Lechire 13 a Applications of complex transforms

Example Solve
$$\nabla^{2} u = 0$$
 is $y > 0$, with u bandled as $\chi^{2} + y^{2} \rightarrow \infty$, with $u(y, 0) = H(x)$
[her can solve this early is polar coordinates, $u = 1 - \frac{\theta}{\pi}$, but will use Farer thisform]
Transform in $\chi : \overline{u}(k,y) = \int_{-\infty}^{\infty} u(x,y)e^{-ik\chi} dx$.
 $=) -k^{2}\overline{u} + \frac{\partial^{2}\overline{u}}{\partial y^{2}} = 0$ for $y > 0$, with $\overline{u}(k,y)$ bandled on $y \rightarrow \infty$
 $\overline{u}(k, 0) = \frac{i}{k}$ for $|m k > 0$
Solving $=$) $\overline{u}(k,y) = A(k)e^{ky} + B(k)e^{-ky}$
 $= \frac{i}{k}e^{-ikly}$ (\overline{v} Rak $\overline{u} \rightarrow 0$ on $y \rightarrow \infty$)
But $|k|$ u not becomorphic, \overline{v} we approximate it by $|k| \approx (k^{2} + \varepsilon^{1})^{1/2}$
we have $(k^{1} + \varepsilon^{2})^{1/2} = [k^{2} + \varepsilon^{2}]^{1/2}e^{i(\theta_{1} + \theta_{2})/2}$, with $\theta_{1} \in [-\frac{3\pi}{2}, \frac{\pi}{2}], \theta_{2} \in [-\frac{\pi}{2}, \frac{3\pi}{2}]$
(with this definition $(k^{2} + \varepsilon^{2})^{1/2}$ u read k portion on the read axis)

So we have
$$\overline{u}[h,y] = \frac{i}{k}e^{-y(h^2+s^4)^{n_k}}$$
 is then $u(x,y) = \frac{i}{2\pi} \int_{\Gamma} \frac{i}{k}e^{-y(h^2+s^4)^{n_k}} - ihx$
is calculate the integral, close in the Uhp for $x < c_0$, and the lap for $x > c_0$, diverting around the branch cuts.
Is the for $x > c_0$, when $u(x,y) = \int_{\Gamma_1} \frac{i}{h_2} \int_{\Gamma_2} \frac{i}{h_1} \int_{\Gamma_2} \frac{i}{h_2} \int_{\Gamma_3} \frac{i}{h_2} \int_{\Gamma_4} \frac{i}{h_2} \int_{\Gamma_4} \frac{i}{h_2} \int_{\Gamma_4} \frac{i}{h_2} \int_{\Gamma_5} \frac{i}{h_2}$

So, pulling hyperbox,
$$u(x, y) = \frac{1}{2\pi} \left[\int_{\Sigma}^{\infty} -2 \sin \left(y \int t^{2} \cdot t^{2} \right) e^{-tx} dt - 2\pi i \left(i e^{-y^{2}}\right) \right]$$

 $\longrightarrow 1 - \frac{1}{\pi} \int_{0}^{\infty} \frac{\sin \left(y t\right)}{t} e^{-tx} dt = 1 - \frac{1}{\pi} h \pi^{-1} \left(\frac{y}{x}\right)$
 $\bigoplus h \pi^{-1} \left$

Lecture 13 b

Integral solutions of differential equations We can think of the Funer murfun as a wethout for finding integral solutions of the form $y(x) = \frac{1}{2\pi} \int_{\Omega} \overline{y}(k) e^{-ikx} dk.$ More generally, we can seek situhung to certain ODEs of the fun $y(x) = \int_{D} g(s) e^{-t} ds$ for some function g(s) and some cantur ?. eg. dy = xy. Sussibilite in the solution of the firm above, $\int_{\Omega} g(s) s e^{\chi s} ds = \int_{\Omega} \chi g(s) e^{\chi s} ds$ $= \left[g(s)e^{\lambda s}\right]_{1} - \int_{1} g'(s)e^{\lambda s} ds$ $=) \int \left[g'(s) + sg(s) \right] e^{xs} ds - \left[g(s)e^{xs} \right] = 0 \quad \forall x.$

We can make sure this holds by champing g to takety g(s) = - sg(s) and channing I so that [g(s)ex5] = 0 (either I closed, or g(s)ex5-so at end pts). So he need g' = -sg =) $g = Ce^{-s_{12}^2} =$) $y(x) = C \int_{P} e^{-s_{22}^2 + xs} ds$. To get a new-trivial solution we need if the go to infinity, but it much do so somewhere where $Ae(s_{22}^2) > 0$, so that $g(s)e^{xs} \rightarrow 0$ here. (i.e. the unstracted regions) Fran the deagan, we can grow the I along the real areas , r So $y(x) = C \int_{-\infty}^{\infty} e^{-\frac{x^2}{2} + x \frac{x}{5}} ds = C e^{-\frac{x^2}{2}} \int_{-\infty}^{\infty} e^{-\frac{(x-x)^2}{2}} ds$ = $\hat{C}e^{x_{12}^2}$, an expected.

