Lechure Sa

Applications to fluid from

The velocity is of an inviscid, incompremiste, and irretational Pland satisfici

There imply the existence of a velocity potential $\not \otimes$ and a stream function $\not \forall$ such that (in 2D) $u = \frac{\partial \varphi}{\partial x} = \frac{\partial \psi}{\partial y}$ is $v = \frac{\partial \varphi}{\partial y} = -\frac{\partial \psi}{\partial x}$ They also imply that both $\not \otimes A$ is satisfy lightice's equation. In fuct, there are the Cauchy-Areanan equations for $w(z) = \not \otimes (x, y) + i \psi(x, y)$ the complex potential, which is therefore holomorphic.

Note
$$dw = u - iv$$
, is the complex velocity, which is also belanorphic.

Fluid flaw is in the direction of ∇ps and perpendicular to ∇t , so streamlines are contrars of t. In particular, toget boundaries of the domain must be streamlines, so we must have TretriceIn W = t = contrart on boundaries.]

The difference in the value of 4 5cheen two Streamlines represents the flux of Anid flowing between Hem.

The premue p u related to the velocity potential by Bernoulli's equation $p + \frac{1}{2}p |\nabla \varphi|^2 = contint.$ (steady flaw)

Hence $W(z) = W(f(z)) = U_{\infty}\left(z + \frac{1}{z}\right)$. Develocity is given by $u - iv = \frac{dw}{Jz} = U_{\infty}\left(1 - \frac{1}{z^2}\right)$

Lechure 5b

Charse bruch of $(t^2 - i)^{1/2} = |t^2 - i|^{1/2} e^{i(0_1 + 0_2)/2}$ when $O_{i}O_{2} \in (-\pi_{i}\pi_{i})$ & charre the principal branch of the log. $(2^{2}-()^{\prime})^{\prime}$ con-(2) in s We need (1-) 0, note $\cosh^{-1}(1) = 0$, so need A = 0We need $-1 \mapsto i$, note $\cosh^{-1}(-i) = i\pi$, so we need $C = \frac{1}{\pi}$.

Hence
$$z = \frac{1}{\pi} \left[\left[\frac{2^2 - 1}{1} + \frac{1}{2} - 1 \right] \right]$$

In the Z-plane, we need holomorphic W(Z) substyping lon (W) =0 on lon (Z)=0 and Wr the Zan Z-Jao (Since Z~ Zan Z-Jao) Note $W = \bigcup_{\overline{T}} 2$ worker, so $W(2) = \bigcup_{\overline{T}} 2(2)$. We can under this implicitly as $z = \frac{1}{\pi} \left[\left(\frac{\pi^2 \omega^2}{U_{\infty}^2} - 1 \right)^{1/2} + \operatorname{call}^{-1} \left(\frac{\pi \omega}{U_{\infty}} \right) \right]$ We can also calculate $\frac{dw}{Jz} = \frac{\frac{dw}{Jz}}{\frac{dz}{dz}} = \frac{\frac{u}{\pi}}{\frac{1}{\pi}\left(\frac{2+1}{z-1}\right)^{1/2}} = \frac{u_{\lambda}\left(\frac{2-1}{z+1}\right)^{1/2}}{\frac{1}{\pi}\left(\frac{2+1}{z-1}\right)^{1/2}}$ Note that 141 = 0 at C (Z=1) and as at B (Z=-1). This is a generic property for flow at a corner with angle 2 TT.

Lechure 6a

Steady inviscid free Furface from.

3 FREE SURFACE FLOWS

Steady invisced free proper have

- · Fixed bandares much le streamliner, so t= In w = canthal an Them.
- Free Publices is obeady flaw must also be Streamlines, so [linew = control] there. Ney must also satisfy a dynamic condition that the pressure is a fixed construct (usually atmosphere' pressure). Bernaulli => $p + \frac{1}{2}p \left| \frac{dw}{d2} \right|^2 = control so we need [<math>\frac{dw}{d2}$] = control on free Publices.

This extra condition serves to determine the lozation of the free Surface.

