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1 Introduction
Over the last 20 years, networks and graphs have become a near ubiquitous

modelling framework for complex systems. By representing the entities of a sys-
tem as nodes in a graph and encoding relationships between these nodes as edges,
we can abstract systems from a variety of domains with the same mathematical
language, including biological, social and technical systems (Newman, 2018a).
Network abstractions are often used with one of the two following perspectives
in mind. First, graphs and networks provide a natural way to describe relational
data, i.e., datasets corresponding to “interactions” or correlations between pairs
of entities. A prototypical example here are online social networks, in which we
measure interactions between actors and can derive a network representation of
the social system based on these measurements. We may then try to explain cer-
tain properties of the social system by modelling and analysing the network, e.g.,
by searching for interesting connectivity patterns between the nodes. Second,
networks are often used to describe distributed dynamical systems, including
prototypical examples such as power grids, traffic networks, or various other
kinds of supply or distribution networks. The edges of the network are in this
context not the primary object of our modelling. Rather, we are interested in
understanding a dynamical process that takes place on this network. More
specifically, we often aim to comprehend how the network structure shapes this
dynamics, e.g., in terms of its long-term behaviour. In reality, of course, both
of these perspectives are simplifications in that for many real systems, there is
typically uncertainty and dynamics associated to both node and edge variables
which make up the network: think for instance of a rumour spreading on a
social network, where both node variables (the infection state) and the network
edges (who is in contact with whom) will be highly dynamic and uncertain. We
may not know the exact status of each individual; moreover, edges will change
dynamically and their presence or absence may not be determined accurately.

No matter under what perspective we are interested in networks, it should
be intuitively clear that networks with some kind of “modular structure” may
be of interest to us. For now, consider modular structure simply in terms of
a network made of dense clusters that are loosely connected with each other.
From the perspective of relational data, modular structure may be indicative of
a hidden cause that binds a set of nodes together: this corresponds to the idea
of homophily in social networks (McPherson, Smith-Lovin, & Cook, 2001),
which can lead to the formation of communities of tightly knit actors. From
the perspective of dynamics, it is often impractical to keep a full description of
a dynamical process on a network when the number of dynamical units is too
large. In many cases, it is unclear whether such finely detailed data is necessary
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to understand the global phenomena of interest, as relevant observables can
often be obtained by aggregating microscopic information into macroscopic
information, i.e., aggregating information over many nodes. This kind of
dimensionality reduction of the dynamics is in particular successful if there
exist roughly homogeneously connected blocks of nodes, i.e., modular network
structure (Simon & Ando, 1961).

As the title indicates, this book will primarily adopt a dynamical perspective
on network analysis. Accordingly, our core objective will be to explore the
relations between modular structure and dynamics on networks, but we will also
explain how certain aspects of the analysis of relational data can be interpreted
from this lens. However, an exhaustive exposition of methods to characterise
and uncover modules (also called blocks, clusters, or communities) in networks
will not be the main focus of our exposition. We refer the interested reader to the
extensive literature on this topic for more detailed treatments, see e.g., Doreian,
Batagelj, and Ferligoj (2020); Fortunato and Hric (2016); Newman (2018a);
Schaeffer (2007).

Network dynamics and network structure
It is well-known that there exists a two-way relationship between dynamics

on graphs and the underlying graph structure (Schaub, Delvenne, Lambiotte, &
Barahona, 2019). On the one hand, the structure of a network affects dynamical
processes taking place on it (M. A. Porter & Gleeson, 2016). In the simplest
case of a linear dynamical system, this relationship derives from the spectral
properties of a matrix encoding the graph, most often the adjacency matrix
or the graph Laplacian. On the other hand, dynamics can help reveal salient
features of a graph. This includes the identification of central nodes or the
detection of modules in large-scale networks.

To illustrate this two-fold relation between network structure and network
dynamics on an intuitive level, let us consider random walks on networks.
Random walks are often used as a model for diffusion, and there is much
research on the impact of network structure on different properties of random-
walk dynamics (Masuda, Porter, & Lambiotte, 2017). In particular, degree
heterogeneity, finite size effects and modular structure can all make diffusion
processes on networks quantitatively and even qualitatively different from
diffusion on regular or infinite lattices. At the same time, random walks are
key to many algorithms that uncover various types of structural properties of
networks. For example, the classical PageRank method for identifying important
nodes may be interpreted in terms of a random walk (Gleich, 2015). Indeed, as
we will discuss, several algorithms use trajectories of dynamical processes such
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Figure 1 Modularity and Dynamics on Networks. Our main ambition is to
understand relationships between modular structure of a network, here

highlighted in different node colours, and a dynamics taking place on it, here
illustrated with the red trajectory on the network. The two complementary

questions at the core of this book are: 1) How does the modular structure of a
network affect dynamics? 2) How can dynamics help us characterise and

uncover the modular structure of a network?

as random walks to reveal mesoscale network patterns.

Outline of this book

In this book, we try to provide a basic overview of the topic of modularity
and dynamics on complex networks. Our exposition is structured as follows.
In Chapter 2, we first discuss some background material in Network Science
and then review classical notions of modular structure in networks in Chapter 3.
In Chapters 4 and 5, we discuss the interplay between dynamics and network
structure in terms of time scale separation and symmetries, and how these aspects
can be used to reduce the complexity of the description of network dynamics. In
Chapter 6, we then explain how we can detect so-called assortative community
structure, primarily based on the notion of time scale separation. Chapter 7
then discusses the definition and detection of more general (dynamical) block
structure, leveraging ideas from linear systems theory and symmetry reduction.
In Chapter 8, we conclude with a short discussion on avenues for future work
and additional perspectives.
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WHY ARE NETWORKS MODULAR?
For many years, researchers have been fascinated by the prevalence of
modularity in systems as different as the World Wide Web, foodwebs
and brain networks, raising the question: are there universal mechanisms
driving the evolution of networks toward a modular architecture? Among
the many mechanisms that have been proposed (Meunier, Lambiotte, &
Bullmore, 2010), the following, profound idea of Herbert Simon stands
out by its elegance (Simon, 1962). “Nearly-decomposable” systems, as
Simon calls them, allow faster adaptation or evolution of the system in
response to changing environmental conditions. In Simon’s view, modules
represent stable building blocks that ensure the robustness of a system
evolving under changing or competitive selection criteria. To illustrate
this idea, Simon wrote an intuitive parable about two watchmakers, called
“Hora” and “Tempus” (Simon, 1962):

There once were two watchmakers, named Hora and Tempus, who
manufactured very fine watches. Both of them were highly regarded,
and the phones in their workshops rang frequently – new customers
were constantly calling them. However, Hora prospered, while Tempus
became poorer and poorer and finally lost his shop. What was the
reason?

The watches the men made consisted of about 1,000 parts each.
Tempus had so constructed his that if he had one partly assembled
and had to put it down-to answer the phone say-it immediately fell
to pieces and had to be reassembled from the elements. The better
the customers liked his watches, the more they phoned him, the more
difficult it became for him to find enough uninterrupted time to finish a
watch.

The watches that Hora made were no less complex than those of
Tempus. But he had designed them so that he could put together
subassemblies of about ten elements each. Ten of these subassemblies,
again, could be put together into a larger subassembly; and a system
of ten of the latter subassemblies constituted the whole watch. Hence,
when Hora had to put down a partly assembled watch in order to answer
the phone, he lost only a small part of his work, and he assembled his
watches in only a fraction of the man-hours it took Tempus.