This method is more useful for higher-order equations, when coefficients or linear
$$x$$
.
eq. Airy's equation: $\frac{d^2 g}{dx^2} + xy = 0$. Wate idea on $y(z) = \int_{\rho} g(s)e^{\chi s} ds$
=) $0 = \int_{\rho} [g(s)s^2 + \chi g(s)]e^{\chi s} ds = [g(s)e^{\chi s}]_{\rho} - \int_{\rho} [g'(s) - s^2 g(s)]e^{\chi s} ds$
So we take $g' = s^2 g$ =) $g = Ce^{s^3/3}$ =) $[y(x) = C\int_{\rho} e^{s^3/3 + \chi s} ds]$.

We must charre Γ to go to as somewhere where $\Lambda(s_3^3) < 0$ (3) Γ $\Gamma(s)$ eq. Γ , or Γ_2 or in Λ_2 diagram. Lechre 14a

Wiener - Hopf method

6 WIENER-HOPF METHOD

The essential idea of this method is an follows: Suppose of < B. suppose filk) is helamorphic in lon (4) > x, with fill to as k to Suppose g_(h) is holomorphic in lm(h) < B, WIR g_(h) ->0 as h-> as x & suppose $f_{+}(k) = g_{-}(k)$ on the region where they overlap. By the identity therein, g_(h) must be the chalalytic continuation of file) into link) < x (and new vesser, for it the continuition of g, into Im(6) > B), so tracher they define an entire function, Elk), say. But $E(h) \rightarrow 0$ as $h \rightarrow \infty$, so handles there - E(h) = 0. So $f_{+}(h) = g_{-}(h) = 0$.

Example ODE polytern.

$$\frac{d^{2}y}{dx^{2}} + b^{2}y = 0 \quad x < 0 \quad [y]^{+}_{=0}, \quad [\frac{dy}{dx}]^{+}_{=} = 1 \quad \text{af } z = 0.$$

$$\frac{d^{2}y}{dx^{2}} + a^{2}y = 0 \quad x > 0 \quad y \to 0 \text{ as } [x] \to \infty, \text{ Im a so, Im b so } 0 \quad a \neq b.$$
We arrive (and later check) that $y = O(e^{Kx})$ on $x \to \infty$, and $y = O(e^{Bx})$ on $z \to -\infty$, with $x < \beta$.
New the half-range famer transforms $(\overline{y}_{-}|k) = \int_{-\infty}^{\infty} y[x]e^{ikx} dx.$

$$=) \quad (-k^{2}+b^{2})\overline{y}_{-}(k) + \frac{dy}{dx}(0-) - iky(0-) = 0 \quad \text{for } \ln k < \beta \\ (-k^{2}+a^{2})\overline{y}_{+}(k) - \frac{dy}{dx}(0+) + iky(0+) = 0 \quad \text{for } \ln k > \alpha$$
Uping the pump condition of $x = 0$

$$=) \quad \overline{(k^{2}-a^{2})}\overline{y}_{+}(k) + (k^{2}-b^{2})\overline{y}_{-}(b) = -1 \quad \text{for } x < \ln k < \beta$$

=) LHS = RHS = 0

Lecture 145

We have find here
$$\overline{y}_{+}(k) = \frac{1}{(a+b)(k+a)}$$

 $A \quad \overline{y}_{-}(k) = -\frac{1}{(a+b)(k-b)}$

 $A \quad \overline{y}_{-}(k) = -\frac{1}{(a+b)(k$

Never-Hopf decomposition
The key step in this process is to have an expression of the form

$$F(z) \bar{u}_{+}(z) + \bar{v}_{-}(z) = G(z)$$
 for $x < lm z < \beta$
where $F_{c} G$ are given, and \bar{u}_{+}, \bar{v}_{-} are the unknown, and recente it an
 $f_{+}(z) = g_{-}(z)$ for since f_{+}, g_{-} , which we can cancillate are zero using their behavior
at ∞ .
This may require withing $F(z) = \frac{F_{+}(z)}{F_{-}(z)}$, and $G(z) = G_{+}(z) - G_{-}(z)$
where 't' means holomorphics is lime $k > \kappa$, and '-' means holomorphic in lime's β .
This 'splithing' can after be dere by inspection, as using partial fraction, but there is
also a general method for dering F .

