpLHBfFbTGe4D02+zauz/TWJCgIv9uSS8XOY+4vKzK YsFj38uC8u1c9PFCooBbCQtYS97/k8Vc1FLBdzyvmQWW4cvpVTFcVORidV7y NQu23mpuFb3ARZcEbsaffEfqwy25wvAcF5la6RZbfCbr9brjnlcAuT9++A4M 97Mgl1Z2rXg36c8ynU56AiagW1nutkiO9PuAh4Yv9UygpeLZff8r0yj7qZT9 WgMTSNgtHrbx/DTKovr5nkYm4BM2z//x5DRKz1K5udHEBC6GhDAHPadR0rtk XrytCUw5zKmugWkUteVUubOfCQhoxdu+H5pCnmOG6n/umIBjiM7G2zum0AHD NCNWngmcc53V+bN5CnlcmnZMLzSB1oOCYUoqU2jv2pILNqUmsCe2S9J18RSy J9b8KH9qAso9RMhw1yQyKRPMDPlsAoH/NtZkn5xEqgEvlkpImELuUvNvhXcm UP/SgCOblpiCo6qudX7SBMp9vJKza6kpKLe0fEiKnkBK/P95XVlpCmqR0g6m /00gxbil1ZT1plDyU4c9rT+BVhR7uAsZmcLlWmv3my3jaPHgXCEvwBQ0L12a Yw6Mocl9m6HvoylcjzHheUyMoDgzHx3TDlOISlKiJPWOIHXNPPXCLlNQ7Ntb WvWGfF+bk1/q32cKLxkO/J/vjqCmJLHB2VFT+JXoJu99YASlN3cnSi8yA056 3q7e28PIRCd2wJhhBunJgpGN6C9KFvsde/u+GTS+P+FbofUTRWbMaA2d3AnZ HTXFtMedyPSv8/Ta3eagdeGA9ZONRehT3QF+Zw0LiPB2Wfro7gfOw4sNexUn LUD04or6p0/6OZ7Cx3tevbKEcEUlFfOGUc7+gNMPxVN3QYD5fqmdMdMczUMb Xlnus4IPBrNrpv7OcV4v0aAd17eGa+r2V5rW8+O9DrW7kvht4MM/pbWC3oJY KFc9xkLQBsa//RzeEiiICyYSW/iEbSBgfsjRNUQQT8R7WniL2cDEquujt68K 4ksttJ0gYQNdUvHDvx4I4goje+agvA2Eta+oDJgVxIs1fm8z1LMBrhm3zi5K CD/lW7q+388Gpmvzw1ouCeNjWcI+if42sKPE0/VIgjBez5y6DwE2oKhi7y2Q KowTLrTrph23AfcUt6VrCoTxocWppjZnbCB0U9EhuUZhLCm/+lBVtA0M+gXo /eUXwR66armx2Tawd4VzwppjInjZ5+WD23NtwKnV6AX/KRHccoq66VeeDRwL 5h/tPCeC6U9/P2QU2YD6onzp0FgRTGMVP+OW2oDnVfcjJwtEcDmx9YcHxwaE 9hc1mX8VwSJ+O5R0O2xgHWvbBkuGKL5Z3RbV2EnWY/6jw4KZKN5C8fnl0GUD zZwuySIrUeyanVoc3GMDwR7/1k44ieLyjmm9qn4bqAivu8P0F8UepmW7dozb QF0FZ74rTRTXKKqeYIizoammMenXkCgm/J5+fr+IDRrtE38Gx0Xxz+rdBgck 2HD7uUJBP1cUyzhE8EcuYYPcVj7rVgExfCTm2+Xncmz4Kuq3xUFWDMvNpGXu VGaD09szXi4GYjjwvWSTtSEb+jn2+5UjxHBw3cgcP7DhVLK17KuLYvh06RvN ciM2XNsRL+4fI4bDr8Zdl2Ox4f4gPM1IEsNXLST3fbNgw+91fLLF+WK4sF6C G+DEhuKbImmRzWK458FilaRANlh6GUXIiVNwX9aQo1kQGz7Fvw8bkKDggfhX l2dOsCHYVfz2ffL/8tB/saN7T7Nho3QdbFhJwbMbFteohrOhWbTr92s1CpbN XmT3+CobBgI0NV6xKNjymnj4l0I2nN4+fz0lmPz/rpn4/uhdNqydUTJwPE3B Mk3LlUWLyfxls19LhVLwl38qLzaXsqHsmf+TgPMU7ONttPjCIzZwZSTSf8dQ 8BXjoNTNDWwQUfITf3ybgv275n4/f8aGh0/Pmi3LpmC74PM7XBrZ8PFyyeH/ cilYvjiuJ6qJDd9yEp0WFVHw3eVFKl/esMH2VmHvvwcU3DzSXRbVRfZrQEaf 00DBxZc9heS72fAq3iCh+jkFJ6j83V3aw4bZXxUvS19QsLPLDLfzOxsC7q15 d7mFggcbZdDmQTa0DV81nHpPwa880uKe/2ZDZb7gudoPFFw2v6Z3z182CO4b vBnVTsGntmpGRo2wYcGt+tBCBwVTM3Y2d06R9V+8Xy/7G1lf/TfyR7ls2HnW xdLwOwW/a7P3E5lhw15+Y/13fRScSj0gtXmeDTOjeTcHBihYPSjUIUqQACt/ WviLvxRsvuvBdy1JAg7JLYrx4FKw4fZa/adSBKgYh84l8ih4s9rrqxbSBAyX e4dyZihYTvj3dk9ZAk7tm6wUmqfg/idrr6XJE7CeliFoxk/FHYVag+sVCCgZ b+A3F6Di1hRDqFhNgKzDrKSJIBWXBzr/ebOWAK7+7D4NYSo+r5HAFFEj4Cih 11QqRsVBKzJTE9UJSGQ1WUZQqPiIWPGIogYBW1bbdNtQqZjoe3lzuyYBQml4 6ycaFZu8ax97oUXA9/aAyQRxKtbHP8zstxCwoJn/3HQRFSve5J/01yHAv0Mv OWMxFctckrBYoBOQFXMwyViCikWDV92+rEeA+qrK7G6Sh2z1d+VuJ0B3OnRI VIqKe41M72zdQcBV11dqiSR/0NzNw4YE1LfzjsktoeIntKM5nUYErLuWry0l TcUlvNBZLwYBElmSRREk3xm4wp5iEmC5R0FrjOSkD6l5500IKFBrrHeSoeJL 9fnzkmYE/Cri96wmObS0wjZ9JwHm5c9kly2l4oCMhoINFgS8MBP/6EOy0+me 3SZWBLRp0M6JyFKx5eGhovfWBPyMqj5iTjI4zPHvY5P9C/u6/yLJ2iyq4xBB wNSqY96Y5PVb5YpP2xEgE38ybIxk+TUqQhR7AozQeI7CMiqWkNB2TnIgwPFp 7ycmyQLzRiXrnAjwarNYcZDkqUFrkVJnAjxPbD1yluTBT64uhi4EqLVmvEgk ueu5d1mzKwHR6ik6WSS/KT8p5uRGwBtp5dJCkhuyLuztdyfAYLvN9nskV8Zd Lz/mQeonXKmtgOSi0DtU/gME0Kfvnc4kOd2n1D32IAEJH3mb40lOcOZUrDxE 6idadvo0yVFmreIFXgRU5Uk3u5N8kt7pQT9CQM4YfzEi2UfpV2W9NwE9TuMZ ciS7L5lezPYlQJI7k/mbzN+OT/jgVz8CHKQ3llaSbDa0pNrbn4AR+Yw3Z0k2 +KIoxTtKwI+SQ/+AZM2mTYeijhHgfT19xxzZjzinyBid4wQkbfr0q5DksZ+d D/qCCHipNpRMkGwbvKUjMZjs72VBs3Gyv+Wi0XyMUwToTBnMXCF5aXK3ythp AoyzcfFqkoNU6LtuhxCQ51NxsIjUix7r+41/5wggcjM675F6u9Gmj4vDyfmq H0xVInlmf1y/awQBVwgH12ukPmvCd2x9coGArzm7/+yVpGJjnNwSHEvAcuMo vUxyHu5YD42pxhGwqcdftpucF6Fu5vL2eAKyh1V5siQ3zo8e1LlOnjc41HqU nDfL7Zb/RtPI+gl+q34vQsX3mrKUb98iQKpdqbGDnN/FzjwLmwwCbKeYnzuE qPhtcG5KcRYB+6qQ9HNy/u0r+LZ4FxAw9jak32yBgh+xHBxXFBGQHzetJUf6 h9yHe6Ev7xLwXq82omeWgjvHnZtVSwg4czxtpwvpP+6bHx7oqyCAIqxE8E1Q cC2mXU6sJCA9t2kkeYyC19p4lBpXkf5yMjlt/SgF//CTWMisIaD224ZlOkMU fOTu4WTXBvI+favSGdL/mrfjGvHnBKxQV3/i3E/BGs2yfdWNBOC1Bz4+IP1y +Fe91opmAva8LdzGJv01UFWh6eNbsp+t31/pkf4bmvVuzrqbnAfpsZjqJgrG Xa+NentIvwqYYb0h/V5geWtUYC8BNB6X95XcB5FXGyVv/CDg24bLDoN15D46 80Sp9zcBAhbKk5VVFJxmn2sZyCVgTuiLAr2A3Gfxd+JFZghwR+ebB8l9pNCa +TFllgCt596nb5D7KouR5l6zQMDeCV5/XwYFF2rFBYoI28IfT7nZrUkUXEk9 dTNFyhZSxx0uPwij4BnWiW/q0rYglXGhQOwsBRuEBarUyNiCNW3Pe4czZPzT fiXfltlCkMMGy74gCm7s29+grmAL85nuvQ+9Kfjj011/nqjbwpmWRUoGdhQ8 HrDG4BvDFpwFZs0/K5LxWB9iX2fZwps92kdVV1EwoXHPc6epLRwQi77vt5yC S37oxZea28K2rdTgn1IU7Odo0x/GtoVe4f3saAFyH+44G7fWzRZ2JVeOnusV w71iXX37T9nCxMXwRKtbYjjhx9qZZWdsIa5l5ZXaFDFsVOcl0RJiC0bc9OqN 18Rw5ukJfe0wW7A8lFw/ekkM7x2iXRW6aAuPbCnX1weL4Y732/RzrtvCx9ui WgRbDL9LT4npL7GF5FDPlbcWyPcz1cjakDJbSB+ZuHuNJ4rH7h+dlCm3BZkB 62NRE6J4Sa25K+ORLSSFuGY5DpLva9/nNDJryPpoFuU8+iCK36vua3FqsoVM TuPafUWiuK1Ejdb63RaO3nugc5gQxe11VRcfyNqBaEhq6aWrIjgofVOtsZwd +Mtz9PWiRbDsqSze2+V2MKvScqwnXATbb750ZETeDp7EaAqsCRLBbRlOlhvX 2cGd67r5Hi4i+N0ZrkSeph0olZfL/1IVwa/o9ORUMzuYzygepFYL44bC0pyw U3ZwI7Qnp/+tEF459Katvt8OhLe/lWBcE8Apamn3Wi12g+HbhftWm/jwWRyT YvF4NzyJDlkiFjvD2bVyd06Tkj3EK4wEXto1wTHya9wjFW0PPvP8Zydk/nAy 5D2UWibtobV9QUHicCdHqT4vyWqPA+BLPj8jdCJR3MY69XdPHcBTTVy/U6YL eY4LvX2p7gguv2KKh2yGkEfpmGL0VUdQuTndmZc+hXzCbefM4x3B2VkhRw5P oeO25e3iiY5w1/W29KVvU+ji5PHYuCRHEFwW1eSnNI2K9Xmzybcc4W2dlxAq nEa82n8fc4sc4VoJ5fXkQy6Keyce09DoCC+mc8WTWmdQ6h1fr6iXjnC4W/iF 5PAMuhP4imHW7AhV8jMnLkvOogrZuJnmV45QLnE345ztLPriLO31/oMj0DuT Ag9/nkWq35czer87QkDjwcNaP+aQVvkphewfjiBGdf2SJzKPtkV28g4OOEJH jM0fhfXzyFL1VsmvQUeYMnJupXnPowBvRYXRUUeo2LpntntkHp0xCOOVjTsC aCfW2C5ZQJGLetsCJx3h3I8to8+3LqCU+3cuc7mOcCV9MKkoaAFlnRM6VDXj CD1tSgvyKQuoiH3Q+MycI9BW0GpjHi+g8rXPVxkukPlLa3XMdyygp+MqvH// HEGKqsr0nVtA/wMtPhLI "]]}, {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1nk8lF8XAHC7UYpkmywzZV8imhkqzMHMWLPPY8hatgqV0KZISPpVsoWy R2VNqSTxWCqRJdlCGyVaKFtIvPf9Z+bz/dxn7tx77rnnPJv3HnLw5eHi4pJB H///FtDxkeHiosDHMzM/th45TKcQ3kiYC1DgkJ6aep77B/q+D8aiicIUULlf fNhWcoye9PDumgExCpjmvjc88usbHb9E4icTKRBxbJbMXpqkT/pcXvUnUaDp htKul0a/6XIG/xYrlCgguyQ7QuiapltvDJz9o0GBn1pO0foGs/ST3wYn6boU 2KC9erYuYY5+u8Fi4rw+BVSN/Q804/P0/vTq0U4jCtzQa7kmOvKHTjFLG/C0 osDmLK/Tu38v0vfJ87+5ZU+B9Nc10SajS/SkuaPtU84UWHNwLKu75S99qsC+ MdKHAjpKXC+9j/6jy5/Ca18coEDKaPtdo50rdGsH7UciRygwVkltjllYoRdz rSvNOU2BoafcV0a0uGCg/1TR13MUKLG9//5LNBcIVnzL1U6ggBHmwyh7wwU+ 7i2p9WkU6Gg1KLMI5IYkil6iYBYaZ5kYHa3ihoa1RQm2BRTYdy8dW7vEDfI1 5yI/VFCgCLzWEs7wwIAkff9qCwUwr+VQ9UBeEJgs22fWifZjUS7Qn88L1Gey Hld6KWBlfdfscT8vJB1dciCNoN/zOdfuNeAD3HL/bv9xFL8T2nIWgXwwtXnA rGKSAnE7BWsLMvnAuuuBAf0vBeYr1v2emOaDk7cU9c5zU6G3urPupyw/3DmT rNMpSAWL84KuaUx+ENh6RNlTnApF7fyOq0n8gF/QFI3cSgXl45YVFJIATHpd X/NiOxWSMq/e96cLgJz+Gn6RnVSI8dneFushACfHvi5ms6jQNLj/Q3aGANx+ is2OWVNhe+2LqaIHAtCf8mxSy5EK6+u+M6q6BIBiWjBa50mF4Mif83O8grB3 k9h7AT8qXGI2u1JlBeHq76gBm0AqUFa8pRO3C8Jkjkf7++NU4BS4+JZ4CoLc sfYXypFU4Pk77hUWKgjWNgaNwbFUCNozkBwULwh3lomPVq5SQfMqz63FMkG4 7FIy3Z5OhX8BW/4JNghC6EMDrawcKvQdUNi9/Y0gGB32LNxVRgXdBa+imVlB UGj/9XFNFRU+ZduVXuUjAEE9WnawhgqP//tyx2MjAbpHbyYfb6FCwkDU51Qt AjwCWqdZJxV+619eENxFgBtZL9ZI9VGBTzLvQTWLANFLHNbYMBWGV60fl9gT wN/529kHo1TIFr8e83kPAayrTj2N+UYF0Rm3036+BNDdsG7R8TcVVLUPTlGC CSAVnE1RWKBCQFvXOsdwAiy3ah+eXqECWfrLTNNpAnxSaShp4KdB1C52UUIM AZ7HOHxNFKbBnQR58eIEApR+Gt3itZEGNY0npZQSCXDVKMxDexMNdsjUh6+k ECD8ukDmCpkGuZLaX/QzCOC2cK23XYUGHaNNvP03CGDMVtuQpUUDG7EJ76Ec Aijfq7EOpNIgxlr7jHk+AdaKWMfvMqBBV+3cc/JNAvw6+K5pjSkNrB+uue5X SIDeluDVtxY0cNJiWMoWEaBGiWvXHTsa+FwQlWQg50RfDT/uTINUCpfuR/R8 zIct98w8aNB9yrx5Gs13wKDqp6QvDcj8MHa6gAC2GUy1sYM0+Gjfe/NcHgEo 830+D0JowJO7yiWA1rfJMSA35gQNBCLVfwmg9a9WLA45RtFgye+GW3w6AT4L X5RSOE8D8cwBpf/Q/l/ul3WcvkSD8ZRlsjiKT/nzsssNKSge1kTilosESFag tyZep4F/eHzno1gCHI/q4vfKp4GviNFyXyQB3N95G2vfoYGqi6TN2RMEMNk5 E7FSQYP5k+SD1SEEWDcrMXvjKQ0SNlaEvtlHgGm7W9qBzTTIjGw+V4POf6BM /+CuNrQexfICiiMB8v33jLwdoEGLd4PAOBDgfPMPuTsfaMB6aLFNUY8AgZvP uBwfo8FCZpfeoiYB9IZyuyRnaTCX1L/3qBQBXtmM1TmK6EFvoTvW/lUQKkuO LW2R1IMaUGyfGxSENIIQbVpWD45Php1vaBcEr0aNskR1Pei5LHHZ7J4gzFGP XG9n6sF80TkDrWOC4GaSZa9mrQe8Vrte3AgQhGabl4KxDnpw9CfbptFFEFL8 N4caeOqBRUh3LXWXIOhmvLYuOa4HZyS3u/QuCUDwss5KfIke+IZGTd0KEoA+ gkfV50o9eGP3p2jMVQAMJRIOQLUepPZWV4+bCYCw1kjfn2Y90P/59PaOzQJQ 4plU4fdeD9Sf6QVvfs0P443TXowN+rA3kJ9zTZkf7DrlpXKl9MG1I/CSiyg/ PBqybP8rpw/bTJYVJxb5IG42f8d9dX1wNEl5EvKKDxSVHcW2MPQhN/XotNEh PvC+cL9pNVwfBOuW+nVKeWHQNlT5ybA+NMdfMPguwANRt59Ozo/oA8+n9P0f v3ODMrfgI90Jfbgnf7Lyfhc3hNzLMCue04cJ2ZuS8xncsEaiPiBj/Q5Q0Za5 