Lechure 9 a

Plemelj formulae

4. PLEMELT FORMULAE & APPLICATIONS

We cander below ophic functions defined by a

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{1}{5} \int_{\Gamma} \frac{1}{5-2} \int_{\Gamma}$$

As $z \rightarrow t^{+}$, deferre P by deleting the section $\mathcal{X}_{z} = P \wedge D(t, z)$ and replacing with C_{z} , the semi-circular arc.

Ner
$$W_{\pm}(t) = \frac{1}{2\pi i} \left(\int_{C_{\Sigma}} \pm \int_{\Gamma \setminus Y_{\Sigma}} \right) \frac{f(s)}{s-t} ds$$

 $\rightarrow \frac{1}{2} f(t) \pm \frac{1}{2\pi i} \int_{\Gamma} \frac{f(s)}{s-t} ds$ $\left[s = t \pm 2e^{i\theta} \right]$
where f_{Γ} is the principal value integral defined by this $\int_{\Gamma \setminus Y_{\Sigma}} \frac{f(s)}{s-t} ds$ $\frac{f(s)}{s-t} \int_{\Gamma \setminus Y_{\Sigma}} \frac{f(s)}{s-t} ds$
which example the ligenthmic fingularity form $s = t \pm 2$ cancel out.
 $f_{\Sigma} = -\frac{1}{2} f(t) \pm \frac{1}{2\pi i} \int_{T} \frac{f(s)}{s-t} ds$.
 $W_{-}(t) = -\frac{1}{2} f(t) \pm \frac{1}{2\pi i} \int_{T} \frac{f(s)}{s-t} ds$.
 $f_{\Sigma} = -\frac{1}{2} f(t) + \frac{1}{2\pi i} \int_{T} \frac{f(s)}{s-t} ds$.

Toyeller, we have
$$W_{\pm}(t) = \pm \frac{1}{2}f(t) + \frac{1}{2\pi i}\int_{\Gamma}\frac{f(r)}{s-t}ds$$
 Aen are the Plendy formulae.

At the end point a, 5, will make use of the following results:

- if $f(s) \rightarrow 0$ as $s \rightarrow a$, then W(z) = O(i) as $z \rightarrow a$.
- if f(3) = O(1) on $1 \to a$, then $W(2) = O((1y(2\pi)))$ on $2 \to a$.
- $i\int \int (s) = O\left((s-a)^{-\alpha}\right) \quad \text{for } \alpha \in (0,1), \text{ for } w(z) = O\left((z-a)^{-\alpha}\right) \quad \text{on } z \to \alpha.$

Lechure 95

Example (Poblem 1) We wont to frid W12), holomorphic on a \T, such that The hunibing vulnes as Z-) te ? Subrity W+(+) - W_(+) = G(+), where G is a presented antinuar function. Seek a solution as a Cauchy integral $W(2) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(s)}{s-2} ds$. Der Plendy =) $W_{+}(t) + W_{-}(t) = \frac{1}{\pi i} \int \frac{f(s)}{s-t} ds = k = W_{+}(t) - W_{-}(t) = f(t)$ so we can simply read off that we need to have f(s) = G(s). Hence we can write $W(z) = \frac{1}{2\pi} \int_{\rho} \frac{G(s)}{s-z} ds + h(z)$ while here) is heldmorphic on CNP and centinuar across (?. In fact, using Mareris Reven, such a fraction mult be heldmorphic on CNEG, 53.

Determing
$$h(z)$$
 requires additionally specifying the behaviour of $w(z)$ at the end
points a, b of f , and as $z \to \infty$. For example, if $w(z)$ has at worst logarithmic
singularities at a/b , and $w \to 0$ as $z \to \infty$, then since h has only isotated
singularities at a/b , if is in fact holomorphic everywhere, and by bimathis theorem it must
be zero.

