Problem Sheet 2: Suggested Answers and Hints

Derek Moulton

TO BE HANDED IN: questions 8, 9 from Module I and questions 1, 3, 5 from Module II

Module I

Question 8 - Axon Injury

We begin with the following equation:

$$
B\frac{d^4W}{dx^4} + P\frac{d^2W}{dx^2} + kW = 0,
$$
\t(1)

and non-dimensionalize it by including a characteristic length-scale, L, and non-dimensionalized variable, $x = XL$. In this instance, we find:

$$
\frac{d^4w}{dX^4} + \lambda \frac{d^2w}{dX^2} + \beta w = 0,\t\t(2)
$$

where $\lambda = \frac{PL^2}{B}$ $\frac{PL^2}{B}$ and $\beta = \frac{kL^4}{B}$ $\frac{L^4}{B}$ are non-dimensionalized parameters and we have new boundary conditions $w(\pm 1) = 0$ and $\frac{dw}{dX}|_{X=\pm 1} = 0$.

Using the ansatz $w(X) = e^{i\omega X}$ in the above equation, we find:

$$
\omega^4 - \lambda \omega^2 + \beta = 0. \tag{3}
$$

Upon using the discriminant (by letting $\alpha = \omega^2$), real solutions will be obtained provided that $\lambda^2 - 4\beta > 0$. This corresponds to the non-trivial solution required in the question, however, you are invited to think about why that might be. What would the solution be if ω is real? What if ω is a repeated root? Imaginary? Hence why is it necessary that $\lambda^2 - 4\beta > 0$?

We can solve the characteristic equation for ω to find 4 real solutions: ω_+ , ω_- , $-\omega_+$ and $-\omega_-.$

As such, the general solution to the non-dimensionalized equation is given by:

$$
w(X) = A\cos(\omega_+ X) + B\cos(\omega_- X) + C\sin(\omega_+ X) + D\sin(\omega_- X),\tag{4}
$$

for A, B (not to be confused with the bending stiffness), C and D being arbitrary constants to be determined using the boundary conditions. Doing this yields two possible scenarios:

$$
w(X) = A_0 \left(\frac{\cos(\omega_+ X)}{\cos(\omega_+)} - \frac{\cos(\omega_- X)}{\cos(\omega_-)} \right),\tag{5}
$$

whereby $A_0 = A \cos(\omega_+)$ and where we have a relationship for the form $F(\omega^+, \omega_1) = 0$, a dispersion relationship that you should work out.

Alternatively, another set of solutions satisfies

$$
w(X) = C_0 \left(\frac{\sin(\omega_+ X)}{\sin(\omega_+)} - \frac{\sin(\omega_- X)}{\sin(\omega_-)} \right),\tag{6}
$$

where $B_0 = B \sin(\omega_+)$ and with a different dispersion relationship $G(\omega^+, \omega_1) = 0$ to be worked out.

Note that A_0 and C_0 are still undefined even after using the boundary conditions. In a biological context, this doesn't make sense; an axon cannot be stretched to infinity. What further constraints can we use to find A_0 or C_0 ?

Additionally, you may have noticed that P is not defined in the question. We can, however, solve for P using the relationships $\omega_+ \tan(\omega_+) = \omega_- \tan(\omega_-)$ or $\omega_+ \cot(\omega_+) = \omega_- \cot(\omega_-)$, but there are infinitely many solutions in this instance. How do we fix P?

Question 9 - Derivation of Beam Equation

We begin with the general equations for a rod confined to planar motion:

$$
\frac{\partial F}{\partial s} + f = \rho A \frac{\partial^2 x}{\partial t^2} \tag{7}
$$

$$
\frac{\partial G}{\partial s} + g = \rho A \frac{\partial^2 y}{\partial t^2} \tag{8}
$$

$$
EI\frac{\partial^2 \theta}{\partial s^2} + G\cos\theta - F\sin\theta = \rho I\frac{\partial^2 \theta}{\partial t^2},\tag{9}
$$

where:

$$
\frac{\partial x}{\partial s} = \cos \theta \tag{10}
$$

$$
\frac{\partial y}{\partial s} = \sin \theta. \tag{11}
$$

Now use the hint from the problem sheet; namely, to consider $\theta \ll 1$. In this case, we can consider the corresponding asymptotic behavior in the limit of $\theta \to 0$, i.e. we use the linearisations $\cos \theta \sim 1$, $\sin \theta \sim \theta$, ...