Naw find a conformal mapping from the windomain to the windomain, i.e.
$$w' = F(w)$$

This provides an DDE that we can solve to find $w(z)$.
In produce, it's unually earner to map both windomain and windomain to the thep.
Note $s_1 = e^{TW}$ maps windomain to
 $S_2 = \left(\frac{w'-1}{w'+1}\right)^2$ maps windomain to
 $S_3 = S_4 = S_2$ is. $\left(\frac{w'-1}{w'+1}\right)^2$

Lechre 65

$$e^{\overline{T}W} = \left(\frac{W^{l-1}}{W^{l+1}}\right)^{2} =) \operatorname{rearnage} \qquad W' = \frac{1+e^{\overline{T}W}}{1-e^{\overline{T}W}} = \frac{e^{-\frac{\overline{T}W}{4}}}{e^{-\frac{\overline{T}W}{4}} - e^{\frac{\overline{T}W}{4}}}$$

$$=) \operatorname{sink} \frac{\overline{T}W}{\overline{T}} \quad dw = -1$$

$$=) \operatorname{sink} w = 0 \text{ at } 2 = 0 \quad (paint C)$$

$$=) \frac{4}{\overline{T}} \ln \left(\cosh \frac{\overline{T}W}{4} \right) = -2$$

$$=) \operatorname{con} \frac{\overline{T}W}{\overline{T}} = e^{-\frac{\overline{T}^{2}}{2}}$$

$$=) \operatorname{con} \frac{\overline{T}W}{\overline{T}} = 2e^{-\frac{\overline{T}^{2}}{2}}$$

$$=\int \operatorname{con} \frac{\overline{T}W}{\overline{T}} = 2e^{-\frac{\overline{T}^{2}}{2}}$$

Note
$$\cosh \frac{\pi w}{2} = \cosh \frac{\pi w}{2} \cos \frac{\pi w}{2} + i \sinh \frac{\pi w}{2} \sin \frac{\pi w}{2}$$

So on As free surface, where $\psi = 1$, we have $1 + i \sinh \frac{\pi w}{2} = 2e^{-\frac{\pi w}{2}} (\cos \frac{\pi y}{2} - i \sin \frac{\pi y}{2})$
Climitate ψ by halving real parts $=$) $1 = 2e^{-\frac{\pi w}{2}} \cos \frac{\pi y}{2}$
 $(2) = 2e^{-\frac{\pi w}{2}} \cos \frac{\pi y}{2}$
 $(2) = 2e^{-\frac{\pi w}{2}} \cos \frac{\pi y}{2}$
 $(3) = 2e^{-\frac{\pi w}{2}} \cos \frac{\pi y}{2}$

Slot of width 2a, free infrae separating highlights
at the Wart h had the 'contraction ratio' d.
Far-field pressure
$$p_{x}$$
, and atmosphene' pressure p_{z} , so
bernoulli =) $p + \frac{1}{2}p W^2 = p_{x} =)$ $W = \left(\frac{2(p_{x} - p_{x})}{p}\right)^{\frac{1}{2}}$
Scale the problem $z \sim a$, $W \sim aW$
(2)
A B B B' A'
 $mw = -Q -)$ $W = (mw = Q)$
 $W'| = 1$ $W'| =)$

To find the free Fulper, we permetered it unity the argue
$$\theta$$
 it notes with the x-arm.
Near $w' = e^{-i\theta}$ (θ given from 0 at β to $-\frac{\pi}{2}$ at C) -
We have $\frac{ie^{\frac{\pi}{2\theta}} - 1}{ie^{\frac{\pi}{2\theta}} + 1} = -\left(\frac{e^{-i\theta} - 1}{e^{-i\theta} + 1}\right)^2 = hn^2 \frac{\theta}{2}$
 $ie^{\frac{\pi}{2\theta}} = \frac{1 + hn^2 \frac{\theta}{2}}{1 - hn^2 \frac{\theta}{2}} = \sec \theta$
Now $\frac{dw}{i\theta} = \frac{dw}{i2} \frac{d_2}{i0}$, i^{0} $i^{\pi}_{i0} e^{\frac{\pi}{2\theta}} w^{i} \frac{d_2}{i0} = \sec \theta$
 $i^{\pi}_{i0} \sec \theta = \frac{1}{i\theta}$
 $i^{\pi}_{i0} \sec \theta = \frac{1}{i\theta}$
 $i^{\pi}_{i0} = \frac{2\theta}{i\theta} \ln \theta e^{i\theta}$
 $i^{\pi}_{i0} = \frac{2\theta}{i\theta} \ln \theta e^{i\theta}$