This story illustrates in simple terms the potential evolutionary advantage
that a modular system structure may have, and provides an argument for
the ubiquity of modularity in a broad range of natural and social systemsa.
In the following, we will not dwell on why there is modular structure in
the network, but rather focus on the question: How does the modularity of
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a network affect its behaviour and, in particular, its dynamical properties?
aOne needs to be careful with such statements. Simon himself cautioned that many

systems lack conclusive statistical evidence for being modular and may only be perceived as
modular due to confirmation bias. However, the statement that many networks are modular
has been validated on large corpus of network datasets by now. See, e.g., Fortunato (2010);
Ghasemian, Hosseinmardi, and Clauset (2019); Leskovec, Lang, Dasgupta, and Mahoney
(2008).

Notation
We use the following general mathematical notations and conventions. We

denote vectors by small letters in bold such as x, y and use (·)> to denote the
transpose of a vector. Our convention is that all vectors are column vectors,
and accordingly, x> is a row vector. We use 1 to denote the vector of all ones.
Matrices are denoted by bold uppercase letters such as A,M , where I is used
to denote the identity matrix. We write diag(x) to denote the diagonal matrix
whose diagonal entries are defined by the components of vector x and are 0
otherwise. Entries of vectors or matrices are non-bold with subscripts. For
instance, vector x has entries x1, . . . , xn and the matrix A has entries Ai j . If
there is ambiguity, we may alternatively use the notation [vi]j to denote the
j-th entry of a vector vi (or a matrix, accordingly). Finally, we use P(·) and
E[·] for the probability and expectation of the statement inside the parenthesis,
respectively.

More specific notation regarding networks and associated objects is sum-
marised in table 1. These objects are explained in Chapter 2.
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Table 1 Notation

Symbol Description

n ∈ N number of nodes

m ∈ R
total weight of edges (number of edges for
unweighted networks)

C ∈ N number of modules / communities
V = {1, . . . ,n} set of nodes / vertices
i, j, ` ∈ {1, . . . ,n} indices for nodes
P = {A1, . . . ,AC} Partition of the nodes into communitiesAα

Aα set of nodes within the α-th community
α, β ∈ {1, . . . ,C} indices for communities
ki ∈ R weighted degree (strength) of node i

A ∈ Rn×n weighted adjacency matrix of a network
K (A) = diag(A1) ∈ Rn×n weighted degree matrix of a network
L(A) = K − A combinatorial Laplacian matrix
L(A) = I − K−1/2AK−1/2 normalised Laplacian matrix
Lrw(A) = I − K−1A random walk Laplacian matrix

H ∈ {0,1}n×C
Partition indicator matrix with entries
Hiα = 1, if node i is in the α-th commu-
nity (Aα), and Hiα = 0 otherwise

hα ∈ {0,1}n
Indicator vector of α-th community, i.e.,
α-th column of H

γ : {1, . . . ,n} → {1, . . . ,n} permutation function of node labels
Γ permutation matrix associated to γ
d(x, y) distance function between x and y

κ(x, y) kernel function of x and y
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2 Background Material
In this chapter, we review some notions from algebraic and spectral graph

theory as well as the theory of linear dynamical systems. These concepts will
be essential for our discussions in the following chapters.

2.1 Graph Theory
Networks provide a natural framework to represent systems composed of

elements in interaction. At the core of a network representation is the inherent
assumption that the system under investigation can be decomposed into nodes,
representing the system elements, and edges, representing pairwise interactions
between the system elements.

In the simplest setting, we assume that both the nodes and the edges of
a network are all of the same type and their number is fixed. All of these
assumptions can be relaxed1, but we will be mostly concerned with undirected
(and weighted) networks in the following. Within this setup we can represent a
network mathematically by a graphG(V,E), with a set of nodesV of cardinality
n := |V|, and a set of edges E = {{i, j} | i, j ∈ V}. Without loss of generality
we will identify the node setV with the set {1, . . . ,n}. For a weighted graph,
we endow the graph G with a weight function wG : E → R+, which maps each
edge {i, j} to a positive weight wG({i, j}) = wi j .

More generally, we can consider directed graphs, meaning that node i may
be adjacent (connected) to node j but not vice versa. This lack of symmetry
leads to a number of mathematical complications that make directed networks
and dynamical systems acting on directed networks far more difficult to analyse
(cf. the box “The case of directed networks” in Section 2.3.3). We will thus
focus on undirected networks, unless otherwise stated.

The edge set of a graph describes which nodes are adjacent, i.e., directly
connected by an edge. Especially in the context of dynamical systems defined
on graphs, we need to capture how a sequence of direct connections defines
indirect connectivity between pairs of nodes, leading to the additional notions
of a walk, trail, path and connectedness of a graph. A walk between a starting
node i and a terminal node j is a sequence of edges such that there exists an

1For simplicity, within this book, we will concentrate on undirected graphs with positive
edges weights, and provide some additional discussion on directed networks. Relaxing the above
modelling assumptions leads to various notions, including signed networks (Kunegis et al., 2010),
multiplex networks (Kivela et al., 2014), temporal networks (Holme & Saramäki, 2019) and
higher-order networks (Battiston et al., 2020; Lambiotte, Rosvall, & Scholtes, 2019; Schaub, Zhu,
Seby, Roddenberry, & Segarra, 2021). These are active areas of research, that we will mention
further when relevant, and we invite the reader to consult the literature for further information on
these topics.
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associated node sequence (i, `, . . . , j), in which every subsequent pair of nodes
is adjacent. A trail is a walk in which all edges are distinct, and a path is a trail
in which additionally all nodes are distinct. A graph is connected if there is a
path between any two nodes. When a graph is not connected, it is composed of
several connected components2.

There are different ways to describe a graph algebraically. One representation
that will attract a lot of our attention is the so-called adjacency matrix. The
adjacency matrix A is an n × n matrix encoding the presence or absence of an
edge between any pair of nodes in the graph. Its entries are

Ai j =

1 if node i is adjacent to node j,

0 otherwise.
(2.1)

If the network is weighted, then Ai j = wi j if there is an edge between i and j
and zero otherwise. Here wi j is the edge weight associated to edge {i, j}, as
discussed above. Clearly, for undirected graphs we have Ai j = Aji , i.e., the
adjacency matrix is symmetric (A = A>). Using the adjacency matrix, we can
express the weighted degree of each node i as ki =

∑
j Ai j . The degree of a

node is equal to the number of neighbours of a node for simple, unweighted
graphs.

2.2 Random graph models
Many local or global properties of a network can potentially be of interest,

whether in terms of their influence on a dynamics acting on a network or
otherwise. For instance, let us consider the clustering coefficient. For this, we
define the local clustering coefficient

Ci :=
# triangles including node i

ki(ki − 1)/2
=
(A3)ii

ki(ki − 1)
, (2.2)

which measures the relative abundance of triangles in the neighbourhood of
node i. The clustering coefficient is now defined as the average over this statistic

C :=
1
n

n∑
i=1

Ci . (2.3)

By construction, the value of the clustering coefficient C lies between 0 and 1,
and it is often considered as a measure of the cohesion inside a network.

Now suppose that we observe a value of the clustering coefficient of C = 0.25
in an empirical network. Should we conclude that this value is small or large?
In order to answer this question and interpret our measurement in a meaningful

2Note that a single node without any connection is a trivial connected component by definition.
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way, we often require some suitable reference points for the measurement. Such
reference points are often deduced from random graph models.

A random graph model defines an ensemble of graphs, i.e., a set of possible
graphs and a probability associated to each of those graphs. Random graph
models are often defined by considering the edges in the graph as random
variables, which obey certain probabilistic laws. One of the simplest random
graph models is the Erdős-Rényi (ER) model, also called the Poisson or binomial
random graph. The Erdős-Rényi random graph has two parameters, the number
of nodes n, and the probability q that a link exists between a pair of nodes. By
definition self-loops are excluded. Each pair of nodes (undirected edge) is then
seen as an independent Bernoulli random variable that determines the presence
or absence of a link. The combined realisations of all these n(n−1)/2 Bernouilli
random variables then determines one realisation of the random graph. Note that
any network without multiple edges and self-loops can be generated by a draw
from an ER model as long as 0 < q < 1. However, different realisations will be
observed with different probabilities, depending on the value of q. Exploiting
the fact that each link exists independently with the same probability, several
properties of the ER model can be calculated analytically, in particular the
expected value of several network metrics as well as their variance.