Example (Problem 2) We specialize to the case when f' = (0, c), a section of the real axis, and suppose |m(w) is specified as $y \to 0^{\pm}$. i.e. $|m(w_{\pm}) = g_{\pm}(x)$ for presented $g_{\pm}(x)$. Again, seek a setudion $W(2) = \frac{1}{2\pi i} \int_{0}^{c} \frac{f(3)}{5-2} ds$

Lechure 10a Applications of Plendy formulae

$$\frac{\log 4 \ln 2}{2}, \ln \pi \left[1 \right] = 0 \text{ for a seeking } W(2), holomorphic an C \cap, where f = (0, c), with $\ln (W_{\pm}) = 0 \text{ for } (0, c), \text{ with } 0 \text{ for }$$$

is a remar of problem 1; we can write

$$W(z) = \frac{1}{2\pi i} \int_{0}^{C} \overline{F(s)} ds + H(z) \qquad \text{where } H \text{ is holomorphic} \ C \mid \overline{z}_{0}, c\overline{s}.$$
and read off that $F(x) = \frac{2ig_{+}(x)}{\widetilde{w}_{+}(x)}$
Then $W(z) = \widetilde{w}(z) W(z) = \widetilde{w}(z) \left[\frac{1}{\pi} \int_{0}^{C} \frac{g_{+}(s)}{\widetilde{w}_{+}(s)(\overline{s}-z)} \right]$
Note that $W_{+}(x) + W_{-}(x) = \frac{1}{\pi i} \int_{0}^{C} \frac{F(s)}{\overline{s}-\chi} d\overline{s} + H(z) \left[\frac{1}{\widetilde{w}_{+}(x)} \int_{0}^{C} \frac{F(s)}{\overline{s}-\chi} d\overline{s} + 2H(x) \right] = \frac{f(z)}{\widetilde{w}_{+}(x)} \text{ form } (2)$
so $f(x) = \widetilde{w}_{+}(x) \left[\frac{2}{\pi} \int_{0}^{C} \frac{g_{+}(s)}{\widetilde{w}_{+}(\overline{s})(\overline{s}-\chi)} d\overline{s} + H(z) \right] \qquad \text{substandard for the SI.E. (4).}$

 $\left(\right)$

Haw do we find
$$\tilde{w}[2)$$
? By inspection, $\tilde{w}[2) = Z'^{2}(c-z)'^{2}$, with brinch cut on $[0,c]$,
Nen $\tilde{w}_{\pm}[x) = \pm \chi'^{c}(c-\chi)'^{c}$, so this has the denired properties !
More deductively, note the need $\tilde{w}_{\pm}[x] = -1$, so $\log \tilde{w}_{\pm} - \log \tilde{w}_{\pm} = \pi i \pm 2\pi\pi i$ met
 $\tilde{w}_{\pm}[\chi]$

Lechure 10b

Sample fin finchere mechanics
Re elastic displacement field in catiplare Strain around
a Mode II cach in
$$(0,0, p)$$
, where $\nabla^2 \overline{p} = 0$, with
 $\partial \overline{\Phi} \rightarrow T$ as $y \rightarrow \pm \infty$, $\partial \overline{\Phi} = 0$ and $y=0, 0 < x < c$.
We also require $|\nabla \overline{\Phi}|$ has an inverse squere-root singulant.
at $x=0$ and c . (related to the strain interarty fuctor)
We write $\overline{\Phi} = Ty - \beta$, and then write $\partial \beta = \ln(W)$. then we need to the
to demorphic on $C \setminus [0,c]$, with $\ln(w) = T$ an $(0,c)$, and with
 $W = O(z^{-V_{L}})$ as $z \to 0$, $W = O((z-c)^{-V_{L}})$ on $z \to c$, and $W = O(\frac{V_{L}}{2})$ in $z \to \infty$.
This is (ase II, which we have selved,