NavODTsHhUqOwQ4Y+x2RpmbGBZk+OdqUmztAcHOBTnbvMn3PiVb9soM74erd svbgD7P0WNHG5EOyBmDtUuiUV91AN4/3TbW7awhGVVeN7E2m6u8FFX/g9qOD S5NqHp3Mjbvr5A0MXQDY59nbjJ8VwrfKNomzHIwhe19klDdFFK8aY3iUsI1B 2TFpm4mJKL6z8vktURdjUAzz0SLaieLmrNadQ57GQA4P4Sk+KIrvPfza63CQ MaSZxKVj+aJ4WvOH0sx4Y4hRN13pX7cBXw1cZkzVGUOg7Z4C73cb8NdPqWHp GibwSn37/WH3jbj0R77lJi0TcHvcUxUasBH34umJntIxAeu7Yym8Rzfiv1gh iSx9ExDSSpjgj9+Ii3SVl8wyTMDB0urhjcqN+O4RlRE7DxP4UHH91AZecfyl wCZboasmELRZq25djjguqjbRS0kxgS1xHUVnbovjHKtqN69rJtBNv2w8VimO j1/BDjzKMoH08p0XMprFcUFicqxvsQn4B/IyEyfEcaaGcG1DkwnUEkk3nupI 4A22K6on502A8TJeW+yJBK4qPVydumgCBv6b5LWaJPDLHx+bVy6bAE1JhM+4 TQJ3OxIWMM5jCuuDPKqshiTwhaQftzARUzBolLk+uySBb+sbVN6uagrv/7PV TdGXxHPdHin+cDEFpa1Dw4QySVxQKbVK0N0ULNpEVXirJPHgnyEMBS9TIA7/ 8p6tkcQNzmj5uPqZQtSr7jtPWiTxgZzCgpYQU9jt0Hfu3agkLjqavKXwoilU blQ5GSwthUftP0z2eGoKXVj85POTUnhj6Ae7p7gpfPg3dUj+rBTOF2VzVrbZ FLbazNsePC+FX0jTHBlsNUV9cLvWl2QpPKlpvMB5wBR6sx6FupRK4YVy3ir2 M6bQVEhtZAxJ4eOqXc53501hdXR/xPRHKVydQo8XWTKFf+7RualjUni5pdxE OxcDkmOa1Wp/S+HVx94WW65nwOiojkuCoDTe+tpei6HGgDOi61c0dKRx4Xe4 R4EmA4RaS5u30aRxm3HtKzzbGJDISOHT2CWNv1lZ9wunMYDPOnd2lSGND2u0 VhoyGOAWQHugwZHGJ2NNqHqeDJDoE2q4GCGNb9y53UA9lQG7DZ8LHXsqjUtm Td2xTWcA139zmyZxaXwTV6lU2HUGpH9IVHZrlsbJzxVn6vMYcCJIVFeuTRrX cpAsZpcz4MbyiOH2AWnc8sCi1NkXDDj3NsHm7i+0vvYHsUWtDHA1MMq/NiON 228LmWlrZ8Dm60n84fPSOGf+W4dkDwM0xRq4pJelcb/o4djSjwzIP7T19y8B Ih6dWT/Tv8gArewn3AubiHjcv1Pe/5YZ0HfnyD87OSJ+wUu/cwsXE4xd9pHz SEQ8UbmyOEiACccito0oKxLx7Hv53rwbmRAaF3y2RZOI50t4dqpKMkErY3Jk UIuIFx6XMbQhMuHFbfvjn7cR8VKjFOkMEhO8JY2Y7yhEvKY1tlNLkwky1mmp vgZEvG6riaGTNhPqSPzNOkZEvCFxpfiELhP09l/YPkcn4i3YsbhmfeTvycPe pkS8byTA0JXJhGj24bhuCyI+yFQqiTRnwvTjXT85VkT83e1P0oVWTLhX1Jvf Z03EPwe7zk7ZM6Ey7zh3tS0Rn16yKon1YEJmO1+dGJuIv87NeDzpzYT+Izru wRgRv8v6+sLZlwmtDx721TsT8aCk6M9qgUxYqhTey3Al4tb6XdNJh5jwZDrm +LE9RFz9vRz3cggTvr67GZLrRsTH1R7LdZxggq+6uUyPBxF/0SmgqXeaCQW+ 8R3vPYl4UZjTztwoJrxbmAj+4EXEfRqmsJDzTDB5dCuqcS8RN/U39B1KQP9/ p3f+5j4ivmXdxaOMy0zoi2jZd9qHiH/gKCdKpjLh6K1aDVE/FL+Vo9mR6UxQ sr95sRX5xs2G0vHrTIg/IffjpD8RP2Up8sQ+hwlFN/JsNwcQcddfbi9r8plw t7q0+inyjrTifoUiJixaPlWz20/EpQ0Wvvx3hwnz1k6FA8h/PjFn50qZYKQz t9X5AIr/+WQez7tMuP5R6Xkb8oOtn0Rb7jNh5WHwYdpBIp7yRouk84gJGVGu 2teQQ05EbM2sYcJYeDj/JLI9qXUXbx0TKgwd5nYGEvFtz6QsAxuYoPkxkvsM 8vqDvpzeZias6UjWfIT8U/S+n1EL2s+A4okx5FcPucJutTHhkvaribVBRLzE zeacaCcTGj2UzqogJ/DcuHqimwnllh3GO5ADbk/kjPQyYXCrv5YxspmNXrnV WyaMpyZZ0JGVZ2Nqq4aZ8NxrLnU7Ml9md6vcR5S/j2mS8sijdPLbuFEmdEhy ta+g/2/8EvR1aowJkdR/tb3IeRefzHG+MSFAeng8HzlKR4iv8ScTNPh2O/oh e/RjYhq/mVAbwbNKQjY8fZOcMsuEcyaVk50oHrIK01r//jCh0FZUKRx5qYVu 6PeXCZTegZtiyG+DL1l1rjBhn/7zw4Uo3tXiQy76PCxoE0m7qIV8rUY1II+f BcVkwkIZOq9wr/DwNUIsILm9r1ZA3l66IXlYhAVuIy9NplE+iDl45jE3ssCw O2iDFfKvP6UV5ZIsiNJJpmei/Ck3NX8VJceC+PG0ZzK+RPzSROrgBJkFL/rF FWxQ/gVeGR13UGQBv5fj93CUn+pDZ/iVNFhg7hTwosQb3f+QB0Yv9VkgkV7/ L9+diN+s24BtMWDBt9vvjC6j+5G/JjjoFJ0FWzPzXQ6j+5Odr3xjK4sFKsLS KkQXIp7WfW3xqiMLXvsMBP9zRPkkPyv6HWPBlttmrTkORDzpgJ0qw5UFuaKn JHbYE/HLPELO814skNnsGWdng+qZ7skq12AW3LzSQ95oTsRjzvS13T/Cgj8v RC2CWKj+teqOCoexQNAq91gdg4if2ft9Q/0pFrQnb55hGqP4JbkdUrjAgvXn x+5P7CDiftNG6j8KWHBxqXo0Tg3dV6PrxsxbLOCbf9vqoELE9yb84WQXs2Bm sWJMQgmd95a75+0qWbD8w6rlLJmIYw6bv1TVscCPahf3S5KIs+7x5p5+ywJX mE7Q5CHijBXPR33DLMhpISgErUrjJpa1HdofWWAt20IqRPXbaCT036cxFgy3 H3H8i+o7TWzMlTXLgvwMiUX4Lo2rhLRIiIiYwZgTNrW9Wxofkwg5oCVmBlyj 52WVOqXxoscy9bslzECuhbSw/pU0rsh9KOA/GTOwPlXa/OoZ6j+JEk+EVM3A oC116Vc16k/le734jM1g3dkHUu+zpPH135aLF0PMIIyepO++Vxpvv1S0Kh1u BuPlz7bt95DG/9Oxc9I/YQYrZeHqwa7S+NoTBf/CI82AsG1Kc5+DNE4gWNrN XjQD6Ynq6kVjaZxH+drc5E0zsI1mmQyRpPE5bx343GcG7vTUpeg+KTzRPJBq NmgGUpuYE1avUX/XvqVe/M4MDE+n8K57JYV7LctKHP5sBqdI0i+PNUjhrWmE b39/m8FjhtjSVIkUnt32IXnjOnPAOhqEgiOlcBb18lcTU3PgOVFU+5gshV8j fL+cV2EOzJN/Rjm7JfFp1tGG1nvmEBOVEt/AksRtYv/OzDwwh+8GpQqKIIkL 8Ai7sGrNYa2kpUW/riQe+ldT4XuLOTjtsyiak5LEHSaDH1FGzGGw9Ie5xCcJ fH3P9IcX4hag33PBbi5YAo/NWdo2ecIC1ERbD4+cEMfNfrr+2cK2BFWLfcl6 ZDF8oNGH21XTCvqq+bT/rq7HH8Q3e5DnrCAjIiPHKV8I9+MP+9jRYQ2f69vC ew7w4vtCTj0QztwNScEW6zaULtVr+2t0WHvbgLVOv0pp54/6TjHNtWE7bEE0 sjpnY39pvYdzw+40bjuw+e5epnrkK72OS0J1LNgObvv56BBhkS4QbKioN2gH 67+q+snJ8kLoG9FWWyN7eGVYnM49SwDrFOHo4WJ7KPpR/i6bSwQsd98f3Sbq AEnTJ/wG1cRAu1XLP+6oAyz8osS2ZojDmfzuZdsPDrBYvT5YiCAFMyGbDT6Z