
C5.9 Mathematical Mechanical Biology

Problem Sheet 1: Suggested Answers and Hints

Derek Moulton

TO BE HANDED IN: questions 1, 2, 4, 5, 6 from Module I.

A note on how to use these notes

This hand-out is intended to be a guide for when you find yourself stuck on one of the
prescribed problems. It is not intended to be a replacement that you hand in to your TA.
This sheet will provide a starting point and hints for how to obtain the answer; however, it
will be up to you to flesh out and fill in the gaps where necessary.

Some of the problems are not required to be handed in; these optional problems are meant
to provide additional practice and/or push your understanding and encourage you to think
more deeply about the biological and mathematical aspects of the problems.

To ultimately obtain the best understanding of the lecture material, give a strong attempt
on the problem set before consulting these notes.

A note on how to use the note on how to use these notes

Read it.

Module I

Question 1 - Lagrange’s Theorem

We are asked to prove that:

s2 =
1

(N + 1)2

∑
0≤i<j≤N

r2
ij. (1)

There are a number of ways that you can show this, and you are encouraged to find a
way that makes sense to you, however we will prove it as follows:

We begin by noting that the radius of gyration was the root mean square distance from
all units in our chain to the chain’s center of mass. Mathematically, we can write this as:

s2 =
1

N + 1

N∑
i=0

(Ri −RCOM)2 , (2)

where RCOM is defined as the position of the chain’s center of mass, which is:

RCOM =
1

N + 1

N∑
j=0

Rj. (3)

Expanding equation (2) leads to
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s2 =
1

N + 1

N∑
i=0

(
R2
i

)
− 2RCOM ·

N∑
i=0

(
1

N + 1
Ri

)
+

(N + 1)

(N + 1)
R2
COM . (4)

However, our second summation sign is the definition of RCOM , so we have:

s2 = −R2
COM +

1

N + 1

N∑
i=0

(
R2
i

)
. (5)

Now substitute the definition of RCOM back in, taking care of the fact that it is squared. . .
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Question 2 - The Freely Rotating Chain

From the question, we know that the projection of ri+1 on ri is b cos θ, where b and θ are
both constants, and we are asked to show < ri · ri+n >= b2 cos(i+n−i) θ.

To show the required result, we use the hint from the question; considering the projections
of the tangent vectors onto preceding tangent vectors. So, if we project ri+n onto ri+n−1

and then this vector onto ri+n−2 and so forth until we arrive at ri, we can evaluate each of
these terms to obtain the total answer.

Remember that the vector projection, that we will call v in this case, of ri+1 onto ri, was
given by:

v = (ri+1 · r̂i) r̂i = b cos θr̂i, (6)

where (ˆ) defines the unit vector.
As such, we can write:

< ri·ri+n >=< ri·
(
ri+n · r̂i+n−1

b

)
ri+n−1 >=< ri·

(
ri+n · r̂i+n−1

b

)
. . .

(
ri+2 · r̂i+1

b

)
ri+1 > .

(7)

Clearly ri+n 6=
(

ri+n·r̂i+n−1

b

)
ri+n−1, however, the above equation is true: Why is this?

Lastly, we combine equation (6) and equation (7) above to obtain the required result.

We now consider the average end-to-end distance using our previous result:

< R2 >N=
N∑
i=1

< r2
i > +2

N∑
i=1

N−i∑
j=1

< ri · ri+j >= b2

(
N + 2

N∑
i=1

[
N−i∑
j=1

(cos θ)j
])

. (8)

Using geometric series (twice) this can be simplified to

< R2 >N = b2

(
N +

2 cos θ

1− cos θ

[
N − cosN θ

cos θ

{
1− 1

cosN θ

1− 1
cos θ

}])
= b2

(
N +

2N cos θ

1− cos θ
− 2 cos θ

1− cos θ

{
1− cosN θ

1− cos θ

})
. (9)

Lastly, we find the gyration radius of the freely rotating chain model:

< s2 >=
1

(N + 1)2

∑
0≤i<j≤N

< r2
ij > . (10)