Ē

Ale an advecte the integral unage a action.
Define
$$f(s) = \frac{s^{1/2}(c-5)^{1/2}}{5-2}$$
.
Nex $I = \int_{0}^{c} \frac{s^{1/2}(c-5)^{1/2}}{5-2} d\xi = -\frac{1}{2} \int_{1}^{c} f(s) ds = -\frac{1}{2} \int_{1}^{c} f(s) ds + \pi i \operatorname{rev}(R, s=2)$
Note, for $s = Re^{i\theta}$, $\frac{s^{1/2}(c-5)^{1/2}}{5-2} = -is^{1/2}(s-c)^{1/2} = -is(1-\frac{c}{5})^{1/2} = -is(1-\frac{c}{2}) + \frac{1}{2} + \cdots)$
 $\frac{1}{s-2} = \frac{1}{5} \left(1-\frac{2}{5}\right)^{-1} = \frac{1}{5} \left(1+\frac{2}{5} + \cdots\right)$
 $s_{0} f(s) = -i \left(1+(2-\frac{c}{2})\frac{1}{5} + O(\frac{1}{3})\right)$
 $=) \int_{R_{A}} f(s) ds = \int_{0}^{2\pi} -i \left[1+(2-\frac{c}{2})\frac{1}{R}e^{i\theta} + O(\frac{1}{R})\right] Rie^{i\theta} d\theta - \frac{1}{2\pi}[2-\frac{c}{2}] + \pi i 2^{1/2}(c-2)^{1/2}$,
 $k f_{1}$, $w(z) = \frac{1}{2^{1/2}(c-2)^{1/2}}, \frac{\pi}{\pi} I = \left[T_{1} - \frac{T(2-\frac{c}{2})}{2^{1/2}(c-2)^{1/2}}\right]^{1/2}$

Lechure IIa

More applications of Plendy formulae & Rieman - Hilbert publicant

The kultu and their says that $\forall p$ must be finite at the trailing edge z=c, but we expect on inverse square-root singularity at the leading edge z=o. We write $W = -\left[\frac{\partial \phi}{\partial x} - i\frac{\partial \phi}{\partial y}\right]$, f' = (o, c), and $g_{\pm}(x) = f_{\pm}(x)$, then we need: We holomorphic on $C \setminus \overline{\Gamma}$, with $\lim_{t \to \infty} (w_{\pm}) = g_{\pm}(x)$, and $W \to o$ or $z \to \infty$, and

 $W = O(2^{-1})$ on 270 and W = O(1) on 270.

The cantoder the case
$$g_{+} = g_{-} = g_{-}$$
 which represents a thin derivent
This is care \overline{II} of problem 2 from the last lecture.
Given the desired tragententian for W_{+} a good charse for $\widehat{W}(2)$ is $\binom{c-2}{2}'^{2}$.
Instead, will try $\widehat{W}(2) = 2^{-t'_{2}}(c-2)^{-t'_{2}}$. Then
 $W(2) = \frac{1}{2^{t'_{2}}(c-2)^{t'_{2}}} \left[\frac{1}{\pi} \int_{0}^{c} g(\underline{S}) \frac{g(S)}{S-2} \frac{g(T-S)^{t'_{2}}}{S-2} dS + H(2) \right]$

I could have singularities at 0 or c, but they would make with the highlar there, so be need H to be earlier. In order for with 0 on 2-100, we need H to be bounded, so hownile =) H is contract. In order to make with finite at z=c, we need to choose $H = -\frac{1}{\pi} \int_{0}^{c} \frac{g(5) 5^{1/2} (c-5)^{1/2} d5}{\overline{x}-c}$.

$$\int_{0} w(z) = \frac{1}{z^{\nu_{L}}} \int_{0}^{c} g(s) s^{\nu_{L}} (c-s)^{\nu_{L}} \left[\frac{1}{s-z} - \frac{1}{s-c} \right] ds$$

$$= \left[\left(\frac{(-2)}{z} \right)^{\nu_{L}} \int_{0}^{c} g(s) \left(\frac{3}{c-s} \right)^{\nu_{L}} \int_{s-z}^{1} ds \right] \left[\frac{z-c}{(s-z)(s-c)} - \frac{(-2)}{(s-z)(c-s)} \right] ds$$
Thus is the same as we would have obtained taking $\tilde{w}(z) = \left(\frac{(-2)}{z} \right)^{\nu_{L}}$.