Taking real h imaginey puts =)
$$\begin{bmatrix} dx &= 20 & \sin \theta & h & dy &= 20 & \sin^2 \theta \\ \overline{R} &= \overline{R} & \sin \theta & h & dy &= \frac{20}{\pi} & \sin^2 \theta \\ d\theta &= \overline{R} & \cos \theta \end{bmatrix}$$
Integrably their grees $(\pi(\theta), \gamma(\theta))$, a perametriz representation of the free instance.
At B, we need $\theta = 0$, $\mathcal{H} = -1$, $\gamma = 0$

$$=) \quad \chi = \frac{20}{\pi} (1 - \cos \theta) = 1$$

$$\gamma = \frac{20}{\pi} (\log | \sec \theta + \ln \theta | - \sin \theta) \qquad (\text{chech})$$
As $\theta + -\overline{R}$, we thuld end up at C, it. $\gamma \to -\infty$, $\chi \to -\theta$
To we need $\frac{20}{\pi} - 1 = -Q = 1$
 $\boxed{Q} = \frac{\pi}{\pi + 2} = 0.6$

Lechure 75

On (A', put w' =
$$e^{-i\theta}$$
 (θ green from $\frac{\pi}{2}$ of C to O at A'), so $w = -\frac{4}{9}e^{-i\theta}e^{-i\theta}$
Nen $\frac{dw}{d\theta} = w' \frac{dt}{d\theta} = -\frac{2}{9}e^{-i\theta}e^{-i\theta}$ =) $\frac{dz}{d\theta} = -\frac{2}{9}e^{-i\theta}e^{i\theta}e^{i\theta}$
Taking real /integrang ports =) $\frac{dx}{d\theta} = -\frac{2}{9}e^{-i\theta}e^{i\theta}e^{i\theta}$
Taking real /integrang ports =) $\frac{dx}{d\theta} = -\frac{2}{9}e^{-i\theta}e^{i\theta}e^{i\theta}$
At C, we need $x=0, y=1$ at $\theta = \frac{\pi}{2}$, so integrating gives
 $x = \frac{1}{9}e^{-i\theta}e^{i\theta}e^{i\theta}e^{i\theta}e^{i\theta}$
We can see the for-field behavior, an $\theta \to 0$, when $x \sim \frac{1}{9}e^{i\theta}e^{i\theta}e^{i\theta}e^{i\theta}e^{i\theta}$
We thut need to determine $\frac{1}{9}e^{i\theta}e^{i\theta}e^{i\theta}e^{i\theta}e^{i\theta}$

Pulling new into the relationship thereen is and is gives

$$\varphi = \frac{4\varphi_0 V^2}{(v^2 + 1)^2} = V^2 - 2\left(\frac{\varphi_0}{\varphi}\right)^{1/2} V + 1 = 0$$
$$= V = \left(\frac{\varphi_0}{\varphi}\right)^{1/2} - \left(\frac{\varphi_0}{\varphi} - 1\right)^{1/2} = \frac{\partial\varphi}{\partial y}.$$

On BC,
$$\phi$$
 goes from 0 to ϕ_0 while y goes from 0 to 1, so integrating gives

$$\int_{0}^{\phi_0} \frac{d\phi}{\left(\frac{\phi_0}{\phi}\right)^{1/2} - \left(\frac{\phi_0}{\phi} - 1\right)^{1/2}} = \int_{0}^{1} dy = 1 \left(2 + \frac{\pi}{2}\right) \phi_0 = 1 = 1 \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{1}{11 + 4}$$