Module II

Question 1 - Invariance of Arclength and Area

As with most questions requiring a proof, there are multiple ways to derive the desired result. Again, you are encouraged to work out a method that makes sense to you.

Suppose that our original parameterisation is in the variables (x, y) , and that we change variables to (u, v) . For this transformation, we have the Jacobian

$$
J = \frac{\partial(u, v)}{\partial(x, y)} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}.
$$
 (12)

If we define the vectors

$$
d\mathbf{u} = \left(\begin{array}{c} du \\ dv \end{array}\right), \ \ d\mathbf{x} = \left(\begin{array}{c} dx \\ dy \end{array}\right).
$$

It follows that

 $d\mathbf{u} = Jd\mathbf{x}$.

Next, use the chain rule to show that if G is the original metric tensor in (x, y) , and \hat{G} is the metric tensor in (u, v) , then

$$
G = J^T \hat{G} J.
$$

Now, for arclength to be invariant, we need $d\hat{s}^2 = ds^2$, where ds is arclength element in (x, y) and $d\hat{s}$ is that in (u, v) . The key is to observe that we can write (try to show it!)

 $d\hat{s}^2 = d\mathbf{u}^T \hat{G} d\mathbf{u},$

and then use the relations above to get equality with ds^2 ...

To prove the invariance of area, we start from

$$
A = \iint\limits_M \sqrt{\det(G)} dx dy,
$$
\n(13)

for the area in the original parameterisation, where M is the domain for (x, y) . Similarly we would write

$$
\hat{A} = \iint\limits_{\hat{M}} \sqrt{\det \left(\hat{G}\right)} du dv,
$$
\n(14)

for the transformed variables. Now use the relations above to show that $A = \hat{A}$...

Question $\sqrt{2}$ - Eigenvalues of L

Sheet $2, 02$ $\langle \overline{v}, Lv \rangle = \langle \overline{v}, G^{-1}Kv \rangle = \overline{v}^T G G^{-1}Kv = \overline{v}^T Kv,$ with K symmetric. $Lv = \lambda v$, $L\overline{v} = \overline{\lambda}\overline{v}$, $v \neq 0$. $\therefore \angle \overline{v}, \angle v \rangle - \angle v, \angle \overline{v} \rangle = \lambda \langle \overline{v}, v \rangle - \overline{\lambda} \langle v, \overline{v} \rangle$ $= \lambda \overline{v} G v - \overline{\lambda} \overline{v} G \overline{v}$ = (2-2) $T^{T}Gv$, notaig G

is gravernic

Interesting \overline{v} \overline{v} \overline{v} \overline{v} \overline{v} \overline{v} \overline{v} Zero as
K synnetnic Gepositive
definite and $\forall \not\equiv \varphi.$ $\therefore \lambda = \overline{\lambda}$, eigvals real. : V, eigenvectors roal. $Lv_2 = \lambda_2 v_2$ Orthogonality $L v_i = \lambda_i v_i$ = $\lambda v_2^T G v_1 - \lambda_2 v_1^T G v_2$ $\langle v_{2}, Lv_{1}\rangle - \langle v, Lv_{2}\rangle$ $= (\lambda_{1} - \lambda_{2}) (v_{2}^{T} G v_{1}) l$ $x - v_2^{\dagger} K v_1 - v_1^{\dagger} K v_2$ Zero as K symmetric symmetric $0 = (2, -2, 0)$ v_2^T $Gv_1 = 2, -2, -2, -1, -2$

: Eigvectors associated with different eigvalues are arthogonal, w.r.t. this inner product, which is the appropriate are as

$$
\langle a, a \rangle = a^{T}G a
$$
, the length of a vector

$$
e^{2} = q \frac{d}{d} \xi^{i} d\xi^{j}
$$

Question 3 - Euler's Theorem for Normal Curvature

There are a number of ways to show Euler's theorem for the normal curvature, however we will derive the result as follows:

The normal curvature is defined as:

$$
k_n = -\boldsymbol{n} \cdot \frac{d\boldsymbol{t}}{ds}.
$$
 (15)

Using the orthogonality of **t** and **n**, (i.e. expanding $0 = \frac{d}{ds}(\mathbf{n} \cdot \mathbf{t})$) we can write this as:

$$
k_n = -\boldsymbol{n} \cdot \frac{d\boldsymbol{t}}{ds} = \boldsymbol{t} \cdot \frac{d\boldsymbol{n}}{ds} = \frac{d\boldsymbol{x} \cdot d\boldsymbol{n}}{ds^2}.
$$
 (16)

To proceed, recall that

$$
d\mathbf{x} = \mathbf{r}_1 d\xi^1 + \mathbf{r}_2 d\xi^2. \tag{17}
$$

If we take take a differential of

$$
\mathbf{n} = \frac{\mathbf{r}_1 \times \mathbf{r}_2}{||\mathbf{r}_1 \times \mathbf{r}_2||}
$$

we will pick up a lot of terms, however any differential of the denominator will vanish when dotted with $d\mathbf{x}$, and differentials of the numerator, dotted with $d\mathbf{x}$, can then be shuffled using the vector triple product to obtain terms of the form

$$
-\mathbf{n}\cdot\frac{\partial \mathbf{r}_i}{\partial \xi^j}
$$

which are the components of the second fundamental form K . Putting it together, we get

$$
k_n = -\frac{L (d\xi^1)^2 + 2Md\xi^1 d\xi^2 + N (d\xi^2)^2}{E (d\xi^1)^2 + 2Fd\xi^1 d\xi^2 + G (d\xi^2)^2},
$$
\n(18)

where L, M, and N are the entries of the second fundamental form and E, F and G are the entries of the first fundamental form. In terms of the matrices K and G , we would write $L = K_{11}, M = K_{12}, N = K_{22}, \text{ and } E = G_{11}, F = G_{12}, G = G_{22}^1.$

Now, consider a parameterisation of the surface such that ξ^1 , ξ^2 correspond to the principal directions, i.e. we choose a parameterisation for which $\mathbf{r}_i = \frac{\partial \mathbf{x}}{\partial \xi^i}$ are eigenfunctions of $L =$ $G^{-1}K$. Since these are orthogonal (proved in question 2), we conclude that $F = \mathbf{r}_1 \cdot \mathbf{r}_2 = 0$, which means that the metric tensor G is diagonal. By this construction L is also diagonal which implies K is diagonal as well, i.e. $M = 0$.

By construction of this parameterisation, a path on the surface for which ξ^1 is constant is a curve with curvature k_1 , i.e. one of the intrinsic curvatures, while a path with ξ^2 constant has curvature k_2 , the other principal curvature. Since $d\xi^2 = 0$ on the first path and $d\xi^1 = 0$ on the second path, we get from the formula (18) above that

$$
k_1 = -\frac{L}{E}
$$
, $k_2 = -\frac{N}{G}$.

¹Forgive the unfortunate and embarrassing abuse of notation in doubly defining G – these are standard notations, though they rarely intersect like this!!

Now take an arbitrary path on the surface, and let θ be the angle between the tangent ${\bf t}$ and \mathbf{r}_1 . Fiddle around with this and try to show that

$$
\frac{d\xi^1}{ds} = \frac{\cos \theta}{\sqrt{E}}.
$$

You can get a similar expression for $\frac{d\xi^2}{ds}$, and then put the pieces together in the expression $k_1 \cos^2 \theta + k_2 \sin^2 \theta$...

Question 4 - The Monkey-Saddle

We are asked to find the principal, mean and Gaussian curvatures and to draw the Monkey Saddle surface, given by $z = x^3 - 3xy^2$, with the assistance of the Mathematica script "Curvature_computation.nb".

We can parametrize the surface as

$$
x = u \tag{19}
$$

$$
y = v \tag{20}
$$

$$
z = u^3 - 3uv^2,\tag{21}
$$

and it is a small change to the provided script to produce the surface and compute the curvatures.