It should be commented that the calculation is messy. The main goal is to understand
the method of calculation and to find the leading order terms when we consider the limit of
N →∞.
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From here on in, we define cos θ = α and we begin by cleaning up equation (9) as follows:

< R2 >N= b2

(
(1 + α)N

1− α
− 2α

1− α

(
1− αN

1− α

))
. (11)

We can use this result in equation (10), provided that we replace N with k = i− j (can
you see why??). As such, expanding the single sum sign into a double sum, we have:

< s2 >=
1

(N + 1)2

N∑
j=1

j∑
k=0

< R2 >k=
b2

(N + 1)2(1− α)

N∑
j=1

j∑
k=0

(
(1 + α)k − 2α

(
1− αk

1− α

))
.

(12)
Now take each of the terms and evaluate the sums carefully. Using standard summation

identities and evaluating geometric series this can be simplified to

< s2 >=
b2(1 + α)N(N + 2)

6(N + 1)(1− α)
− αNb2

(1− α)2(N + 1)
+

2α2b2N

(1− α)3(N + 1)2
−

2α3b2
(
1− αN

)
(1− α)4(N + 1)2

.

(13)
In the limit of N → ∞, the first term is much larger than all the other terms. By

substituting α = cos θ again, we find:

< s2 >∼ b2N(1 + cos θ)N

6N(1− cos θ)
=
Nb2

eff

6
, (14)

which is the Debye limit required.
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Question 3 - Estimates for Bio-filaments

We begin by calculating the area moments of inertia, otherwise known as the second moments
of area. For the case of DNA, Actin and microtubules, we make the assumption that their
cross-sectional areas are circular, therefore:

IDNA =
π

4
r4 =

π

4
(1nm)4 ≈ 7.85× 10−37m4 (15)

IActin =
π

4
r4 =

π

4
(3.5nm)4 ≈ 1.17× 10−34m4 (16)

IMT =
π

4
(r4
out − r4

in) =
π

4
((12.5nm)4 − (10.5nm)4) ≈ 9.63× 10−33m4. (17)

Where do these equations for the area moment of inertia come from?

Using the fact that the Young’s modulus, E, is 2GPa for our macromolecules, we use the
equation:

E =
σ

ε
, (18)

where σ is the stress and ε is the associated strain.
If we require that the strain is 1%, then we find that the required stress is given by:

σ = Eε =
(
2× 109Pa

)
(0.01) = 2× 107Pa. (19)

The associated force needed to stretch our macromolecules is then given by σ = F
A

. Using
the circular cross-sectional area assumption again, we find:

FDNA =
(
2× 107

) (
π × (1nm)2

)
≈ 0.0628pN (20)

FActin =
(
2× 107

) (
π × (3.5nm)2

)
≈ 0.770pN (21)

FMT =
(
2× 107

) (
π × (12.5nm)2

)
≈ 9.82pN. (22)

Lastly, we find the persistence lengths. Remember that in the continuum limit, the
persistence length was given by:

ξP =
B

kBT
, (23)

where B was the bending stiffness, given by B = EI, and kB was Boltzmann’s constant,
given by kB = 1.38× 10−23m2kg.s−2K−1 in SI units.

Assuming we are dealing with these macromolecules in the human body, T ≈ 310K. As
such, the persistence lengths can be found:
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ξDNA =
2× 107 × 7.85× 10−37

1.38× 10−23 × 310
≈ 3.7nm (24)

ξActin =
2× 107 × 1.17× 10−34

1.38× 10−23 × 310
≈ 0.547µm (25)

ξMT =
2× 107 × 9.63× 10−33

1.38× 10−23 × 310
≈ 0.0450mm. (26)

In regards to determining agreement with the theoretical values, it is best to come up
with a quantitative measurement, rather than just saying “it’s close”. You are free to come
up with your own measurement, however, a possible error metric, that we will define as η,
could be:

η =
|ξexact − ξapprox|

ξexact
. (27)
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Question 4 - Radius of Gyration of the Worm-like Chain model

To start, note that we can write

rij = Rj −Ri =

j∑
p=i

rp.