However, the ER model is known to produce unrealistic edge patterns. In
particular, it generates networks with a Poisson degree distribution, which is
not typical for most observed networks in the real world3. For this reason, other
random graph models such as the configuration model are often considered
to be a more appropriate baseline for real-world networks. The configuration
model (Fosdick, Larremore, Nishimura, & Ugander, 2018) is defined as a
random graph model in which all possible configurations appear with the same
probability under the constraint that each node i has a given degree ki (1 ≤ i ≤ n).
Hence, the configuration model generates an ensemble of random graphs with
a prescribed degree distribution that can either be taken from empirical data
or chosen from a family of functions, e.g., a power-law distribution. The soft
configuration model, or Chung-Lu model (F. Chung & Lu, 2002), is defined
analogously to the configuration model, but rather than fixing the exact degree
sequence of the graph only the expected degree sequence is prescribed. Similar
to the ER model, several properties of the (soft) configuration model can be
calculated analytically. Of interest for the next chapters is the expected number
of links between two nodes i and j in the soft-configuration model, which is

3Power-law or not (Broido & Clauset, 2019), many real-world networks tend to exhibit a degree
distribution with a fat tail: the vast majority of nodes have only a small degree and a small number
of hubs have very large number of connections.
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given by

E[Ai j] =
kik j

2m
. (2.4)

Here E[Ai j] represents the expected value of the adjacency matrix for the edge
{i, j}, which is simply the probability P(Ai j = 1) for an unweighted graph. As
can be seen, this probability for an edge to exist between a pair of nodes is
clearly not uniform, which was the case in the ER model.

Let us now return to the initial motivating example of this section, i.e.,
determining if a specific statistic like the clustering coefficient is small or large
in a real-world network. A common practice is to consider how this measure
would be statistically distributed for graphs drawn from a soft configuration
model with an expected degree sequence matching the empirically analysed
network. We can then estimate if the empirical value is significantly different
from that of the random graph model, for instance by calculating a Z score or a
p value. For the specific case of the clustering coefficient, its expected value
under the configuration model is given by

C =

(
E[k2] − E[k]

)2

E[k]3n
. (2.5)

Note that this value is extremely small for large values of n unless the variance
of the degree diverges. Thus we would expect a very small clustering coefficient
for large networks. This type of approach is popular for motif analysis, where
the purpose is to uncover important motifs in a network, whose over- or under-
representation may be associated to their function in the system (Milo et al.,
2002). Let us emphasise here that this conclusion strongly depends on the
choice of the model, as the question of whether a particular statistic is significant
can only be answered with respect to the chosen random model. Other models
may have very different behaviour and we thus need to exercise caution when
declaring that some network property is significant or not.

2.3 Network dynamical systems and linear dynamics
2.3.1 Linear dynamics on networks

In many situations, the nodes of a network are not static entities, but each
node i carries a state xi(t) that evolves in either continuous or discrete time.
Consider for instance the formation of opinions in a social network, where each
node i may update its opinion xi(t) on a particular topic based on the interactions
with adjacent nodes; or alternatively, the dynamics of a set of connected neurons
in a part of the brain.
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While each node has a dynamical state, it is typically assumed that the network
is static when considering such network dynamical systems, i.e., the node set
V and edge set E are constant over time. Although the network structure is
thus not dynamic itself, its connectivity constrains how the node states xi(t)
can influence each other. A crucial question in the study of network dynamical
systems is therefore to characterise this influence of the network structure on
the overall dynamics of the system. Vice versa, based on an observed network
dynamics, we may also infer certain properties of the network.

A broad setup that is often considered in this context is the following set of
autonomous, coupled ordinary differential equations

Ûxi = f1(xi) +
n∑
j=1

Ai j f2(xi, xj), for all i ∈ 1, . . . ,n, (2.6)

in conjunction with an initial condition x(0) = x0. Here the function f1
describes the intrinsic dynamics of the node (a form of self-coupling), and the
function f2 describes how states of two nodes interact with each other, e.g.,
nodes are assumed to have pairwise interactions, in agreement with a network
representation. Note how the adjacency matrix in the above equation ensures
that nodes that are not connected to each other do not influence each other
directly. These type of dynamical models may appear in a variety of context
such as synchronisation, decentralised consensus, social dynamics, etc. (Bullo,
2019).

A particular simple, but important case are linear dynamics on a network, in
which case the above dynamics can be written in the form

Ûx = Fx with x(0) = x0, (2.7)

for some matrix F, which we call the system matrix. We emphasise that given
an undirected network with adjacency matrix A, only certain linear dynamics
will be compatible with graph structure encoded by A (see Section 2.3.2).
Specifically, we will require that we can write F = DAGD

−1 for some invertible
diagonal matrix D and a non-negative, symmetric matrix AG = A>

G
that has the

same sparsity pattern as the adjacency matrix for all off-diagonal entries. Thus,
for i , j we have Fi j = 0 if Ai j = 0, and only nodes connected in the network
interact directly.

Given such a system, linear systems theory tells us that the solution to the
above system is given by

x(t) = exp(tF)x0 =

(
∞∑
i=0

tiFi

i!

)
x0, (2.8)

where exp(·) denotes the matrix exponential. In a discrete-time setting, the
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corresponding system of equations takes the form

x(t + 1) = Gx(t) with x(0) = x0, (2.9)

with solution

x(t) = Gt x0, (2.10)

where Gt denotes the t-th power of the system matrix. We put the same
restrictions on the system matrix G to be compatible with a network with
adjacency matrix A, as we did in the continuous time case (see Section 2.3.2).

The formal solutions (2.8) and (2.10) clearly show the importance of walks
and indirect connectivity for linear processes on networks. As powers Al of
the binary adjacency matrix provide the number of walks of length l between
any pair of nodes, powers of the system matrix encode weighted versions of
these walks. Walks provide the way for a node to spread its influence beyond
its direct neighbours. Specifically, a node will be able to (indirectly) influence
all the nodes within the same connected component, as there will exist a walk
connecting any pair of nodes within each connected component. Connected
components thus impose limitations on any dynamical process taking place on
the network. Intuitively, a connected component is an island, and two nodes in
different connected components cannot influence each other, even indirectly. In
epidemic processes, for example, the existence of distinct components implies
that certain regions of the network cannot be infected independently of the
model of epidemic dynamics and its parameters, unless there was an initially
infected node within the component. The notion of connectedness becomes
more complicated in the case of directed networks, as there may be a path from
node i to j but not vice versa.