Lechre 115

General Micmann - Hilbert problem

$$\begin{aligned} \text{lecall he flemely formulae for } w(z) &= \frac{1}{2\pi i} \int_{\Gamma} \frac{f(s)}{s-z} \, ds \quad \text{are } W_{\pm}(z) &= \pm \frac{1}{2} f(z) + \frac{1}{2\pi i} \int_{\Gamma} \frac{f(s)}{s-z} \, ds \\ \text{Suppose we seek } w(z) \text{ holomorphie on } \mathbb{C} \setminus \overline{\Gamma}, \text{ with} \\ a(z) w_{\pm}(z) + b(z) w_{\pm}(z) &= c(z) \text{ on } \overline{\Gamma} \\ \text{First slep is historialize } \widetilde{w}(z) \text{ Sahrshying } a(z) \widetilde{w}_{\pm}(z) + b(z) \widetilde{w}_{\pm}(z) &= 0 \text{ on } \overline{\Gamma} \\ \text{How }? \text{ hearings in } \frac{\widetilde{w}_{\pm}}{\widetilde{w}_{\pm}} &= -\frac{b}{a} \text{ , hen hele } \log s =) \log \widetilde{w}_{\pm} - \log \widetilde{w}_{\pm} = \log \left(-\frac{b}{a}\right). \\ \text{so } \log \widetilde{w}(z) &= \frac{1}{2\pi i} \int_{\Gamma} \log \left(-\frac{b(s)}{a(s)}\right) \frac{ds}{s-z}. \end{aligned}$$

New counder
$$W(z) = W(z)$$
, which substitute $W_{\pm}(z) - W_{\pm}(z) = \frac{c(z)}{a(z)} \tilde{w}_{\pm}(z)$ on Γ .
Hence $W(z) = W(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{c(s)}{a(s)} \frac{ds}{s-z} + H(z)$
where H must be holomorphic except possibly at the end points of Γ .
This also gives us a method for solving a more general singular integral equation
of the form $a(z)f(z) + b(z) \oint_{\Gamma} \frac{f(s)}{s-z} ds = c(z)$ on Γ
By defining $W(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(s)}{s-z} ds$, we can re-unste this on a dieman-Hibed possien.

Lechure 12a

Complex Found transforms

5 COMPLEX FOURIER TRASFORMS.

Accul the definition of the Ferner transform for an integrable function
$$f(x)$$

 $\overline{F}(k) = \overline{F}[f(b)] = \int_{-\infty}^{\infty} f(a) e^{ikx} dx$
If $f(a)$ is continuous, then the inverse $f(a) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{F}(k) e^{-ikx} dk$
Some important properties: $\overline{F}[f'(a)] = -ik \overline{f}(k)$
 $\overline{F}[x f(a)] = -i \frac{d\overline{f}}{dk}(k)$
 $\overline{F}[f * g] = \overline{f}(k) \overline{g}(k)$ where $f * g = \int_{-\infty}^{\infty} \overline{f}(s) g(x-s) ds$
is the convolution of \overline{f} and g .
We extend the definition to non-integrable \overline{f} by allowing k to the complex values

Suppose $f(x) = O(e^{c|x|})$ as $|x| \rightarrow \infty$, where c is a real contrart. Define $f_{+}(x) = \begin{cases} f(x) & x > 0 \\ 0 & x < 0 \end{cases}$ $f_{-}(x) = \begin{cases} 0 & x > 0 \\ f(x) & x < 0 \end{cases}$ Then define the half-range transform $\overline{f}_{+}(k) = \int_{0}^{\infty} f(x) e^{-ikx} dx = \int_{0}^{\infty} f(x) e^{-im(k)x} e^{-im(k)x} dx$ for im(k) > cF, 1h) is a holomorphic function of k as Im(k) > c, and it can usually be analyheally continued into Im(h) < c, although Ner will hypically be sine

Singulanhar in lm(h) < cNe inverse $\hat{n} = f_{+}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_{+}(h) e^{-ihx} dk$ where x > c.

The inversion contar can be defined into lm(k) < c, prinded it shays above the Singularities of $\overline{f}_t(k)$.