$$\frac{daho}{decomponison} \quad \text{leb } F(z) \text{ for holomorphic in } K < \ln z < \beta, \text{ with } F(z) \rightarrow 1 \text{ on } z \rightarrow \infty$$

$$We \text{ white } white F(z) = \frac{F_{+}(z)}{F_{-}(z)} \text{ for hite } \log r = 1 \quad \log F = \log F_{+} - \log F_{-}$$

$$\frac{F_{+}(z)}{F_{-}(z)} = \frac{F_{+}(z)}{F_{-}(z)} \text{ for hite } \log r = 1 \quad \log F_{+} - \log F_{-}$$

$$\frac{F_{+}(z)}{F_{+}(z)} = \frac{F_{+}(z)}{F_{+}(z)} \text{ for hite } \log r = 1 \quad \log F_{+} - \log F_{-}$$

$$\frac{F_{+}(z)}{F_{+}(z)} = \exp \left(\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{F_{+}(z)}{F_{+}(z)} ds \right)$$

Lechure 15a

Application of Weener-Hopf method to on integral equation.

Lecall that we can write
$$F(z) = \frac{F_{1}(z)}{E(z)}$$
 where $F_{+}(z) = \exp\left[\frac{1}{2\pi i}\int_{f_{+}}^{1}\frac{ln_{2}}{5-z}\int_{z-z}^{1}ds\right]$
 P_{+} $P_{+}(z) = \exp\left[\frac{1}{2\pi i}\int_{f_{+}}^{1}\frac{ln_{2}}{5-z}\int_{z-z}^{1}ds\right]$
 $eg. F(z) = \frac{z^{2}-a^{2}}{z^{2}-b^{2}}$ where $lmasson (m b > 0$ (where that $F(z) = \frac{z+a}{z+b}/\frac{z-b}{z-a}$)
Using the formula,
 $F_{+}(z) = exp\left[\frac{1}{2\pi i}\int_{f_{+}}^{1}\frac{ln_{2}(s+a)-ln_{2}(s+b)}{5-z}ds + \frac{1}{2\pi i}\int_{f_{+}}^{1}\frac{ln_{2}(s-a)-ln_{2}(s-b)}{s-z}ds\right] = \frac{z+a}{z+b}$
 $dox in Uhp, = rn(s-z) = ln_{2}(z+a)-ln_{2}(z+b)$ diver in $Lhp, = 0$

Example application k an integral equation
Find
$$f(x)$$
, smooth & banded, such that $\int_{0}^{\infty} f(t) e^{-(x-t)} dt = f(x)$ for $x \ge 0$
Define $f_{+}(x) = \sum_{k=1}^{\infty} (x) = \sum_{k=1}^{\infty} f(x) = \sum_{k=1}^{\infty} f(x) = \sum_{k=1}^{\infty} f(x) = \sum_{k=1}^{\infty} (x) = \sum_{k=1}^{\infty} f(x) = \sum_{k=1}^{\infty} (x) = \sum_{k=1}^{\infty} (x)$

Aside: Since
$$f(x)$$
 is smooth & banded, we can expect $\overline{F}_{+}(k) = O(\frac{t}{k})$ or $k \to \infty$.
Why? $\overline{f}_{+}(k) = \int_{0}^{\infty} f(x) e^{ikx} dx = \frac{t}{ik} f(x) e^{ikx} \int_{0}^{\infty} -\frac{t}{ik} \int_{0}^{\infty} f'(x) e^{ikx} dx$
 $-f(0) = -f(0) = -f(0)$
 $ik = if(0) + O(\frac{t}{k})$

Similarly, since $h_{-}(x)$ is bandled, we can expect $\overline{h}_{-}(k) = O(\frac{1}{k})$ or $k \rightarrow \infty$.

Lecture 15b

$$\begin{split} \left(\frac{(-k^2)}{1+k^2}\right)\overline{f_+(k)} &= \overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{1+k^2}\right)\overline{f_+(k)} &= \overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline F_4 \qquad F_4 \qquad F_5 \qquad F_6 \qquad (k-i)\overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} &= (k-i)\overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} &= (k-i)\overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} &= (k-i)\overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} &= (k-i)\overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} &= (k-i)\overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} &= (k-i)\overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} &= (k-i)\overline{h_-(k)} \qquad \text{for } 0 < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \qquad \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 < h < \ln k < 1 \\ \hline \left(\frac{(-k^2)}{k+i}\right)\overline{f_+(k)} \ \text{for } 0 \\ \hline \left(\frac{(-k^2)}{k+i$$