2.3.2 Linear network dynamical systems vs. general linear systems

Why don’t we allow for a generic linear system of the form (2.7) or (2.9)
when considering a linear dynamics on an undirected graph? For simplicity,
let us explain the underlying issue here for the discrete time setup, as the
continuous time case is analogous. Clearly, any matrix G ∈ Rn×n+ induces a
weighted (directed) graph if we consider the node setV to correspond to the
integers 1, . . . ,n, and the edge set E to correspond the nonzero entries in G.
More precisely, we can define E = {(i, j)|Gi j , 0}, with an accordingly defined
weight wi j = Gi j for each edge. We could thus argue that since the underlying
graph was supposed to be undirected, the requirement that the system matrix G

needs to fulfill is that it should be symmetric.
Associating any matrix with a graph is however not fruitful in a general
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dynamical context. The reason is somewhat subtle and intrinsically linked to
the interpretation of the state variables xi , rather than the matrix G. Specifically,
consider a generic linear system where the states xi have no specific meaning
assigned to them, but are simply arbitrary coordinates in which we measure
the state of our system. For simplicity, let us assume that these coordinates
evolve according to the discrete time system x(t + 1) = Ax(t), where A can be
interpreted as the adjacency matrix of some graph G. As the coordinates we
chose are arbitrary, we may as well use a different set of coordinates to measure
our system state. For instance we could choose the vector y = Zx as our new
state vector, for some invertible matrix Z . While the dynamics of the system
has not changed –we are simply measuring it in a different reference system–
the system matrix will transform and we will have a discrete time system of the
form y(t + 1) = ZAZ−1y(t). But we can of course interpret ZAZ−1 = A′ as
the adjacency matrix of another graph G′. In fact, as we assumed a symmetric
A, we could choose a matrix Z that diagonalizes the adjacency matrix A. With
this choice we would arrive at a new matrix A′ with a diagonal coupling, with
eigenvalues of the original matrix on the diagonal. However, the matrix A′

would correspond to a graph with no edges between different nodes at all.
As the above example illustrates, associating a graph to any matrix can be

problematic when interpreted in the context of a dynamical system. Recall that
when modelling a system as a network, we associate a dynamical state (or a state
vector) to each node, and we assume that direct interactions between node states
happens only over the edges in the graph. A key role is thus played by the state
variables xi . The above example shows that we cannot change the state variable
in an arbitrary way if we want our state variables to remain interpretable as some
local information on a specific node. For instance, consider a social network,
where we associate a scalar opinion variable to each node and consider a linear
opinion formation process. We could potentially diagonalise the system to bring
it into a simpler algebraic form, and we may actually do so to gain insight in the
long-time behaviour of the dynamics. However, the new state variables of the
diagonalised system then correspond to weighted sums over all previous state
variables, in general, i.e., to a summation over all nodes. Hence, the new state
variables can clearly not be associated with a single node in the original network,
but incorporate information that is distributed across the whole original network.
Accordingly, the diagonalised system described in the new state variables does
not describe a distributed dynamical system. Thus a general system matrix
cannot be interpreted as a network dynamical system, despite the fact that the
interaction pattern encoded in the system matrix may be sparse.

The only types of state transformation that are guaranteed to leave the state
variables in a network localised at their original nodes for Equation (2.7) and
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Equation (2.9) are those corresponding to a linear scaling (and a measurement
offset), i.e., yi = ai xi + bi for scalar node states, which will be our primary
focus in the following. As a measurement offset will simply translate into an
external input in the new state variables, we will consider only the case bi = 0
in the following. This scaling of the node variables then corresponds precisely
to the requirement that G = DAGD

−1 (and similarly F) should be related by
a diagonal similarity transformation to a matrix whose (off-diagonal) sparsity
pattern is commensurate with the graph’s adjacency matrix.

2.3.3 Spectral decomposition

As our above discussion emphasises, we should exercise care when perform-
ing coordinate transformations of the state vectors. However, the solutions (2.8)
and (2.10) take a particularly simple form when changing our state coordinates to
the eigenmodes of the system, as we will illustrate for continuous time dynamics
below (the discrete case is analogous). For simplicity, we will continue to
assume that the dynamics takes place on an undirected graph.

In the continuous-time setting, assuming F = DAGD
−1, then the system

matrix has real eigenvalues λi such that (i) Fvi = λivi for some right eigenvector
vi , (ii) u>i F = λiu

>
i for some left eigenvector ui , (iii) u>i vi = δi j , where δi j is the

Kronecker delta, and (iv) vi = D2ui . Assuming further that F is a (marginally)
stable system we can order these eigenvalues such that 0 ≥ λ1 ≥ λ2 ≥ . . . ≥ λn.
We now expand F using this bi-orthogonal spectral expansion

F =
n∑
i=1

λiviu
>
i . (2.11)

Accordingly, the solution to our linear dynamics (2.7) on the network can be
written as:

x(t) =
n∑
i=1

eλi t viu
>
i x0 =

n∑
i=1

(
u>i x0

)
eλi t vi . (2.12)

In other words, each of the eigenvectors of the system matrix defines a mode,
and the exponential decay of each mode is determined from its corresponding
eigenvalue. The dynamics is thus entirely determined by the eigenvectors and
eigenvalues of that matrix. This is of course a well-known result for linear
systems. From a network dynamics perspective, the following question is
nonetheless of interest: How do the spectral properties of the system matrix,
and hence the linear dynamics, depend on the structural properties of a graph?
This question is at the core of spectral graph theory, which considers precisely
this issue for matrices such as the adjacency matrix, the graph Laplacian, etc.
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THE CASE OF DIRECTED NETWORKS
For the sake of simplicity, most of the technical derivations in this book
assume that the network under consideration is undirected and, accordingly,
its adjacency matrix will be symmetric, so that its eigenvectors form an
orthonormal basis. In situations when the matrix is asymmetric and
non-normal, the transformation to eigenvector coordinates may involve
a strong distortion of the vector space and induce non-intuitive spectral
properties (Trefethen & Embree, 2005). By non-normal, we mean a matrix
A such that AAT , ATA, which can only occur for asymmetric matrices.
Within the language of networks, this condition means that at least two
nodes have different numbers of out-neighbours and of in-neighbours.
Non-normality can lead to unexpected dynamical patterns for a linear
system. For instance, the system can undergo a transient growth before
asymptotically converging to zero, as measured by the norm of the state
vector x, even if the real part of its eigenvalues are all negative. This
transient behaviour is not explained by the eigenvalues of the matrix A
and can have important consequences especially when the linear dynamics
is an approximation of a non-linear dynamical system. The non-normality
of a matrix can be quantified by the so-called Henrici’s departure from
normality. Non-normal adjacencymatrices have been observed empirically
in a wide range of directed networks (Asllani, Lambiotte, & Carletti, 2018).

2.4 Laplacians, diffusion and consensus
Linear dynamics on networks like Equation (2.7) and Equation (2.9) appear

in many contexts. For instance, we may arrive at such systems by linearising
a nonlinear dynamical system on a network around a fixed point. In this case
the system matrix will be the Jacobian matrix4. Another important class of
linear models are diffusion (linear Markov chains) and consensus dynamics. In
this section, we will give a short overview of these models, and introduce the
associated Laplacian matrices that will appear pervasively throughout this book.

Diffusion is a central concept in almost any field of science. In its simplest
setting, where an entity diffuses in a continuous environment, its dynamics is
determined by the diffusion equation, also known as the heat equation, a partial
differential equation first studied by Joseph Fourier to model how heat diffuses

4Note that the Jacobian is a matrix depending on the underlying network structure but also
one the details of the non-linear dynamical model as well as of the fixed point around which the
linearisation is performed. Importantly, there is no guarantee that the Jacobian is a non-negative
matrix, and thus an interpretation in terms of a network dynamical system may or may not be
fruitful (see Section 2.3.2).
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in a physical medium

∂t ρ(x, t) = ∆ρ(x, t). (2.13)

Here ∆ is the Laplacian, e.g., ∆ = ∂2

∂x2 +
∂2

∂y2 for Cartesian coordinates in two
dimensions, and ρ(x, t) represents the density of particles or energy at a certain
position x at time t. The diffusion equation is without hesitation one of the most
widely studied equations in applied mathematics, and a lot is known about its
solutions with different boundary conditions, as well as its many applications,
from biology to finance. The diffusion equation and the Laplacian naturally
emerge in a variety of stochastic models (sometimes as a particular limit). When
defining an analogue of the diffusion equation for networks, there are a number
of possible choices to make, leading to somewhat different types of Laplacian
matrices, that can be defined for the same graph.