Finility, we define
$$\overline{f}_{-}[k] = \int_{-\infty}^{\infty} f(x) e^{ikx} dx$$
 for $lm(k) < -c$
The inverte is greating $f_{-}(k) e^{-ikx} dk$, with $-\beta < -c$
 $f_{-\infty} - i\beta$
Aquin, the inverses can be defined into $lm(k) > -c$, $f_{-\beta}$
Aquin, the inverses can be defined into $lm(k) > -c$, $f_{-\beta}$
provided it parses below the fingularities of $\overline{f}_{-}(k)$.
If there is a overlap region, IL say, where both $\overline{f}_{+}(k)$ and $\overline{f}_{-}(k)$ are holomorphic, then
 $\overline{f}(k) = \overline{f}_{+}(k) + \overline{f}_{-}(k)$ is the Farter transform, defined on Ω , with investe
 $f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{f}(k) e^{-ikx} dk$
where C must parse above any singularities of \overline{f}_{+} and below there of \overline{f}_{-} .

Lechne 12b

Example
$$f(x) = H(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

 $\overline{H}(k) = \int_{0}^{\infty} e^{ikx} dx = \frac{1}{1k} e^{ikx} \Big|_{0}^{\infty} = \frac{i}{k} \quad \text{for } \ln(k) > 0 \quad (c = 0 \text{ in } R_{k} \text{ general } R_{eay})$
 \overline{H} is angually defined for $\ln(k) > 0$, but is deedy holemorphic an $\mathbb{C} \setminus 203$.
 R_{k} inversion carbox much pair above this they durity.
 $H(x) = \frac{1}{2\pi} \int_{0}^{\infty} \overline{H}(k) e^{-ikx} dk$
 $\overline{F_{kr}} \times < 0, \quad H(x) = \lim_{k \to \infty} \frac{1}{2\pi} \int_{0}^{\infty} \overline{H}(k) e^{-ikx} dk = 0$
 $\overline{F_{kr}} \times > 0, \quad H(x) = \lim_{k \to \infty} \frac{1}{2\pi} \int_{0}^{\infty} \overline{H}(k) e^{-ikx} dk - 2\pi i \operatorname{res}(\overline{H}(k) e^{ikx}) = 1$

Le laplace transform
$$\hat{f}(p)$$
 is obtained by setting $k = ip$ in the definition of $\bar{f}_{+}(k)$
ie. $\hat{f}(p) = \int_{0}^{\infty} f(x)e^{-px} dx$
and the inverse is given by $f(x) = \frac{1}{2\pi i} \int_{0}^{\infty} \hat{f}(p)e^{px} dp \xrightarrow{\times} x + \frac{1}{2\pi i} \int_{0}^{\infty} \hat{f}(p)e^{-px} dp \xrightarrow{\times} x$

Example use of the Funcer masform (real k) Save $\nabla^2 u = 0$ in y > 0, with $u(x, 0) = u_0(x)$ & u banded on $x^2 + y^2 \rightarrow \infty$. F.T. in $x = -k^2 \overline{u} + \frac{\partial^2 \overline{u}}{\partial y^2} = 0$ in y > 0, where $\overline{u}(k, 0) = \overline{u}_0(k)$ $k = \overline{u} - k^2 \overline{u} + \frac{\partial^2 \overline{u}}{\partial y^2} = 0$ in y > 0, where $\overline{u}(k, 0) = \overline{u}_0(k)$. Hence $\bar{u}(h,y) = A(k)e^{ky} + B(h)e^{-ky}$ But $\bar{u} \to 0$ on $y \to \infty$, so if $k \ge 0$, A(k) = 0 and if k < 0, B(k) = 0 $B(k) = \bar{u}_0(k)$ So $\bar{u}(k,y) = \bar{u}_0(k)e^{-|k|y|}$ $A(h) = \overline{u}_{o}(h).$ We role that $f^{-1}[e^{-lkly}] = \frac{y}{\pi(x^2+y^2)}$, so by the convolution theorem, $w(x,y) = \int_{-\infty}^{\infty} u_0(s) \frac{y}{\pi} ds$