OkLZ2+mlRXEidGenXxq76wjKHnfNo9fJQH9jTfx9SSfwb+d7SimUhfBsrQYT aSfgUjK5PV8sC5In8xdfE51AalXjWdVdWcB0Eg78knWC1nOnk5RqZaEnx8V6 q4IT6DZGH37bLQvdEQsit7SdoCLf9euFVVnooNGuZZo7wQuGsMVaTA6aiysL z55E8/mxCWf+yEG3SnC5boQTsLiszlcuy8GHm+qPRk87gYSid+hHbnlYyi5o YZ51AsfJh9e2CcuDdnLqd6F4J5jnL1nKIMtD5qkTOkmpTiA5YPM70VweDlsb P82/6wSjLw49X5cqD2de/nvmeM8JZjY2R5VnyMNFVk0HX5UTXN34M9cyWx6K YPtHv0dO0OY+tiHsljwMUZR4NeqcQA/wu0mP5YElJ2Rxv80JGMVvHv4algeZ ya6epjEnoFV7V9LIJCBIUZadx53gdPGO5ysKJJinX1P4MeEETU90expVSNB9 1T1E/KcTVA0pDRlpkyCB+k3Ed8YJhJTOJAkYkWApgtdKgIsNc/a6KT2uJBhc S2swJ7Khq5D3wIGrJGihZIwPb2LDZ5H805UpJHjovixyRJYNCpec42evkSCp otEjg8QG4RPfooOzSWDpaLs8ocSG3k4uYd0SEjzODNC7qMuGfUI6B/40kSBd 7XpZuxUb0h/ucDo1TYLZGVbhud1s0Ig+ezpijgS2ddM3dtiywbdpYuL4AgkE HC3/K3Rgw9pmq//2rZAgLGLxwGkXNsgQ/JdX+cjg0OmsutWfDQ2xwfXqomQo z+AljwawoX13/uHYDWQQ8qmQyjjABm6rqaZ3YmTAFwQE+YPZUOXKa39eggza Wx5+GQ5lw8T+QIG6TWQQDhMv+C+aDYfLVb89ViRDAB3PNIlhw5UT0k2TSmRo EgpMWohlgzWLl75ZhQwns5vO+lxgQ579enKkGhkmXoR4GSSy4a3aj3h5LTI8 3/Ra7kcWG1iRIQI/aGSIxC+lWz1G6y/LMWtkkeHbOzxlsYYNbK7pg7fMyID9 nUm8VcsG20vPrRLMyaBJc73Ai7Nhh7unkYUlGQZKlE8+ec4Gfy6YLtlNBt1r 9Xs0elA8b+wq43MiQ1bVtPPbXjb02OSmPUMmdCs5ne9nQ7GpjWEMmwwfhP+z Hh1kwzpNnqYljAz/RXMMr39iw/e1cP+VCxnGgn7Lr51C8WPWmvJ5ksH+oqLM 419s2Db7QTQPufa2s5T/NBveffPM2uVFhuTRpyJNc2w4WM47t9+bDOCSwHVq mQ0VVW/yS/aRoST86bLqChtiG7uCaT5kkEz5tdC3yobT6bZ/65B/dmC/dXkx sOk7gL30JUMmQ2HkmxAGOvr2xCZ/MvDvxd6nr8VgdHPKz10BZDgceWGQtQ6D 4YeJ5+4hm9VMdeeLYhBkxJlL30+GWe3aJlcpDOwUM2ctD5LBc/dUPYGIQV3r 5qFK5NYDW2ofbsKgT6ssRjKQDLmF8VVi8hiIpJzY/BZ5twy7sFURg4dGeXGm wWRI/6yF71HGYPCy0lgS8ucywtAPFTQeauD0ETkCakVFNDD4FnbfLewQGVqE 0jRyNTHofe32pxZZ/M0hlo4WBscZGnk8h8lQ6qsQ4aiDwSODV1vikRe0/qV9 1sVgf8XE0gtkxkJfZRgFg7dijSP8R8gwlJDw9ZoeBje6do2cQl5z97fDsCEG Yi3nb9qFoHw50RYURMcg9nvFShRyvklh/Apg4Fbasr8CeUcvp47MwGCm5cBR gaNkiMnWfVvJxOCkEENMG7nLX3jWxAyDr3fLGtnIAUv1ar6WGMwb9XCykKua MhjzVhg0lo0Y1SFzXTrqeX43BhHJinrvkK2x3SelbTEopDUZLyGnk1RS79hh 0LNh3EMiFMVrnOvuTgcMLr+pvayFvO3eYGubIwa2HgdfM5EjTlV9cWNj4NEi p7IH+QXjMtckhgG+Z+VKMLLY+gCZSA4GrDQ94Shkj35jmqgrBnS12etXkItz Zezz9mCQtehBz0Ke3z93UNcdgzZSwfxtZJPtnXFNHhjkfP3ecA/58vLtPCcv DFS7fPJqkAefRdd+8Ubne3FHKo6sfMWtP3wfBkyutKxm5BAObVrQF4OtrKKa 58h1m0XXZfih8TtpP/7vNd8nVNQDMHC6nbz9GTK7qsnkyX4MFmdfXmlAzj2d 5W59EIOio37ctcg/WMeOvwvE4PqutPgqZH1R++TgYAxepsUplSDHvFUvXz2E nuf2HchB7srne5l4BM2v4ZmXhCwb+H5081Hkufyoc8gB1OqVe6EYFBz1CA9B vr9ylcgIx+Dsj/poT+SVFwcpvccwCBiYK7REtrzKtPU7gcGWEa2P25FHFBZj 4iPQfLO+mVzIWj+7c4hn0PlaN276jM7z5MPSmuJIDB54v7/3DFnMwuvXq2gM zM+La5xD9hDbudYjBoMvYZfXeiIXD21UnorFYM3783w7kI2DX+zZcAGDiYUa +IrycWlggtWcgIHjnF7dI+QqU2HdY/9hoPYibDUWWZloT3h3BQMhRe0OGeSP 547OXLmKzn9O1W0U5X/GZOp7k2QMaKofy28jCzcPVt1OQ/VDNa5AE/m51r+c PekYfODMMb+j+xSZQbq4PhODlMot5beQp4N9vEOzMLCKe9JFRB4gTq6DmxhM iaz3G0X3OSlGdHG6EIPqfymGichWU7qfC29h0LF9fHgncl3zsZq1JRjsOrl6 9EIQGW4e4vbvr8Tg4JTjWmFUPzwGFRwS7mPg2pGlegvVGykmy9DwAQZGpd0i gJyw6eLGgmpUf3I3GB48gOrZM3E8uB4DFZeoTbdQPVPfpleyuQEDGbvay9uQ RzNd0noaMRB2E+t8hOohdjg7cOdzDOzXqz2o9yODgYwqUaAd1cejvfIPUD0l HNkVkjWIwWF63i0aqs+NQ+7udsMYKG7AVm+g+n2KFWXO+x7ln999FW7kSZln 8vs/YTDwOfl7ozsZep7btFHGMVB+r22uuYcMObJ7FV/NYTD96em1NNQ/dm7X 0Nr7B4OGwqF7Y6i/9FjM6i0sYLBpf/Y3yv/7zbE4K8VlDDrbNla2OaD9vS4O ieBxhqeUjtwRW9Qf4mZwTRFn0IvIZDy0QPfvRm1ro6gzdD4/az6O+l3o/dge jpgzCPgrB0kj3/4oNR4j4Qzzf+8Tj6J+uWGXgcg7GWd4kw+CYqYof6di3C+p IidXHZrfheqJgI2/grozJKKlr0GWlJM68ljDGdoKO2Zkd6L8t7wT80XLGaIl hdcZ6JPh3s32EkOqM9hfeyjoQyHDORfJpZ/GztB77+WePZpkUGy6lWazxxna 3ZuOTaD3gw7NhZvDbs5QVJ6T10Ikw/E08/sHPJzBIqtibZE0Gdr2T3TGeaPx rti8PZKofohqCNX7O4OWR89QJXofqXcvP6Ud6gwSz56+XEMgg+tClZfoJWcw vbFzw6cxEvDt5T+UfdkZ7rpKJGz7TILyNvZpzURnEJTPSY34RALunPkM82Rn OL5B1n/NMAluM/XfRGU4QwvRge9fFwnmkp4wfxeieCfYlBnVkCBxa6N6d50z 3BNWmNNLQM/r7xGKxp1B6Nfghv44EtSbzn7VaXQG3L3NIOQcCSZdlAuvPkPx m4jDb0SQ0D1JINm/coa+iZ7UxmD0PvbBQbzrrTNwV3trOjiQ4FTi6L/2WWfY 92QMj5Mkgd8M3+uX6hxYftsSGJosDx7FjA43TQ4MGJtxBVyRB8w7pm1qKwd4 v7g4ci6i99tO3ucSOhwICJfZpX1OHpRLeJ5463GAnrhT6WGIPHzZy1W4aMqB 9ighATV7efDp/ntczZ0Dh3KCpG6vlYe9ldPkC1c4sPN2sQr1mBwERjsuW17l wAWXP+odR+QgzLGqXziZA9t58tz2BcpB/FzY5cQ0tB6/PbbR3nJQvmPx77Us DoSPVyQmWcnBYsNqX1EJB7T2cIf/k5eDxG7hS80vOGB5TCOMr0kWMguCAuJe