Thus, we can express the Radius of gyration as

< s2 >=
1

(N + 1)2

∑
0≤i<j≤N

< r2
ij >=

1

(N + 1)2

∑
0≤i<j≤N

j∑
p=i

j∑
q=i

< rp · rq > (28)

In lectures we derived the formula

< rp · rq >= ω
|p−q|
1

where ω1 = L(λ) where L is the Langevin function and λ characterises the bending stiffness.
Since |L(λ)| < 1 for all λ, the innermost sum can be written as two separate partial geometric
series, one for q < p and one for q > p. Evaluate these, and then try to keep your wits about
you as you work your way through the rest of Sum Inception.
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Question 5 - Derivation of momentum balance

See handwritten notes/videos for starting point.

Question 6 - Static Kirchhoff Equations in the Local Basis

Before we begin to manipulate the static equivalents to equations (70) and (71) from the
bio-filaments notes, let us calculate the spatial derivatives of each of the basis vectors. This is
done by introducing a strain vector, u(s), with components (u1(s), u2(s), u3(s)) that depend
on the arc parameter, s:

∂d1

∂s
= u3d2 − u2d3 (29)

∂d2

∂s
= u1d3 − u3d1. (30)

∂d3

∂s
= u2d1 − u1d2 (31)

In calculating this, we have assumed something about the basis vectors . What assumption
did we implicitly make?

Let us now take the static version of the force balance and substitute n = n1d1 + n2d2 +
n3d3, where each of our components depends on s:

dn

ds
+ f =

d

ds
(n1d1 + n2d2 + n3d3) + f = 0. (32)

Now use equations (29)-(31) to calculate the derivative term in (32). . .
Then write f = (f1, f2, f3) and extract the d1, d2 and d3 components to obtain the force

balance in local basis.
Apply a similar process to the static version of the moment balance. . . To close the system

of equations, use the linear constitutive relation for the unstressed reference configuration:

m = EI(u1 − û1)d1 + EI(u2 − û2)d2 + µJ(u3 − û3)d3 (33)

If we were to consider the time-dependent forms of the Kirchhoff equations, we would
obtain a similar set of 6 equations, but with components from the spin vector, w(s, t) =
(w1(s, t),w2(s, t),w3(s, t)). This would then mean that we have 9 unknowns (i.e. for n, u
and w). What other relation would we need in order to close the system of equations?
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Question 7 - Beam buckling weakly nonlinear

Define θ as the angle between the tangent d3 and the x-axis. Letting n = nxex+nyey be the
resultant force in the beam and m = mez be the moment, the balance of linear momentum
simply gives that nx and ny are constants, while

m′(s) + ny cos θ − nx sin θ = 0. (34)

The compressive force P > 0 at the end of the beam is only in the horizontal direction, hence
nx = −P , while ny = 0. With the linear constitutive law m = EIθ′(s), we thus obtain

θ′′(s) +
P

EI
sin θ = 0, (35)

and the boundary conditions for a clamped beam are θ = 0 at s = 0, L.
Linearising about small θ leads to

θ =

{
A sin(nπs

L
) if L2P

π2EI
= n2,

0 else
(36)

Now we define λ = L2P
π2EI

and rewrite θ as θ = δΘ, where δ is a small parameter and Θ is
order 1. We also scale the length s = Lξ. Writing λ = n2 + ελ1 and expanding in (35) gives

Θ′′(ξ) + π2(N2 + ελ1)(Θ− δ2 Θ3

6
+ . . . ) = 0 (37)

This system only balances if δ =
√
ε – can you see why? With this choice we now expand

Θ = Θ0 + εΘ1 + . . . . Now equate powers of ε at leading and first order. . .
You should find

Θ0 = A0 sin(nπξ). (38)

with no information at leading order on amplitude A0. The condition on amplitude comes
from using Fredholm alternative Theorem for the first order problem. That is, you should get
that Θ1h = sin(nπξ) is a solution of the homogeneous problem for order ε, i.e. there exists
a zero-eigenfunction. The condition on A0 comes from formulating the solvability condition
for the Θ1 problem. . .
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