2.4.1 The combinatorial graph Laplacian

The combinatorial Laplacian matrix L of a graph is the n × n matrix with
entries

Li j =


ki =

∑
j Ai j, if i = j,

−Ai j, if {i, j} ∈ E,

0, otherwise.

(2.14)

The combinatorial Laplacian naturally appears in diffusion and consensus
problems, where the state of each node evolves towards the states of its
neighbours according to:

d
dt

xi =
∑
j

Ai j(xj − xi), (2.15)

which can be rewritten in matrix form as:
d
dt

x = −L x, (2.16)

where L = K − A, and K (A) = diag(A1) is the diagonal matrix of node degrees.
Equation (2.16) can be seen as a discrete analogue of the diffusion equa-

tion (2.13)5. The name consensus dynamics derives from the fact that, as
t → ∞, the dynamics will converge to the average of the initial node states,
i.e., limt→∞ x(t) = 1(1>x0)/n, if the graph is connected, which we will be
considering from now on unless stated otherwise. Thus, for large times t →∞,
we will see a homogenisation of the states of the nodes, analogously to how we

5Note that due to convention, there is a difference in the sign of those two operators
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will see an equilibration of temperature in the heat equation. In analogy with
how Fourier modes are the eigenfunctions of the continuous Laplace operator,
using eigenvectors of the combinatorial Laplacian as a unitary transformation is
sometimes called a graph Fourier transform (Shuman, Narang, Frossard, Ortega,
& Vandergheynst, 2013) and, as we shall see later, akin to the Fourier transform
we can similarly ascribe interpretations of “slow” and “fast” eigenmodes to the
eigenvectors, depending on the associated eigenvalue.

If the underlying graph is undirected, it is easy to show that the Laplacian
is symmetric and positive semidefinite. This can be proven by noting that the
Laplacian naturally defines a quadratic form

x>Lx =
n∑
i, j

Ai j(xi − xj)2, (2.17)

from which we can further deduce that the Laplacian has one eigenvector given
by 1 = (1, . . . ,1)> associated to eigenvalue 0. In general, there will exist one
eigenvector with eigenvalue 0 for each connected component of the graph, i.e.,
the multiplicity of the zero eigenvalue is equal to the number of connected
components of the graph. Hence, the combinatorial Laplacian has real, non-
negative eigenvalues, usually ordered as λ1 = 0 ≤ λ2 ≤ . . . ≤ λn. Finally,
we remark that the combinatorial Laplacian is not affected by the addition of
self-loops to nodes.

2.4.2 The normalised and the random walk graph Laplacian

The normalised graph Laplacian is the n × n matrix defined via:

Li j =


1, if i = j,

−Ai j/
√

kik j, if {i, j} ∈ E,

0, otherwise.

(2.18)

In matrix form we have L = I − K−1/2AK−1/2. The normalised Laplacian
exhibits similar properties to the combinatorial Laplacian. The multiplicity
of the eigenvalue 0 indicates the number of connected components, and the
matrix is positive semi-definite, with eigenvalues µ1 = 0 ≤ µ2 ≤ ... ≤ µn ≤ 2.
Note that for regular graphs, the normalised and combinatorial Laplacians are
equivalent up to a multiplicative factor, i.e., for graphs in which all nodes have
the same degree. Furthermore, we will have µn = 2 only if the graph is bipartite.

While the normalised Laplacian is commonly analysed in spectral graph
theory, in the context of network dynamics the closely related random-walk
Laplacian Lrw(A) = I − K−1A is often the more relevant matrix, as it appears
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naturally in the context of continuous time diffusion processes on graphs. In
terms of its entries, the random walk Laplacian is written as:

(Lrw)i j =


1, if i = j,

−Ai j/ki, if {i, j} ∈ E,

0, otherwise.

(2.19)

While the random-walk Laplacian is asymmetric, its spectrum can directly be
obtained from the normalised Laplacian, as both matrices are related by the
similarity transformation Lrw = K1/2LK−1/2. It thus follows that the random
walk Laplacian Lrw and normalised Laplacian L have exactly the same real
spectrum. Note that this similarity transformation is precisely of the type
discussed in Section 2.3.2. Further, the left and right eigenvectors u and v of
Lrw are related to the eigenvectors w of L via vi = K1/2wi and ui = K−1/2wi

(cf. Section 2.3.2).
Similar to the combinatorial Laplacian, the random-walk Laplacian can also

be associated to a (weighted) consensus dynamics

d
dt

xi =
1
ki

∑
j

Ai j(xj − xi) (2.20)

or, in matrix form,
d
dt

x = −Lrw x. (2.21)

In contrast to the “standard” consensus dynamics Equation (2.16), the rate at
which the nodes adapt their states is now modulated by their degrees. This leads
ultimately to a weighted consensus value limt→∞ x(t) = 1(k>x0)/(k

>1), where
k is the vector of node degrees.

As the name suggests, however, the random-walk Laplacian is typically
considered in the context of a diffusion, modelled via a random-walk process

d
dt

p> = −p>Lrw, (2.22)

where p> is a row vector encoding the probability that a randomwalker is located
at a particular node at time t. This process can be seen as as a continuous-time
version of a random walk defined on the nodes of the network where, at each
time step, a walker located on a node follows an out-going edge at random to
another node with a probability proportional to the out-going edge weight. The
transition probability between node i and j can thus be written as

Ti j =
Ai j

ki
, (2.23)

and the associated discrete-time randomwalk process can be compactly described



Networks 19

via the linear difference equation:

p>(t + 1) = p>(t)T . (2.24)

Note that Equation (2.24) can be obtained by approximating d p>/dt in Equa-
tion (2.22) by a discrete difference. From the spectral properties of the
normalised Laplacian, it is clear that the process Equation (2.22) is ergodic when
the underlying network is undirected and connected. In that case, irrespective
of the initial condition, the density of walkers converges to a unique stationary
state limt→∞ p>(t) = π>. The probability to find a walker on a particular node
i at this stationary state is proportional to the node degree, i.e., πi = ki/2m,
where 2m =

∑
i ki is twice the number of edges. Note that the stationarity

state of random walk processes is also closely related to the PageRank of
the nodes (Gleich, 2015; Langville & Meyer, 2011), a well-known centrality
measure calculated recursively, based on the idea that an important node receives
connections from many other important nodes.

Before concluding this subsection, let us note that the combinatorial Laplacian
and the random-walk Laplacian are two of the most popular choices of Laplacian,
even if other options exist. Both matrices have the same dominant right
eigenvector, 1, associated to the conservation of the number of walkers in the
process but have, as we have seen, different dominant left eigenvector. For
instance, only the combinatorial Laplacian satisfies the Fick’s condition (Putra,
Thompson, & Goriely, 2021), which states there is no net flux in the absence of
“concentration” gradient, so that the uniform state 1> is the stationary solution
for the diffusive process6. Different Laplacians may lead to different qualitative
and quantitative dynamical patterns on the same underlying graph, and a specific
choice must thus be made carefully to capture the important properties of
the process that one wants to model. The combinatorial Laplacian is often
preferred for physical and electrical networks, while the random-walk Laplacian
is preferred instead for the diffusion of information in socio-economic systems.

