
C5.9 Mathematical Mechanical Biology

Problem Sheet 2: Suggested Answers and Hints
Derek Moulton

TO BE HANDED IN: questions 8, 9 from Module I and questions 1, 3, 5 from
Module II

Module I

Question 8 - Axon Injury

We begin with the following equation:

B
d4W

dx4
+ P

d2W

dx2
+ kW = 0, (1)

and non-dimensionalize it by including a characteristic length-scale, L, and non-dimensionalized
variable, x = XL. In this instance, we find:

d4w

dX4
+ λ

d2w

dX2
+ βw = 0, (2)

where λ = PL2

B
and β = kL4

B
are non-dimensionalized parameters and we have new boundary

conditions w(±1) = 0 and dw
dX
|X=±1 = 0.

Using the ansatz w(X) = eiωX in the above equation, we find:

ω4 − λω2 + β = 0. (3)
Upon using the discriminant (by letting α = ω2), real solutions will be obtained provided

that λ2 − 4β > 0. This corresponds to the non-trivial solution required in the question,
however, you are invited to think about why that might be. What would the solution be
if ω is real? What if ω is a repeated root? Imaginary? Hence why is it necessary that
λ2 − 4β > 0?

We can solve the characteristic equation for ω to find 4 real solutions: ω+, ω−, −ω+ and
−ω−.

As such, the general solution to the non-dimensionalized equation is given by:

w(X) = A cos(ω+X) +B cos(ω−X) + C sin(ω+X) +D sin(ω−X), (4)
for A, B (not to be confused with the bending stiffness), C and D being arbitrary constants
to be determined using the boundary conditions. Doing this yields two possible scenarios:

w(X) = A0

(
cos(ω+X)

cos(ω+)
− cos(ω−X)

cos(ω−)

)
, (5)

whereby A0 = A cos(ω+) and where we have a relationship for the form F (ω+, ω1) = 0, a
dispersion relationship that you should work out.

Alternatively, another set of solutions satisfies

w(X) = C0

(
sin(ω+X)

sin(ω+)
− sin(ω−X)

sin(ω−)

)
, (6)
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where B0 = B sin(ω+) and with a different dispersion relationship G(ω+, ω1) = 0 to be
worked out.

Note that A0 and C0 are still undefined even after using the boundary conditions. In a
biological context, this doesn’t make sense; an axon cannot be stretched to infinity. What
further constraints can we use to find A0 or C0?

Additionally, you may have noticed that P is not defined in the question. We can, however,
solve for P using the relationships ω+ tan(ω+) = ω− tan(ω−) or ω+ cot(ω+) = ω− cot(ω−),
but there are infinitely many solutions in this instance. How do we fix P?
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Question 9 - Derivation of Beam Equation

We begin with the general equations for a rod confined to planar motion:

∂F

∂s
+ f = ρA

∂2x

∂t2
(7)

∂G

∂s
+ g = ρA

∂2y

∂t2
(8)

EI
∂2θ

∂s2
+G cos θ − F sin θ = ρI

∂2θ

∂t2
, (9)

where:

∂x

∂s
= cos θ (10)

∂y

∂s
= sin θ. (11)

Now use the hint from the problem sheet; namely, to consider θ � 1. In this case, we
can consider the corresponding asymptotic behavior in the limit of θ → 0, i.e. we use the
linearisations cos θ ∼ 1, sin θ ∼ θ, ...
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Module II

Question 1 - Invariance of Arclength and Area

As with most questions requiring a proof, there are multiple ways to derive the desired result.
Again, you are encouraged to work out a method that makes sense to you.

Suppose that our original parameterisation is in the variables (x, y), and that we change
variables to (u, v). For this transformation, we have the Jacobian

J =
∂(u, v)

∂(x, y)
=

[ ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
. (12)

If we define the vectors
du =

(
du
dv

)
, dx =

(
dx
dy

)
.

It follows that
du = Jdx.

Next, use the chain rule to show that if G is the original metric tensor in (x, y), and Ĝ is
the metric tensor in (u, v), then

G = JT ĜJ.

Now, for arclength to be invariant, we need dŝ2 = ds2, where ds is arclength element in
(x, y) and dŝ is that in (u, v). The key is to observe that we can write (try to show it!)

dŝ2 = duT Ĝdu,

and then use the relations above to get equality with ds2...

To prove the invariance of area, we start from

A =

¨

M

√
det (G)dxdy, (13)

for the area in the original parameterisation, where M is the domain for (x, y). Similarly we
would write

Â =

¨

M̂

√
det
(
Ĝ
)
dudv, (14)

for the transformed variables. Now use the relations above to show that A = Â...
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Question 2 - Eigenvalues of L
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Question 3 - Euler’s Theorem for Normal Curvature

There are a number of ways to show Euler’s theorem for the normal curvature, however we
will derive the result as follows:

The normal curvature is defined as:

kn = −n · dt
ds
. (15)

Using the orthogonality of t and n, (i.e. expanding 0 = d
ds
(n · t)) we can write this as:

kn = −n · dt
ds

= t · dn
ds

=
dx · dn
ds2

. (16)

To proceed, recall that
dx = r1dξ

1 + r2dξ
2. (17)

If we take take a differential of
n =

r1 × r2
||r1 × r2||

we will pick up a lot of terms, however any differential of the denominator will vanish when
dotted with dx, and differentials of the numerator, dotted with dx, can then be shuffled
using the vector triple product to obtain terms of the form