cuBV27SX0lNZKAjtMDVv48DpMd1sk0ey8FAycamtgwNcx1M3hJTIwrDrxoA3 vcifDf7eTJYFlVGi6cgoB2L4u3v37JOFbVUn5W9+4YBJWbenibss7IwdWvT9 yoFreja7lZxlwVol6+7ENw48SATnj5ayEHKQLP/7Nwf++v9gaejKQoTB2cV7 Mxxw3XlDeE5DFmLXjfSEznHgwLFRoydKspBeUXBxYYEDvxvafhoQZSE/is+/ ZokDn8weBS6IyUKJva9JxDIHtqh1ut0VloWqLc/ljFY4kGS/o95HQBbqZpQX V1fR+UzLpEpwycL/AGIP05c= "]]}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{20., 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotRange->{{20, 100}, {-6.356693959281495, 8.228080171004544}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.791612620555593*^9, 3.7916126364111223`*^9}, 3.791612860086319*^9, {3.791612948001438*^9, 3.791612969435392*^9}, { 3.7916130210420837`*^9, 3.791613097363974*^9}, {3.7916131662603827`*^9, 3.7916131736900473`*^9}, 3.791613242485924*^9, 3.7916134618293743`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Sol\[Lambda]", "=", RowBox[{"FindRoot", "[", RowBox[{"Cond2", ",", RowBox[{"{", RowBox[{"\[Lambda]", ",", "35"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.7916127554388123`*^9, 3.7916127805339947`*^9}, { 3.791612972809517*^9, 3.7916129857194633`*^9}, {3.791613072127198*^9, 3.7916131207235813`*^9}, {3.79161315209096*^9, 3.79161318775303*^9}, { 3.791613457484569*^9, 3.791613457682659*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Lambda]", "\[Rule]", "28.306631185418116`"}], "}"}]], "Output", CellChangeTimes->{ 3.791612781524181*^9, 3.7916128601349363`*^9, {3.7916129737204657`*^9, 3.791612985956575*^9}, 3.791613079147084*^9, {3.791613117381238*^9, 3.791613120942704*^9}, {3.7916131539983673`*^9, 3.791613188194169*^9}, 3.7916132433419313`*^9, 3.791613461862568*^9}] }, Open ]], Cell["\<\ Plotting the solution for the first buckling mode (for arbitrary amplitude)\ \>", "Text", CellChangeTimes->{{3.7916127376166*^9, 3.791612749895722*^9}, { 3.7916129004019213`*^9, 3.7916129106586027`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"w", "[", "x", "]"}], "/.", "SolCoeff2"}], "/.", "Sol\[Lambda]"}], "/.", RowBox[{ SubscriptBox["c", "3"], "\[Rule]", "1"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.791612869655609*^9, 3.791612918049996*^9}, 3.791613133229343*^9, {3.791613245384077*^9, 3.7916132518233633`*^9}}], Cell[BoxData[ GraphicsBox[{{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt2mk4Vt/XB3AVJRV+SKJBIopMKRKtBiKlASEyhkoypEFkLFOJkJKEiERJ yFRZ5llm92AWyqyI2zmq/+m5Hi+4PtdaZ2/n7O8+935xb7F20rNdysbGJkL9 +vdXFgRH//6dQrZ/Pz58n50WtgYtEP9sUDEx/6UoM1th28yvf47uX74wWfTj CpSPT1M+MBs94LAEFaV0rYfHKBfrfmGR3Og6YMLWN0y5b6n76j1CmBN7MY7R TzlTTO260xacM7yh1tr1ry7/2/GTJCr/d5dZT/tXH4kTXCqHbnXhbpUtlFmq R7USdmGhf7xgcQPlhFTdxX0qSMLbnIJqykJPv6kaqKMaUaiXXUY5+nZy8LWD 6JlTPf2miHK9WZqOpwYWOXaEphRQ/mSnebFcCw98/VH79B1leRFn2pqT6Pv8 78XINMqiRLtI0GksNVqz4kEy5SaxsaBUfdSolzrs84wyn3+epJYx+gfs6b/1 mPKkuaBlhQlWHtDwdg2nHJD5ccDaDI9+sPhoF0j5kHnsiKcV3nO6ctbSj/JI 6t0k0hrrt3vMn/WkvJYzmDPYBk/EPd6l60qZ/4Edo+UC6gU2pO+yoHz5eGSh mBNGHuw8utPk3/1kfWWFOmMb+f3btjOUX078dnzkgobO7OLCxyj/oZeN57qi 6dl9sWzKlO0i6PtM3DCW/6gqoUC5y6c7//Et7GkwpM/ITKHP9/e/+Dvd0fLQ VYFvYlQ9n63E1sMTbaRfhzRwT2HxhTSRAw98MXkod0fVSqo/z16F1PHD4fjy 6mJ2yoeuuKWsvoOXBPrYc4hJ9KnDwoZnd9Hxt6BnzPAkHsjgE7YaCcSbjXev XCiaxGJZ3oqEg2EYMnaDNps/iaJW+gUj2x9i4opLB/2yqTr30wj9Dw+xHnTX Pk+lxlv+OFKoNRzFMtd+bomYxIQd1e22Ox7hl4cpq/dfoK7/ce3kvNZTHHwT faPOirreUE6Oe+4pLlTf6zM+R9VDY5tcU2JQfIlTjuvpSbTcW5G8gzsW3V2U z73eR40XaXDs4EIcbtOrThfgncTM4pmx6bhEVHMsXJvINYlsOmtZtpxJePre G285jkl8+Fo/nM01CW+XPtTXISYwk3dFe/Kxl9iieJb0HpzA6Y0Op99wpaAn /6jOWP4EyrM5+9/B19jWtmq0xGoCjYXnjnsteY++Nh+K0s9NoKXmnOTbw+9R dtY8MspoAqUuOEudDXiPQfxZapd0J7Bv57S01JosVNczDuPdO4FNxVuk4kWz MaXxpZIF7wSynKUlaOYf0K1W3XuxaBy1Sz8dClUuRAmTb/rDBeMopfVnQiK4 EFtGHko15Yyj6D3Dl3s6C1Fm5WBzUto4Nl3PeFLq8xH7te6JH3s8jkLzDsd8 mj+hTkVHzdMr4zgNkSZOwYgbi50ElDeM46LUxu9zqaVYz7f7muq6cbzWdkFC hV6K7rZEqzrfOBrHe41nrijDDi7/SA3OceR0ai3UvlCGD8/E8OnNjuGgT2cp 9/ZyXDZWznulfgxFK+wNe3MrcGSt8Jqk22N4cYOgbj9RjR8ul3PwdI+i+V+H P/I8Tagi6qiQQhtFlWNr40flmrCwbZ2Zesso5ps//FJ8qgmL1S/nXK4axTTF 6IDSiCas5eE7X/1+FIddv6xZL9SMfdkWxb4BlDekFP+VbEGuRcJ9Vm4U7RgX Bdefa0PLEIVpht8IjhdafDfhZSArwiMI4TvmPG4PP2HZj0ncPeuj+4exkfxA