2.5 Distances, similarities and kernels
Several problems in machine learning, data mining and network science

require the calculation of a similarity or dissimilarity (distance) matrix between

6To be more precise, we define the concentration of a diffusion process on a node as the
stationary probability of the random walk divided by the volume of the node. In many practical
applications, all the nodes are assumed to have the same volume, and Fick’s condition holds for the
combinatorial Laplacian. However, other notions of volume have been proposed in graph theory,
see our discussion on the Cheeger inequality in Section 4.4.1 for an example. If the volume is taken
to be proportional to the node degree, then Fick’s condition holds for the random-walk Laplacian
instead. In essence, each Laplacian defines a different notion of volume for the nodes, which has an
impact for community detection for instance, as we will discuss in Section 6.4.
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objects. Here, a dissimilarity between two objects i and j is a positive function
d(i, j) ≥ 0 that is symmetric d(i, j) = d( j, i) and such that d(i, j) = 0 if and only
if i = j. Such a dissimilarity, which is more formally known as a semi-metric, is
intuitively defined such that higher values indicate a higher difference between
the objects. If in addition, a semi-metric satisfies the so called triangle inequality
d(i, k) ≤ d(i, j) + d( j, k) for all i, j, k, then the function d is called a metric or
distance function. If the function d satisfies the triangle inequality, but can
also be zero for different nodes, i.e., d(i, j) = 0 for some i , j (in addition to
d(i, i) = 0), then d is called a pseudometric. In the context of network analysis, a
dissimilarity between two nodes captures a certain notion of difference between
them. Any dissimilarity measure can be transformed into a similarity measure
by basic algebraic operations, such that the resulting similarity is high when the
two objects are close to each other.

2.5.1 Distance measures on graphs

A popular choice of dissimilarity between nodes i and j is the length of the
shortest path between them, which can be shown to be a proper distance measure.
Shortest paths are of particular relevance if we want to navigate between two
nodes in a graph, e.g., in routing problems. However, the shortest path distance
is very sensitive to inaccuracies in the network, as the addition or removal
of edges may radically alter shortest paths between nodes. Furthermore, the
shortest path distance does not account for the possible presence of multiple,
complementary paths connecting pairs of nodes.

An alternative distance measure between nodes is the average commute time
of an unbiased random walk on the network. This quantity is also referred
to as commute time distance, and can also be shown to be equivalent to the
so-called effective resistance between two nodes up to a scaling factor (Chandra,
Raghavan, Ruzzo, Smolensky, & Tiwari, 1996). Here the effective resistance
ωi j is defined via the quadratic form

ωi j , (ei − e j)
TL†(ei − e j), (2.25)

where L† is the pseudoinverse of the (combinatorial) graph Laplacian, and ei is
the indicator vector of node i, which has a value of 1 at position i and is zero
otherwise. Originally defined in the context of electrical circuit theory, the
effective resistance has found its way into graph theory related areas through
various applications, including graph embeddings (Fiedler, 2011) and, more
recently, graph sparsification (Spielman & Teng, 2011). Importantly, the
effective resistance is also a distance metric (Gvishiani & Gurvich, 1987; Klein
& Randić, 1993), and a small effective resistance between two nodes indicates
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their proximity in the graph. In particular, the effective resistance distance
decreases when the number of paths connecting two nodes increases, and when
the lengths of these paths decreases (Devriendt, 2020). Note that the effective
resistance between any two nodes is equal to their shortest path distance for a
tree graph. Due to its connection to the commute time, the resistance distance
is a natural choice of dissimilarity measure for networks in which flows do not
necessarily follow shortest paths, e.g., in the context of information diffusion or
virus spreading.

2.5.2 Similarities and kernels

Within the family of similarity measures, kernels, also called kernel functions,
have the additional property that they are obtained from the inner product between
representations of the nodes in a vector space, that is

κ(i, j) = v>(i)v( j), (2.26)

where v(i) is the vector representation of node i (see Section 7.1 for a longer
discussion on network embeddings). Importantly, the embedding of the nodes
does not need to be computed explicitly, as the kernel is the result of the
inner product between the vectors, a property usually called the kernel trick
(Fouss, Saerens, & Shimbo, 2016). From its definition in terms of inner
products, a kernel function is symmetric and positive semi-definite. Besides
these mathematical properties, the formulation in terms of an inner product
gives an intuitive interpretation. Important examples for graph kernels include
the different forms of exponential kernels (Kondor & Lafferty, 2002), such as
the diffusion, or heat, kernel (cf. Equation (2.16)):

κ(i, j) =
(
e−tL

)
i j
. (2.27)

From the spectral decomposition of the Laplacian, this kernel matrix can
be equivalently constructed from the inner products of the following vectors
associated to each node i

v(i) =
(
[u1]i, e−tλ2/2[u2]i, ..., e−tλn/2[un]i

)
, (2.28)

where [ul]i is the ith entry of the lth eigenvector of the Laplacian L, λl is
its corresponding eigenvalue of L, and we have used the fact that λ1 = 0.
Note that other system matrices can be chosen instead of the Laplacian matrix.
If the adjacency matrix is chosen, the kernel is equivalent to the so-called
communicability matrix eA (Estrada&Hatano, 2008) when t = 1. In general, for
any symmetric matrix S the exponential of that matrix is a positive semidefinite
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kernel, as the eigenvalues of the matrix exponential will correspond to the
exponential function applied to the original eigenvalues (Higham, 2008).

2.6 Further discussion and references
Network science is a rich field of research and we have only presented a

limited selection of results and concepts in this section, whose understanding
is critical for the rest of this book. For readers who search a more thorough
presentations of the field, we refer to introductory books by Newman (2018a),
Barabási et al. (2016) or Menczer, Fortunato, and Davis (2020). Monographs or
review articles on more specialised and advanced aspects of Network Science
include F. R. Chung (1997) for spectral graph theory, Strogatz (2004) and
Arenas, Díaz-Guilera, Kurths, Moreno, and Zhou (2008) for the non-linear
dynamics of synchronisation on networks, Fouss et al. (2016) for similarity
measures and kernels on networks, and Masuda et al. (2017) for random walks
on networks.
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3 Modularity, community detection and clustering
in networks

What does it mean for a network to have a modular structure or consist
of several communities? In this section we discuss three common ways to
conceptualise modular network structure and detect such structure in networks.

3.1 Communities as clusters: Modularity and assortativecommunities
An essential problem in Data Science is clustering (Xu & Wunsch, 2008):

the unsupervised partitioning of objects into groups, such that objects within the
same cluster are more similar to each other (in a certain sense) than to objects in
another cluster. Though clustering is typically considered for points in a metric
space, the idea of clustering can be generalised to networks as well. Analogously
to the clustering of data points, we may informally describe the problem as
the partitioning of nodes into groups, such that nodes within each group are
more similar to each other than to nodes outside their group7. In the context
of networks, this problem is typically called community detection (Fortunato,
2010; Fortunato & Hric, 2016; Schaeffer, 2007; Schaub, Delvenne, Rosvall, &
Lambiotte, 2017).

Community detection is often formalised as follows: First, a quality function
is defined that assigns a score for each possible network partition. Second, an
optimisation procedure is employed, in order to find the partition optimising
the quality function. As most problem formulations of community detection
involve difficult combinatorial problems, heuristic optimisation procedures are
often employed in practice. Importantly, the number of groups in the network is
typically assumed to be unknown and has to be inferred from the network data
as well (Fortunato, 2010).

One of the most popular quality function for community detection is the
so-called Newman-Girvan modularity (Newman & Girvan, 2004), denoted by
Q. Let us consider a group of nodes defined by a setA. The underlying idea of
modularity is to compare the number of links connecting nodes inside A with
an expectation of this number under a random null model. The choice of null
model is in principle left to the user. The null model should ideally be tailored to
the type of network under scrutiny and the existence of forces that may constrain
the formation of edges (Expert, Evans, Blondel, & Lambiotte, 2011). However,

7In this book, we will exclusively focus on community structure made of non-overlapping
groups. Note that methods have been specifically designed for the detection and characterisation of
overlapping communities, as in Ahn, Bagrow, and Lehmann (2010).
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the default choice is often the soft configuration or Chung-Lu model (F. Chung
& Lu, 2002), for which the expected weight of an edges between two nodes i
and j is given by Equation (2.4).