Lechure Sa Porous media Plan with a free boundary

Flow in porrus media

Parous flow in soil / rock u described by Darcy's law $\mu = -\frac{k}{\mu} \nabla p$. Incomprendibility requires $\nabla \cdot \mu = 0$, so $\nabla^2 p = 0$]. This also describes from in a Hele-Show cell, when $k = \frac{h^2}{12}$ At le edge of the fluid damain', the pressure is cantul, $p = p_a = 0$. We differentiate this condition to find the kinematic condition $O = \frac{DP}{DL} = \frac{\partial P}{\partial L} + \underline{w} \cdot \nabla P = \frac{\partial P}{\partial L} - \frac{k}{R} |\nabla P|^2$ We ren-dimensionalisé, and write $\phi = -p$, then for a fluid domain D(t), we have $\nabla^2 \varphi = 0$ in O(t), and $\varphi = 0$, $\frac{\partial \varphi}{\partial t} + |\nabla \varphi|^2 = 0$ on $\partial D(t)$.

Injection lextraction at a point source.

Sources/ sinks are described as poles. For a same of strength Q at the origin, Thu means of n Q log 21 an Z-ro. (Qro for a same, Qro for a sinh) Equivalently to this, is finding a holomorphic couplex potential w(z,t) = \$\$+it, with $le(\omega) = 0 \ k \ le\left(\frac{\partial \omega}{\partial t}\right) + \left|\frac{\partial \omega}{\partial z}\right|^2 = 0 \ \text{ on } \partial B(t), \ k \ w \ v \frac{Q}{2\pi} \log z \ \text{ on } z \to 0.$ Idea: Find a hine-dependent confirmal map z = F(s,t) from |s| < 1 to O(t), and find W(s,t) = W(F(s,t),t).

$$\frac{3}{2\pi} = F(s,t) \xrightarrow{(2)} O(t)$$

$$\frac{1}{2\pi} = F(s,t) \xrightarrow{(2)} O(t)$$

$$\frac{1}{2\pi} \xrightarrow{(2)} O(t)$$

$$\frac{$$

Lechure 86

The kinemahi and has been $Re\left(5\frac{2F}{35}\frac{2F}{3t}\right) = \frac{Q}{2\pi}$ or |5| = 1. The initial domain $\mathcal{D}(o)$ determines F(s,o), the (determines how F(s,f) every. Le prechei, we make some assumption about the fins of F(s, F), eg. it's a polynomial - Her & provides ODEs that they have the coefficients evolve through time. Eq. F(s,t) = R(t)s (12. DO(t) is a circle of radius R(t)). Ner \bigstar becomes $le(sRR\overline{s}) = \frac{Q}{2\pi}$ on |s| = 1=) $R\dot{R} = \frac{Q}{2\pi}$ $=) \quad \pi R^2 = \pi R_0^2 + Qt$ Thu is hopefully as expected from cannotestion of global mans conservation.

Eq. Influx
$$F(s,o) = a_{10}s + a_{20}s^2$$
, where $a_{10}b a_{10}$ are real, pontrie contrults,
with $a_{10} > 2a_{20}$.
On $s = e^{i\theta}$, $x = a_{10}\cos\theta + a_{20}\cos2\theta$
 $y = a_{10}\sin\theta + a_{20}\sin2\theta$
New assume $F(s,t) = a_1(t)s + a_2(t)s^2$. Then (f) gives
 $Ae\left(s\left(a_1 + 2a_2s\right)\left(\dot{a}_1\bar{s} + \dot{a}_2\bar{s}^2\right)\right) = \frac{Q}{2\pi}$ on $(s) = 1$
=) $Ae\left(a_1\dot{a}_1 + 2a_2\dot{a}_2 + 2a_2\dot{a}_1s + a_1\dot{a}_2\bar{s}\right) = \frac{Q}{2\pi}$ on $s = e^{i\theta}$
 $\left(a_1\dot{a}_1 + 2a_2\dot{a}_2\right) + \left(2a_2\dot{a}_1 + a_1\dot{a}_2\right)\cos\theta = \frac{Q}{2\pi}$