S9zwDWN1FK62Bg+hxMCz32K/x9HPwcpt+9FBTNO3D1NR/YEey9JuXp0YwMmS dNOe1bNo5dMo3pHaj48yLCe/O86hISN+f3dSP/psEiee35xDHUVn48G4fmxJ qr2n6zOHSoO8IT8f9eMal7YtseFzyKmtN8Pt248q+RNuc9lzmMHTXqJ1th8/ q3LZxMzPIRnHNC9Y2Y+VUxs9r7nP4/R8mlsxez9aJq857Og3j4OnPCKq/vah jrlzndW9efyydENl+68+fCq+sGpPzDwm2pnt/Nnfh9HZSa8iCuZRW7aP3FHY h4Vnbsitm5/HqM9D0bH2fbjFjF9P4goLzd1ivJRt+3Cnvfqdb9dYKLXrpE2L RR86Pei78+I2CwtT8+U4z/ThBy1X2uJ9FvZE3q90hT7cdmV+2ak0FkraK8zq CPThrVUm562HWHh1JxH306MXPS6dKl5xZgHZk87bS7n0YnPexLNc0wV8LNSw 29yuF9PXH3I6Z72AH5cl1Nec6kXh3otfQ5yofqYmkSDRi/zih076BFP9AeFn Tjb24Gseuez0jwtY2Cu1+o1YDyrnDeWPCBF4W23J2xghyhLtHms2Eaj+lKEb zN2DWttV86W2Elisdy/MjujGiZLqe5o7CayqGOPb0tKNLUterxU6SGBbesb6 x77dGLE6sHLDBQIfcwYW3r3ZjezWaeSHywQa2VqYul7pRnvXdqsjzgQyN/E+ P3W2G3lqyt8dv0Vgf7iL6CqFbgSzx/TJewRO3lSS9OnrQsl1US/83xCY2ba6 2rGjC48Lzn0NyyTQRWHooll9F2aIevGH5xA4OxqVpprfhRavM7a7fSKQNJvf +SusCwfO6JTQ6wjk1ChUsgfKxV1ifd8JrE2IaDfe3YUHNRKMjMYJDPltf0NL ugvl46xVK6YI5MkTyRdf14UPp0uJu3MECu7w3Nc72Yns4pv+RC4jcSvvgUMG cZ34h1lHHxchMVS+390+shN7A/Uec20mkXXKL9snqBM1ggNENoqRWB9eLv72 aidyCOpcFpUi8Rr/0RXLtTpxuS13SvwuEnt2jcIGtU4cOBS37fweErUN7rsp KnRi8kaV4yJ7SdwY1TBiLtKJodc+X7+0n8RKQb36vCkmdh1h/3Jbm0R55Rn2 L4NM3OaUunRIh8QYo0fqgwwm9m+68fGgLolO0R0ZvOVMpK9Lfk0/TaKQsGn4 pWgmnpi5w3XbhEQ/1cUa7wdMjBq/9jPwHInjJs+XPvZjYomsGwSZk1jyrNe1 1IGJLxezFmytSbTfaGMocpCJORe8AqMukdimzhGmsIeJIQX68hqXSdxvnlKl Jc3EAb0Z0W8OJPLHf1e5tpaJ68Tc6lY6k+iFwS73uJjoKHjeK9iFxO+9O9IS /jKodd56+fdVEj+JXhFpGGHgVZk7gyXXSdx2kNvgaw8DVT2s7flukvjQ6l3I QisD6cuebjByI9E28cdviSIGHkrqYX1yJ7GpNGKPWjYDtT9e2tDjQaLq111O eqkMLBXQsJi5TSK3+I0+rwgGpt6Q30N4keimsW59VCADv2wiysa8SRywyT+d fpuBbcf9bJp9SDzuf/ZeiQsDFQPyBNJ9ScxLJkppdgxMawprdvMjUazyGTlh ysA3OZzRqndIDBlWU2I/zcA6kLSdpmwp6Z0sv4+B/tvDVqj4k1irJdpzRJ6B e/U4aTWUlS6WCJpJMHC0MODFyQAS44KsT7oKM1BKdrdNDeWVr5cFBfMwMGXl kQ3KgVR+al4Wx7Mz8O6Bmcpoyj0jmgsfFugYYOZlNUlZm+ubQv0kHQ395UeU g0jM2hFkP/CVjpluJqbXKW9utiyQZtCRY2TDaDLlkJt7Oa9/oeOQlt2XWsqs jXxGRWV03NhQwjFI2bZ8NHlFAR17a0oe/KDcYl82eyqDjmlpf8/PUN7/X+zh mCQ6Ki+IBIxQTs+7FvE1mo765kU/WikLmev2y4TSsTQp6mUW5bvs2+Rv3KGj QK5RrD/lH2l/vNCNjrdTSjqOUzY/TWvgdKTjkzdPTnNSrp1/t0HvPB0PSCVz 5VP3pxwXdPmZMR1PJn36a0r5pYZV4aAuHU1b82RnqefFO7Z3pexhOl5/djPK h7JnOJ/xTRU69q8ZVFhCeVR5LKV4Jx2rrowvuUE9f8Oesl8rt1L3Jx+4rPcu iWV3YzX0hegosiRLSY2yvPT1yNg11HxFLpEPqPWMbdYdGFpKx3Lvlo2t1Pqv dNumIMei4deob82rKQ+U076UDNDwqVTCu3NUfk5ezty4ik7ZJbT9KpWvT/8F Oxg00HBzeuVGTyp/UeaqXN/yaEgeIdY4UvnUZsVqrn5AwyojHfUSKu8f4q4/ OuNHw49xCppuN6i8aZ74GneThl/CR622UvuDDP/ro2BNQ82a+NYz1P7JkLb+ ZKhMQ6AbOEpT+0+kRXVVggwNeb60/vSzJzHIjd9kZAsNyxS9fb5cJNGqonze YzUNJ/v4sw7akihgIbnrRX8Hbrbu0ok2I9GXg81vtKMDn67a9SvMlMTJdHrT rvoOlLw1HOdxlsQqVrBjZW4HHs1aMS57hkT3iPHXY/c78JKd7imO4yT2VrwX 3bOnA/trf7k4K5N4W39BQ0WmA591XlpJV6Ly0X/gkqpYB04J7BLfrUjiqcXG 9/u5O1DXvKC/UYbEYsXJQ1rD7Xg/38spcAuJCfE7bI0ft6PIhkzvP5wkqu28 GmwS0o5H+IuFizhIpBcWvD3n146a7+/scl1K5aFDe87SsR09aX7dn0kCfVdf CLx0pB1HKiV52ycItL6V9Np9rg0vJnz5ztVE4J/lYw23x9vw7cFMI7F6AmMe Kf70GmjDlO/aGnLVBLa8K1G986UNX/HYPdleTODh4d66+ylt+GDronTCOwLF 9TdMxhq2YVRpiGFUCIFDMlGKmNuKn91WCyftJ3CHV/Lk9/RWHOHqCVhQIdCx 8UMa34tW3DyyJP3wLgJZLh1idvdbsUWlZ2O2JIFceev411i24uCJycY/PATK H4yZMVnZigXR8mE6PQvocSY+Z860BSWk1KyKXBawOOWds+jpFgx6PR8Yak+d B1goo3OkBVdz1D3VO7+AoTF9L5/Lt+DA7b2BuQYLmNC7JUqDowUlL9tVTuxZ wMpLL69HZDTjwagKusgCC//zer1HdkkzHjr841cgdb4JyJWq5p1vwr1R6RGO DiwkJl+dnRlvQqeSt9M6NiwcsEi5nU+nzqlW94hBfRZmHUwqPZTZhJdCR0Li FFmox/H8hJFFEy5+FVjYPjmPkuu3NLB5NOI2iTmvD2bzKLNnSiZ5ph7VeFsE TmyeQztZb++C7np8/D71LYN/DuO38bQ0VNWjSVq2rAnnHPKtk7s596we7z+V /r33xy+cn3cs0dKox9xdcUbXS39hacHkmdFHdSi6Xdq91/oXGqtPesntqcX2 8BXpKc9m8Y7GRFOBWxVaJ+WbHJz8iWsNMh6eXVeKvxKU+bouT2LWXAVPtXgh 6pVHMUvihzG5c+jByN0M7LtfuFZ0jolmpzfkdJ5/hCertjWLyJViAZdHe+n1 SDDo1y5UNy2B3QNLNvkavwOVSxEiI286Yev0xwXV0gL4UxB4IvfkMBxNYjSc MC4FjtCZqCd1k6Cpy7fs14cqEISpzfprZyDUauWPhZoqaNEWzuIUmwH6dbbe P91VoOZ+a3Ou7AzYx00Wci6vhp91y9xYWlT/VO3VDYbVsFwr/LGwO9Uffmfg 8Fw1HHpRrtPURfV3zJZE7KkFhhfc73s2C9mjY++e6NRCxRbXg0GvZmHxz8Dz WPNaePJnk7pk9iyESjbfSgmohXdR52d0aql+t7cKhR21cLXu2IAUi+oXtnvR f6MOyscGuPfp/YIwC5qPfF493H+m0vjs7y8IGFeD4fp6uPfku9WKVXPgdSvx 97OBetji3CF4UXAOHCOvuK/gbgDTrmNtnDvn4ETVsms9Ng3QrnN0fdXZOeCW k78QwvcF/tRsL1Z8Pwehf4J0v19phLOalc9fGc1DwP3JVXF3GuHGG9WPGVbz 