The surface has the shape:

The Gaussian curvature, K_G , and mean curvature, H , are computed to be:

$$
K_G = -\frac{36(u^2 + v^2)}{(1 + 9u^4 + 18u^2v^2 + 9v^4)^2}
$$
\n(22)

$$
H = \frac{54\left(u^5 - 2u^3v^2 - 3uv^4\right)}{\left(1 + 9u^4 + 18u^2v^2 + 9v^4\right)^{\frac{3}{2}}}.
$$
\n(23)

Note that the denominator of K_G is positive for all real values of u and v, while the numerator is greater than 0 for all values of u and v except when $u = v = 0$, where it is equal to 0. This then implies that the Gaussian curvature is negative everywhere except at the origin, as required.

Question 5 - The Slightly Deformed Sphere

It is highly recommended that you use a symbolic algebra package like Mathematica or Maple to help you complete this problem; the algebra becomes messy very quickly. There are some similarities in computing the curvatures as in question 4, however, the main difference will be consistently working to first order in ϵ .

To begin with, we start with our position vector, defined as:

$$
\mathbf{x} = R(1 + \epsilon h(\theta, \phi) \left\{ \cos(\phi) \sin(\theta), \sin(\phi) \sin(\theta), \cos(\theta) \right\},\tag{24}
$$

find the corresponding tangent vectors, r_{θ} and r_{ϕ} :

$$
\mathbf{r}_{\theta} = [R\cos(\phi) \left(\epsilon \sin(\theta) h^{(1,0)}(\theta,\phi) + \epsilon \cos(\theta) h(\theta,\phi) + \cos(\theta)\right),
$$

\n
$$
R\sin(\phi) \left(\epsilon \sin(\theta) h^{(1,0)}(\theta,\phi) + \epsilon \cos(\theta) h(\theta,\phi) + \cos(\theta)\right),
$$

\n
$$
R\epsilon \cos(\theta) h^{(1,0)}(\theta,\phi) - R\sin(\theta)(\epsilon h(\theta,\phi) + 1)], (25)
$$

$$
\boldsymbol{r}_{\phi} = [R\sin(\theta) \left(\epsilon \cos(\phi) h^{(0,1)}(\theta,\phi) - \sin(\phi)(\epsilon h(\theta,\phi) + 1) \right),
$$

\n
$$
R\sin(\theta) \left(\epsilon \sin(\phi) h^{(0,1)}(\theta,\phi) + \epsilon \cos(\phi) h(\theta,\phi) + \cos(\phi) \right),
$$

\n
$$
R\epsilon \cos(\theta) h^{(0,1)}(\theta,\phi) |, (26)
$$

and compute the unit normal as we did previously:

$$
n = \frac{r_{\theta} \times r_{\phi}}{\|r_{\theta} \times r_{\phi}\|}.
$$
 (27)

We can now calculate the first fundamental form, G, however, we only work up to $O(\epsilon)$ and neglect higher ordered terms. This can be done in Mathematica by using the "Series" command to expand in powers of ϵ . To first order, we find:

$$
G = \begin{pmatrix} R^2(2\epsilon h(\theta, \phi) + 1) & 0\\ 0 & R^2(2\epsilon h(\theta, \phi) + 1)\sin^2(\theta) \end{pmatrix}.
$$
 (28)

Now proceed in a similar fashion to compute the second fundamental form, K, again up to $O(\epsilon)$ only. Then obtain the entries of the principal curvature matrix, $L = G^{-1}K$ by combining the first order results.

A small Mathematica script which does the first part of this computation is provided below. Be sure to understand what the program and the commands actually do before just copying it!

 $x = R (1 + e^{n\pi}h[t, p])^*$ {Cos[p] Sin[t], Sin[p] Sin[t], Cos[t]} $rt = Simplify[D[x, t]];$ $rp = Simplify[D[x, p]];$ $n =$ Simplify[Cross[rt, rp]/Sqrt[Cross[rt, rp].Cross[rt, rp]], Assumptions $\cdot > R > 0$]; $G = Simplify[\{\{rt.rt, rt.rp\}, \{rp.rt, rp.rp\}\}];$ $G1 =$ Simplify[Normal[Series[G, $\{ep, 0, 1\}$]]];