Under the soft-configuration model, the difference between the number of
links in community A and the expected value of such links is∑

i, j∈A

(
Ai j −

kik j

2m

)
, (3.1)

where each term may either be positive or negative depending on the presence or
absence of a link between two nodes. Note that the null model penalises missing
links between pairs of higher degree nodes more than missing links between
nodes with small degree. The Newman-Girvan modularity now equates the
quality of a partition P = {A1,A2, . . . ,AC} to the sum over the contributions
of type (3.1) of every community:

Q =
1

2m

∑
Aα ∈P

∑
i, j∈Aα

(
Ai j −

kik j

2m

)
, (3.2)

where the prefactor 1/(2m) ensures that modularity is smaller than 1 in absolute
value. Intuitively, the modularity measure thus assigns high scores to communi-
ties if they are densely connected internally, but only weakly connected to other
communities. This form of community structure is often called assortative
community structure, in contrast to disassortative and more general block
structures presented in Section 3.3.

Let us encode the partition of the graph into C communities with the N × C
indicator matrix H , where Hiα is equal to 1 if node i belongs to communityAα,
and zero otherwise. The modularity of a partition associated to H can then be
written in matrix notations as follows:

Q =
1

2m
Tr

[
HT

[
A −

kk>

2m

]
H

]
, (3.3)

where k is the vector of node degrees and Tr denotes the trace of a matrix.

Inherent to the construction of modularity is the assumption that a network
partition with a strong assortative community structure will lead to high values
of modularity, in the sense that an unexpectedly large number of edges will be
concentrated inside its communities. Modularity optimisation, i.e., finding the
partition of a network having the highest value of modularity, has thus been
proposed as one way to solve the community detection problem. As modularity
optimisation is NP-hard (Brandes et al., 2007), several heuristics have been
proposed for modularity optimisation. Some of the most popular techniques
include (i) spectral methods, where the communities are uncovered from the
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Figure 2 Louvain method for modularity optimisation. The Louvain
method consists of repeatedly applied passes over the network until no further
increase in modularity is observed. Each pass is split into two phases. The first
phase consists in a local optimisation, where each vertex can be moved to the
community of its direct neighbours. The second phase aggregates vertices and
constructs a meta-graph whose vertices are the communities found after the first
phase. Figure adapted from (Aynaud, Blondel, Guillaume, & Lambiotte, 2013).

eigenvectors of a matrix describing the graph (Newman, 2013; Von Luxburg,
2007), and (ii) greedy methods, proceeding by agglomerating groups of nodes
into larger ones to improve modularity (Fortunato, 2010).

In the following, we discuss the Louvain method (Blondel, Guillaume,
Lambiotte, & Lefebvre, 2008), a greedy method that has become a standard
choice for modularity optimsation due to its good balance between simplicity,
accuracy and speed. The algorithm starts with a weighted graph where the n
vertices are randomly assigned an index between 0 and n − 1. It consists of
two phases that are repeated iteratively until a local maximum of modularity is
reached, as illustrated in Figure 2.

1. The first phase works as follows. An initial partition is constructed by placing
each vertex into a separate community, e.g., each community is composed
of one single node. We then consider the first vertex, with index 0, and
calculate the change of modularity by removing it from its community and
placing it into the community of one of its neighbours. This potential change
is calculated for each of the neighbours of 0. The vertex 0 is then moved to
the community with maximal positive increase. If there is no community
with a positive increase, the node is placed back into its original community.
This process is applied sequentially to all the vertices. After applying it
to node n − 1, one returns to node 0 and iterates until no vertex is moved



26 Cambridge Elements

during a complete iteration of n steps. The first phase is then finished and its
outcome is a partition of the network into C communities.

2. The second phase builds an aggregated weighted graph. The nodes in this
new aggregated graph correspond to the C communities discovered during
the first phase, and the weight of the links between two such nodes is given
by the sum of the link-weights between the nodes in the original network in
these two communities. The links that existed between the vertices of the
same community create loops in the new aggregated graph.

Note how the first phase finds a local optimum of modularity, where the search is
done locally by moving nodes to the communities of their direct neighbours. The
second phase then changes the scale over which the optimisation is performed,
by allowing to move groups of nodes to improve modularity, instead of single
nodes. This two-phases approach searches for structures in a multi-scale way,
reminiscent of the self-similarity often observed in complex systems (Serrano,
Krioukov, & Boguná, 2008; Simon, 1962). Both phases are repeated until no
further increase in modularity is found. The Louvain algorithm is especially
efficient because the change in modularity when moving a node to a community
of one of its neighbours can be computed fast, based only on local information
around the node that is to be moved.

Despite their popularity, modularity maximisation methods are not exempt
of limitations. Modularity suffers from a so-called resolution limit which makes
it impossible to detect communities of nodes that are smaller than a certain
scale (Fortunato & Barthelemy, 2007). In other words, even if this is not
apparent from the definition of modularity at first sight, modularity tends to
favour partitions where the communities have a characteristic size depending
on the total size of the system. The resolution limit arises from the dependency
of the null model kik j/2m on the total weight 2m (number) of the edges. This
dependency makes the negative term in modularity smaller when the total
weight (number) of edges is larger, and thus favours communities made of more
nodes if 2m increases. Another limitation of modularity is that its landscape
over the space of partitions is usually extremely rugged (Good, De Montjoye,
& Clauset, 2010), with multiple local maxima close to the global optimum,
which may limit the interpretability of the approximate solutions found by
modularity optimisation. Finally, the Louvain algorithm may in certain cases
lead to intermediate disconnected communities, which cannot be optimal for
Modularity. This latter problem can however be remedied by adjusting the
Louvain algorithm accordingly (Traag, Waltman, & Van Eck, 2019).
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3.2 Communities defined via sparse cuts: graphpartitioning and spectral methods
Thinking about communities in terms of sets of densely connected nodes, as

done when considering modularity, is one important perspective on community
detection. However, many graph partitioning methods employ a different
perspective (Schaub et al., 2017). Instead of searching for groups with a large
number of edges inside, they aim instead to find a minimal set of cuts in the
graph, such that the resulting node groups have a balanced size according to
some criterion (Von Luxburg, 2007). This type of formulation was probably
first considered in circuit layout, where one is confronted with a graph which
describes the signal flows between different components of a circuit (Alpert &
Kahng, 1995). However, since then, this type of graph partitioning has been
employed in many other contexts as well (Von Luxburg, 2007).

Let us consider the simplest instance of the problem of finding the best
bipartition of a network such that the number of edges between two groups Aα

and Aβ is minimised, following Newman (2013). The cut size R of a partition
counts the number of edges existing between the two groups of vertices and can
be written as

R =
1
2

∑
i, j in
different
groups

Ai j, (3.4)

where we divide by 2 as each edge is counted twice when summing over the
node indices. This quantity can be rewritten more conveniently by defining the
indices:

si =
 1 if node i is in group Aα,

−1 if node i is in group Aβ .
(3.5)

Using the fact that

1
2
(1 − sisj) =

 1 if nodes i and j are in different groups,

0 if nodes i and j are in the same group,
(3.6)

and some algebra, we rewrite the cut size R in terms of the Laplacian matrix L

as

R = 1
4

∑
i j

siLi j sj, (3.7)

or equivalently in matrix form:

R = 1
4 sT Ls. (3.8)
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Hence, finding the minimal cut is equivalent to choosing the vector s that
minimises Equation (3.8). This expression already appeared, as Equation (2.17),
when we showed that the Laplacian is positive semi-definite and the vector
1 is an eigenvector of the Laplacian with eigenvalue 0. Therefore, from the
properties of the Laplacian matrix, we know that the vector of ones 1 provides
the minimal, but trivial solution R = 0, corresponding to a partition with all the
nodes in a single group.