4CVkUKv/tBHymh44pV2eB0fFzVpY3giur3UeeHvPg2S2iWjdmiZ4xSmgmJAy Dyu+Ta9PtGkCw+TOvryf81B1YuOaU3zN8OqviYmUHwsEZPsFr25ohojmsoLt 91hguSZZ9NG2ZjB35q4WjWABUSejRFdthmKbrG9TL1ggc1TN1PJ8MwjcMvnx XwkLHh42fe2c0wy1jRaK53+zwETlqWa4YQu8PPO1SNpxAVLWmZ3MtmwBv/22 ZT3XFmBmTvRsu30LMPtkdwd6LEDIh1SH9d4tIKU4dTY/aAFQMT/yxasWUFtd 7f4scQHEd9L637NaICTZtvR82wJMbFnr1RLTCoOSUkM/5QhQ8XjhUvKyFYLs V7Xt3k2AX9tO28yMVlCdu+ziqEqAYOCR46GlrSAcuj2nWIOA/eM3hXVGW8EN HA6NGBMQlsvMLdnbBqWzdOZRbwKYPBfSMg+3wdjLYINvdwgQvzTzPF63DbgS dVzcgwjIF1nt72nVBuwvv4b7hhPQ56Ouvze4DXo0f1rxJxGgcCxhKpPeBnYe aV81ygm4/VLma/xAGwzurDVRqyag8nd+R+h4G2TxCDhtryfAJLP5swNbO2wy c3QcbKX+/7XLQqSk2qE8yL68e4CA1l5bqYSb7XC7eE1J9x8CNu39KRLm2w6N kZlscktJuBjhxeN1vx3otpu6r3OQsKjxZM40vh2aXNivDK4iQTytunxdVTtk dTdNagiRcP2atFWYYAdI2Cl95JcjQZBr6pPhlg64XZUcxlIgIT8+S2iTTAeY SG+Ra1aixqvd2/TmYAfcT2prNlMlwW+LNtQ6dIDMT9nCQQ1q/LxVz8JvdkBI 9kfighYJFccb54z9OkD71pnVvUdJ4HQzzPj2pAM4ew+mpJ4gIfSLzUaOsg4Y l0lqfG1EgryN1K36hg5oXs6ZXXeWhOaFsbZIegcQN62d+k1JEJBwDRGb7IAo yds3v1uQEOPhS8J6GmxK9h+2uUCC2n+aRivEaaCnlJwlcYmE7hTO7C+yNMgK DrBi2pMg2hJmb6ZBg6W5y65sdiQhRSqO4e5Eg+plJdZC10jQLrLafcidBqXL Ih3crpMwoi8RvtKfBsYn2mzqb5Ag4/1GOzqGBkk9KyVP3SLhi4DzS4tkGrRY Hp71difBKW0Xm2QmDfKTbuQmeZCQ1V6Y96GCBruJFNEqTxIMLnvxezbRwP2X eH2lFwm/2A45aXTSoMMzzrXQmwQVmZptrdM0eMOgffakbo1ZEuIXQ9LgKK+B ja4fCR5Gp3qsltNB+IkG9393SCjyo0VNi9Dh4djxa9fukmAp9OxH3jY6BNie UxLwJ2FJhrmutwIdVvs3/n1FOfGw2OsjanTgjsmhywWQoMEYYufWooPJmS0l 6ZSHHV9btp+mw2Cl4keRQBIC2a98ij1H9Z9bU+NNWSpGXsjmAh0GurvGaZRr 5WZdpa/S4YRTm5R4EAkOFXmNP29T492X9bahvMbUQ7owkA56y3b+jKacMb0/ 0DeCDn8Whe6WUD4VsPSr9nM65EwfUu6h/FOkcj9vKh1CXy3lnqL86H1wDC2L Djf35nHNUt6jpTsX95kOOquq5CYo07p49eyq6dBTH+/NpKxz35Z+rYUOsluv 2RVR/rS30PxOFx22Nbqy/5tf9jv3UPgwHXoHU00vUE54fP5ywjQdfBfEHGUo 82nm/8gg6FC/ZV79G3V/d2dWu31mZ8DraWh4QnnuhdWfOm4G5FzfuGk/5Yun cu8yhRhQs++DIpN6fsw/XKtGxBgQoKW4xoHy8bcW4fMyDKhbW/Fuhnr+RaY5 65YrM+BgTNIGF8oKXCvjBA5SdfWVhoPU+r3MNxPfeowBnN17zHUpC17ISlM4 w4DyyqvKb6j1JspM805cYoDj8FG7Y1QeHK5mqpu5MqB2OKT4PpWXHlGO8sue DDAs2/mrxIeEUs+MpqBwBogfEpjnofKlJLPM6MkzBixfsrNGkspfCtOoOzmZ AYItR713U/m8r7xktLSAAfkqLi8Uqfz+GTrj3FzGgBZOdz4xKt/Oj9LmehsY UH3ujssKKv8GP/SX/e5ngDFv47Ican9sSE/ZoMzFBPkiouSRC7W/z5KJmgJM yNoZMbbLmQQ2zlPbDTYx4SKHuFANtf8GbRZ2uygyoZJ9vX/7ZRLebjp+Mt2E Cect48kbttR+bUhoL7BhwnvWvnuV50mI8PhlWu3IhMzHooqrrUm4QY+7OOTH hJaS44xb5iTsj/jhuzmdCW/WidF6DEnIPHCEU/YDE3JP1/n2GpAgNhUTqoZM mFA0MevQI2H5cY1nZ1uZcC/FJDuFeh81cjzJiSSZYC5vo9CiSe2nW2rfVhzv BHbtK6pGiiTssKlunzTsBF4n7qk71Pty5oRBebtVJ7xLETibLENCgLjDi6Sb nRB30cu8chsJbxqfmUJSJ3R3h6X6CpOwIEE23iA6wbEjcVP/XwJKeQOLzDi6 wDrNYJ/pIgEhJN9bDd4uyA3TPFPLIkC0ecc9vm1d8NiyNjLwBwFHbptoZJzu gjkfsRIv6vMgoqUgfyi1C/66C2+xKSXg3GfNV/XZXbCtI8yQWgOQSG2Oyi7q gs1uX2k/CqjPK8+Rq75tXXCgLKfF4D0BPVLrd25k64abtoaqz+IJ2OHt9sLA qBt2G/u4yLoTUCatfK+MoweOJtLrH0kSYC5nkPSDpwcm7Ei3q2IEsBRdPm0W 7oGU9tBLWhsJkFFNn/SQ7YEn2aekaXwEPNLerK9k1APp7/YXhP5eADvbFRuS U3uAUzZI17p5ATjjaW8DjvXCYh1nXtHVBUhMnK3MOdMLfcKyz0MdFkAt5b++ AYte8Cm5Y29otwDOb4/xwbVeyLmp0tRwdgEYH/HGfGwviB8jzM8dWIA0+iu4 ONkLLzxHT/1etQDbVn76/lK7D347Jodff86Cn1Wy9om6ffCzkJvH5TELigJe jMXr9YE9zy1n2zAWGLIHTsac6wOdP3a/VHxZ4P/39OxD5z5gnVqadN+GBYO/ vv29Hd0HSyTWuw5uZ0HiAP+6M9/7ILrXsfT+u3nY+OmyJkdQP/wUHFQiXs0B G7H09dWBATjSfSvko9gszJ/+bF4hMQjDLtKJawJ+QKeShYjE3SFwjh35tlVw ApyNeP8T6xqGzx1pcqpK32D9o0Fj9o3foSP6wxWxiX7IME14NeM2AsxjbCVC xgxQom0llnuNwJH3PeJauxjwUe/VceE7IxDrbXIrmHpPVR/N+HHgwQgI5kof 06mgw1flT/tCX4yAwUTZVNEuOggJ0Bulakcgy/fRbIAADfzqeVhmIqMw6vHw pPhwGxipe2tXfx6FDo2prKmGJuj6NcxTWjoKc3sCRozeNYF1xgnax6pRGPw9 xU5/2AQOmzfZvWseBdlAprSoQRP4Lfl85/HQKMyOiS97mdcIGRVEkc2aMdCo exQX2dsA7Cdu7F5iNgZCIVwN4wa1cG95zyJhNQbFUfp2MxtrgQc1y2ftxuDc 30fxO7/VgLD8Wv3vzmOQOaR3Xt29BuT4cpwb747B95D+Aw2J1WDS8SP9+Zsx 0A70PF/5uxLem18RU10cg6CPMatpnWVg/WF6Y8KScQhZ8TDiyqsyEFh9bf3y FePUfI65Gq5lcKPAnbflv3FI4DA89WFVGagKBP25JDkOmcI8q5OgFEprEplP 9cah2ow5VpNdDG1K9IiF1HGIVpav5Yz9CP73TUMtMsaBtauKVXP4I+wZ6Amu yB6HJjEHYf7xQogOG/IJL6L6r/dPq+8vBLPRn47b28ZBSnvFd+J7PgzHrzl2 9u84cB5Z66FinAssrsPLCs5MQP6iw3BP3Hvgm+R+VGoyAdq/90qnnXsP0s1M 8XqLCUjl0RKbFn4P5k+uHum9NAFs6acfjkdnQtnWxGAOrwloaq+5arD7HYSq LeHVS5mAzH1ia2Pt0yF1c0OCaTrlo1riCb/SoGTpUwXbTCqHT+QiYn3TYLZa