So we have
$$\overline{f}_{+}[k] = \frac{C[k+i]}{1-k^{2}}$$
 $(k - k) = \frac{C}{k-i}$
So $f_{+}(x) = \frac{C}{2\pi} \int_{1}^{1} \frac{k+i}{1-k^{2}} e^{-ikx} dk$
 $-\frac{(k+i)}{(k-i)(k+i)} e^{-ikx}$ $(clore in the line, find x > 0)$
 $= -\frac{C}{2\pi} 2\pi i \left[ron(k=i) + ron(k=-i) \right] = -Ci \left[-\frac{1+i}{2} e^{-ix} + \frac{-1+i}{2} e^{ix} \right]$
 $= \hat{C} (con x + find x)$

Application of Wiener-Hopf method to a mixed bandary value problem

$$\begin{split} & \text{Transform in } \mathbf{x}, \text{ fo} \quad \tilde{\mathbf{u}}\left(k,y\right) \quad \text{Subsfirs} \\ & -\mathrm{i}\mathbf{k}\cdot\tilde{\mathbf{u}} = -\mathbf{k}^{1}\tilde{\mathbf{u}} + \frac{\partial^{2}\tilde{\mathbf{u}}}{\partial y^{1}} = 0 \quad \text{for } \mathbf{y} > 0 \quad =) \quad \frac{\partial^{2}\tilde{\mathbf{u}}}{\partial y^{2}} = \left(\mathbf{k}^{2} - \mathrm{i}\mathbf{k}\right)\tilde{\mathbf{u}} \quad \text{for } \mathbf{y} > 0 \\ & \text{with } \quad \tilde{\mathbf{u}}\left(k,y\right) \to 0 \quad \text{an } \mathbf{y} \to \infty \\ & \mathbf{k} \quad \tilde{\mathbf{u}}\left(k,o\right) = \quad \tilde{\mathbf{f}}_{-}\left(\mathbf{k}\right) + \frac{1}{k} \quad \text{for } 0 < \ln\mathbf{k} < \beta \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \ln\mathbf{k} > \infty \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \mathbf{k} < \mathbf{k} \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \quad \text{for } \mathbf{k} \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{g}}_{+}\left(\mathbf{k}\right) \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{u}}\left(k,o\right) = \quad \tilde{\mathbf{u}}\left(k,o\right) \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{u}}\left(k,o\right) = \quad \tilde{\mathbf{u}}\left(k,o\right) \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{u}}\left(k,o\right) = \quad \tilde{\mathbf{u}}\left(k,o\right) \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{u}}\left(k,o\right) \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) = \quad \tilde{\mathbf{u}}\left(k,o\right) \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,o\right) \\ & \frac{\partial \tilde{\mathbf{u}}}{\partial y}\left(k,$$

Lecture 16 b

So we have
$$\tilde{g}_{+}|k| + \frac{ie^{-i\tilde{W}_{4}}}{k} = -(k-i)^{w}\tilde{f}_{-}|k| - \frac{i(k-i)^{w}}{k} + \frac{ie^{-i\tilde{W}_{4}}}{k}$$
 for $k < ln k < \beta$
Since LHS is holomorphic on link > or, and RHS is holomorphic on link < β , flags
ore the analytic continuation of each other, so bizether define on entrier function, $E(h)$.
We expect, three is is continuent, then $\tilde{f}_{-}(k) = O(\frac{1}{k})$ on $k \to \infty$, and $\tilde{g}_{+}|k| = O(\frac{1}{k}w_{2})$ on $k \to \infty$.
(fince anticipate $u_{y}(x, o)$ may have a square with Singularity.)
Hence, we much have $E(h) \to 0$ on $k \to \infty$. So there will be the own $=$) $E(h) = 0$.
 $=) \tilde{g}_{+}|k| = -\frac{e^{i\tilde{W}_{4}}}{k} = -\frac{i}{k} + \frac{e^{i\tilde{W}_{4}}}{k(h-i)^{w_{2}}}$

For the heat time
$$\frac{\partial u}{\partial y}(x,0)$$
, $x>0$, we need $g_{+}|x\rangle$
 $g_{+}(x) = \frac{1}{2\pi} \int_{\Gamma} -\frac{e^{-ikx}}{k^{v_{2}}} e^{-ikx} dk$.
(low in the line time $x>0$), k rule that
 $\int_{\Gamma_{1}} \int_{\Gamma_{2}} \int_{\Gamma_{3}} \int_{\Gamma_{3}} -30$ in the appropriate limith, so $\int_{\Gamma} = 2 \int_{\Gamma_{4}} \frac{k = -it}{k^{v_{2}} = t^{v_{2}}} e^{-i\pi v_{4}}$
Hence $g_{+}(x) = -\frac{2}{2\pi} \int_{0}^{\infty} \frac{e^{-i\pi v_{4}}}{e^{-i\pi v_{4}}} t^{v_{2}} e^{-tx} (-idt) = -\frac{1}{\pi} \int_{0}^{\infty} t^{-v_{2}} e^{-tx} dt$
 $= -\frac{1}{\sqrt{\pi x}}$