−n · ∂ri
∂ξj

which are the components of the second fundamental form K. Putting it together, we get

kn = −L (dξ1)
2
+ 2Mdξ1dξ2 +N (dξ2)

2

E (dξ1)2 + 2Fdξ1dξ2 +G (dξ2)2
, (18)

where L, M , and N are the entries of the second fundamental form and E, F and G are the
entries of the first fundamental form. In terms of the matrices K and G, we would write
L = K11, M = K12, N = K22, and E = G11, F = G12, G = G22

1.
Now, consider a parameterisation of the surface such that ξ1, ξ2 correspond to the principal

directions, i.e. we choose a parameterisation for which ri = ∂x/∂ξi are eigenfunctions of L =
G−1K. Since these are orthogonal (proved in question 2), we conclude that F = r1 · r2 = 0,
which means that the metric tensor G is diagonal. By this construction L is also diagonal
which implies K is diagonal as well, i.e. M = 0.

By construction of this parameterisation, a path on the surface for which ξ1 is constant is
a curve with curvature k1, i.e. one of the intrinsic curvatures, while a path with ξ2 constant
has curvature k2, the other principal curvature. Since dξ2 = 0 on the first path and dξ1 = 0
on the second path, we get from the formula (18) above that

k1 = −
L

E
, k2 = −

N

G
.

1Forgive the unfortunate and embarrassing abuse of notation in doubly defining G – these are standard notations, though
they rarely intersect like this!!
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Now take an arbitrary path on the surface, and let θ be the angle between the tangent t and
r1. Fiddle around with this and try to show that

dξ1

ds
=

cos θ√
E
.

You can get a similar expression for dξ2

ds
, and then put the pieces together in the expression

k1 cos
2 θ + k2 sin

2 θ...
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Question 4 - The Monkey-Saddle

We are asked to find the principal, mean and Gaussian curvatures and to draw the Monkey
Saddle surface, given by z = x3 − 3xy2, with the assistance of the Mathematica script
“Curvature_computation.nb”.

We can parametrize the surface as

x = u (19)
y = v (20)
z = u3 − 3uv2, (21)

and it is a small change to the provided script to produce the surface and compute the
curvatures.

The surface has the shape:

The Gaussian curvature, KG, and mean curvature, H, are computed to be:

KG = − 36 (u2 + v2)

(1 + 9u4 + 18u2v2 + 9v4) 2
(22)

H =
54 (u5 − 2u3v2 − 3uv4)

(1 + 9u4 + 18u2v2 + 9v4)
3
2

. (23)

Note that the denominator of KG is positive for all real values of u and v, while the
numerator is greater than 0 for all values of u and v except when u = v = 0, where it is
equal to 0. This then implies that the Gaussian curvature is negative everywhere except at
the origin, as required.
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Question 5 - The Slightly Deformed Sphere

It is highly recommended that you use a symbolic algebra package like Mathematica or Maple
to help you complete this problem; the algebra becomes messy very quickly. There are some
similarities in computing the curvatures as in question 4, however, the main difference will
be consistently working to first order in ε.

To begin with, we start with our position vector, defined as:

x = R(1 + εh(θ, φ) {cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)} , (24)

find the corresponding tangent vectors, rθ and rφ:

rθ = [R cos(φ)
(
ε sin(θ)h(1,0)(θ, φ) + ε cos(θ)h(θ, φ) + cos(θ)

)
,

R sin(φ)
(
ε sin(θ)h(1,0)(θ, φ) + ε cos(θ)h(θ, φ) + cos(θ)

)
,

Rε cos(θ)h(1,0)(θ, φ)−R sin(θ)(εh(θ, φ) + 1)], (25)

rφ = [R sin(θ)
(
ε cos(φ)h(0,1)(θ, φ)− sin(φ)(εh(θ, φ) + 1)

)
,

R sin(θ)
(
ε sin(φ)h(0,1)(θ, φ) + ε cos(φ)h(θ, φ) + cos(φ)

)
,

Rε cos(θ)h(0,1)(θ, φ)], (26)

and compute the unit normal as we did previously:

n =
rθ × rφ
‖rθ × rφ‖

. (27)

We can now calculate the first fundamental form, G, however, we only work up to O (ε)
and neglect higher ordered terms. This can be done in Mathematica by using the “Series”
command to expand in powers of ε. To first order, we find:

G =

(
R2(2εh(θ, φ) + 1) 0

0 R2(2εh(θ, φ) + 1) sin2(θ)

)
. (28)

Now proceed in a similar fashion to compute the second fundamental form, K, again up
to O (ε) only. Then obtain the entries of the principal curvature matrix, L = G−1K by
combining the first order results.

A small Mathematica script which does the first part of this computation is provided
below. Be sure to understand what the program and the commands actually do before just
copying it!

x = R (1 + ep*h[t, p])*{Cos[p] Sin[t], Sin[p] Sin[t], Cos[t]}
rt = Simplify[D[x, t]];
rp = Simplify[D[x, p]];
n = Simplify[Cross[rt, rp]/Sqrt[Cross[rt, rp].Cross[rt, rp]], Assumptions -> R > 0];
G = Simplify[{{rt.rt, rt.rp}, {rp.rt, rp.rp}}];
G1 = Simplify[Normal[Series[G, {ep, 0, 1}]]];
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