Xt+tkPKaXnnv2NfUOcHycdyXCehL0Omf6n4FEo64YWxuAnjDLTgTwl7C/tP3 386SE2C5qLdBbcdLMFYy2v+HbRKafl9ntFQkwT1i0uK/VZNQzPepZvpvIkwH bEpS3kw5ID7nh/cL+BTvuf2u1iSwreBfst/8OXT4HS18cJyqg+7WoaxYmLJd e+zJ6UnqHJdZe3dlLIjJvHVIM52EBC8BzYxPMRCY3/WuyYmyiVnvW9Vo0Gve t2djNDUe4dTiHhUJXPtWlXx6PgkHNue9fboQASUvmcfOJU2CZWSrl5xlBMi7 3bJ6lkG5+pR5sVI4cG/OC1lfQc1vY6b8c+4BVAYFrCuopa5fLnU7aTgEPH+e STRuosZP1Uo/3Hkfxitm8550Un6S9+tUazDUOCh+XfuTsm+qf/wff/DpWOL4 YZ4ab/lb/+q1/qByoJll8JvyulUmfQp3IYXfmfsR5xT4EJ/Futz84G7h2718 mykrbL2y5K4XqIl7lr8XnwK26guze5d4wsyD4ydP76Dqff6NukEeYG01ZvNw N+Wob1kcOW5wgHP7Q+7jlNOepLzydQWWC0s44zR1vYOd7xvdq/CusypZ14iq y0rsCtrqApve2X0MsabqjllX/RhXoENozxGZi//sza1afBke+HE0112hfHtW /WnhJVg883KY6xblj24+WqO2kIOuLmlelPmHFiM228Dl7YcXj96lrJPX63XR GpiL/f8Fh1G26+uysDeHcLv3sVJRlP0aZvtdTEG7yUeyOoZyQMPZRwnGkJe0 WX1FCmXOA3xurvrguGaqKiWdclEOf8K607DtZpHekfeU8yNu11XoQnffg+6h XMpNU9uC0o7CIx2zi/6fKA8KDV3u1oTjOTIz4qWUM/UVHMwPwbJNi57lVZS/ 772zaLIfCgPrOG0a/s1nyyMbpQJXf8RELmul7LPX2vDyLthhar8piU55ejD2 U+FO6C/f+/pQz786v/q5DgmIll2pNPCVsqWSfq7eJjgVTS/yHaGc8OUtzwV+ 4FyaenTL1L/+F8lFLRyAl2+2Fc/+8/u38zYz+2+0H7GwJCizWQuJ2rTu///v Z8D/fT/Dkk/9f8LoMMg= "]]}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[ Part[#, 1]], (Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-1, 1}, {-1.7209352403830658`, 1.720935861452373}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.791612918777816*^9, 3.791612991189533*^9, 3.791613080957885*^9, { 3.7916131233836813`*^9, 3.791613190905899*^9}, {3.791613245832643*^9, 3.791613252462908*^9}, 3.791613462238014*^9}] }, Open ]], Cell["\<\ Observe: increased stiffness made the beam much more stable, i.e. a much \ greater compressive force was required to induce buckling, and now buckling \ occurs at a higher mode. (But also: we have increased \[Beta] by a factor of \ 100 and only accessed the second mode!)\ \>", "Text", CellChangeTimes->{{3.791613257055831*^9, 3.791613335118134*^9}}] }, Open ]] }, WindowSize->{1159, 862}, WindowMargins->{{-47, Automatic}, {1384, Automatic}}, Magnification:>1.5 Inherited, FrontEndVersion->"11.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (July 28, \ 2016)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 76, 1, 48, "Input"], Cell[CellGroupData[{ Cell[659, 25, 283, 7, 52, "Subsubsection"], Cell[945, 34, 2359, 70, 377, "Input"], Cell[CellGroupData[{ Cell[3329, 108, 255, 5, 48, "Input"], Cell[3587, 115, 903, 22, 48, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4527, 142, 3250, 96, 332, "Input"], Cell[7780, 240, 2187, 60, 136, "Output"], Cell[9970, 302, 2141, 57, 127, "Output"] }, Open ]], Cell[12126, 362, 156, 3, 46, "Text"] }, Closed]], Cell[CellGroupData[{ Cell[12319, 370, 285, 7, 41, "Subsubsection"], Cell[12607, 379, 622, 21, 87, "Text"], Cell[CellGroupData[{ Cell[13254, 404, 1412, 42, 126, "Input"], Cell[14669, 448, 4890, 161, 336, "Output"], Cell[19562, 611, 4890, 161, 336, "Output"] }, Open ]], Cell[24467, 775, 2707, 81, 408, "Input"], Cell[CellGroupData[{ Cell[27199, 860, 518, 15, 48, "Input"], Cell[27720, 877, 3292, 68, 373, "Output"] }, Open ]], Cell[31027, 948, 797, 24, 80, "Input"] }, Closed]], Cell[CellGroupData[{ Cell[31861, 977, 111, 1, 41, "Subsubsection"], Cell[CellGroupData[{ Cell[31997, 982, 643, 17, 80, "Input"], Cell[32643, 1001, 17221, 298, 358, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[49901, 1304, 302, 7, 48, "Input"], Cell[50206, 1313, 196, 4, 48, "Output"] }, Open ]], Cell[50417, 1320, 216, 4, 46, "Text"], Cell[CellGroupData[{ Cell[50658, 1328, 443, 14, 48, "Input"], Cell[51104, 1344, 9527, 169, 358, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[60680, 1519, 160, 2, 51, "Subsubsection"], Cell[CellGroupData[{ Cell[60865, 1525, 826, 20, 80, "Input"], Cell[61694, 1547, 24193, 411, 348, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[85924, 1963, 448, 9, 47, "Input"], Cell[86375, 1974, 396, 7, 47, "Output"] }, Open ]], Cell[86786, 1984, 216, 4, 45, "Text"], Cell[CellGroupData[{ Cell[87027, 1992, 491, 14, 47, "Input"], Cell[87521, 2008, 12655, 221, 354, "Output"] }, Open ]], Cell[100191, 2232, 361, 6, 102, "Text"] }, Open ]] } ] *)