Non-trivial solutions for the cut minimisation therefore only emerge when
we impose additional constraints to the minimisation of Equation (3.8), e.g., in
terms of the size of the two clusters, or by demanding that the indicator vector s
is orthogonal to the vectors of ones: s ⊥ 1. However, minimising Equation (3.8)
under the integer value constraints on si (and the additional constraints just
discussed), is a difficult combinatorial optimisation problem in general.

If we neglect the integer constraints on si temporarily, but keep the constraint
s ⊥ 1, then it is straightforward to show (by decomposing s in the basis of
eigenvectors of the Laplacian) that the vector with the smallest contribution to
the cut size is the second eigenvector v2 of the Laplacian, which is associated
to the smallest non-zero eigenvalue of the Laplacian. This eigenvalue is often
called the spectral gap. Unfortunately, setting s proportional to v2 is generally
not an eligible solution, as the index vector s is supposed to contain only ±1
entries. Nonetheless, such a spectral relaxation, in which we ignore the integer
constraints on si , gives rise to many popular heuristics to minimise the cut size R
subject to the constraint s ⊥ 1. One particular heuristic, dating back to Fiedler
(1973), is to choose an indicator vector s that is close to the second eigenvector
v2. For this reason the vector v2 is often called the Fiedler eigenvector of the
Laplacian. Since then, this line of reasoning has been applied to a broad class of
optimisation problems, forming a popular class of heuristics often referred to as
spectral methods. For instance, spectral methods have been proposed to optimise
the so-called normalised cut (Shi & Malik, 1997) and the Newman-Girvan
modularity (Newman, 2013), where eigenvectors of the normalised Laplacian
and the so-called modularity matrix appear in place of the eigenvectors of the
combinatorial Laplacian.

3.3 Communities defined by node equivalences:disassortative communities and block structures
As discussed in Section 3.1, community detection often looks for groups

of nodes that are densely connected with each other. Finding groups of nodes
such that the number of edges between nodes in different groups is as small as
possible, for instance by minimising the cut, is a second, related but different



Networks 29

perspective (Section 3.2). These two previous formalisations of community
structure typically look for communities with more internal edges compared to
some reference number, less edges between communities, or a combination of
these two criteria. Although minimising a (normalised) cut size and maximising
the internal number of links are closely related, there are important differences
pertaining to the typical constraints and search space associated with these
objective functions. For instance, to prevent finding trivial solutions that simply
cut a single edge to disconnect the graph, we need to normalise the cut size in
some way or specify the number of groups that we want to find. This information
about the number of groups is typically not provided (or only implicitly, in terms
of the null model), when using assortative community detection methods based
on modularity maximisation and related principles.

However, there are also partitions that are not compatible with either of
the two above mentioned views that reveal commonalities in connectivity
patterns between nodes. For instance, consider bipartite networks, i.e., networks
composed of two groups of nodes such that all the edges are between these
groups. The partition into these two groups is clearly not compatible with
the concept of a community under any of the two perspective we discussed
so far: it would have a very low score for the modularity quality function for
instance, and the cut between the two node groups would be maximal, rather than
minimal. Yet this partition identifies two different types of nodes in the network,
whose existence may, e.g., also be important for the dynamical behaviour of
the network. Finding groups forming such disassortative communities, as they
are called, is straightforward in the case of bipartite networks: for instance by
starting from a seed node and searching all the nodes at an even distance from
that node. However, the problem becomes much more challenging when the
network is not exactly bipartite but almost bipartite8 or when other types of
relationships between groups are present.

Detecting such disassortative communities is related to the notions of node
equivalence, role extraction and block modelling (Wasserman, Faust, et al.,
1994). At the heart of these concepts, there is the assumption that different
types of nodes exist and that these node types, or node roles, can be identified
by their connectivity patterns. Associating one meta-node for each group
of similar nodes leads to a simplified representation of the network, called
the reduced graph or the image graph. The same information can also be
visualised by reordering the nodes based on their group membership, leading
to an adjacency matrix with a block structure (see Figure 3). Assortative
communities correspond to a particular class of role assignments, where for

8Similarly, community detection is trivial when a graph is disconnected and becomes challenging
and interesting when the graph is almost disconnected.
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each role, nodes mainly interact with nodes in the same role, thus leading to
a block diagonal structure for the adjacency matrix after an appropriate node
permutation. However, many other kinds of role interactions may be defined
such as core-periphery (Rombach, Porter, Fowler, & Mucha, 2014) or block
cycle models for food webs (Van Lierde, Chow, & Delvenne, 2019).

Role extraction typically relies on the definition of an equivalence between
nodes. The first measure of node equivalence, proposed in Lorrain and White
(1971), has been structural equivalence, which posits that two nodes are
equivalent if they have exactly the same neighbours. Note that in the case of
bipartite networks, this implies that in the adjacencymatrix the lines and columns
of two equivalent nodes are equal. Unfortunately, this measure of equivalence
is very restrictive and leads to the extraction of many small roles in real-world
networks. This observation led to the development of alternative measures
built on the same principle. For instance, two nodes are considered regularly
equivalent (Everett & Borgatti, 1994) if they are connected to the nodes in the
same equivalence classes, independently on the number of such connections.
Regular equivalence is clearly a relaxation of structural equivalence, as structural
equivalence implies regular equivalence but the opposite is not true (Brandes,
2005, Chapter 9).

Nonetheless, most of these (exact) node equivalence formulations proved to
be too restrictive for dealing with real-world data. A probabilistic relaxation
of structural equivalence was therefore constructed by Holland, Laskey, and
Leinhardt (1983) via the so-called stochastic block model (SBM). Given n
nodes divided into C groups, a standard SBM (Abbe, 2017) is defined by a
C × C affinity matrix Ω and a partition P = {A1,A2, . . . ,AC} of the nodes
into communities. The SBM then posits that a link between two nodes i, j
belonging to classAα andAβ is described by a Bernoulli random variable with
probability:

pi j := P(Ai j) = Ωαβ . (3.9)

The SBM thus assumes that there exists a latent probabilistic process that
generated the network that is only dependent on the group labels.

Note that the affinity matrix encodes the block structure of the graph (see
Figure 3), and may be seen as a weighted network of groups. Under the SBM,
nodes within the same equivalence class thus have exactly the same probabilities
to connect to nodes of another class. Accordingly, nodes within one group
are said to be stochastically equivalent. This is precisely the same condition
as structural equivalence, but rather than formulating the node equivalence in
term of the adjacency matrix of the graph, stochastic equivalence is concerned
with the expected adjacency matrix induced by the (latent) node connection
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probabilities (see also Figure 7 and the associated discussion in Section 5.3).

assortative core-peripherydisassortative hierarchical mixed

Figure 3 Affinity matrices for different block structures. Different types of
block structures can be observed in networks, including assortative
communities, where most of the connections are concentrated inside

communities, the opposite notion of disassortative communities, core-periphery
structure, where connections are mostly present inside a core and between this
core and the network periphery, and hierarchical or other mixed structures.

An SBM can be seen as a generalisation of the classical Erdős-Rényi model,
in which case the nodes would all belong to a single group connected with
probability q. Instead, the SBM allows links for each combination of the group
labels to have a different link probability. Finding the latent groups of nodes in a
real-world network now amounts to inferring the model parameters (the matrix
Ω and the partition P) of the SBM that provide the best fit for the observed
network, e.g., provide the SBM with the highest likelihood. Because inferring
the most likely SBM typically results in grouping nodes based on their degree
in empirical networks with broad degree distributions, it is advantageous to
include a degree correction into the model. This leads to the degree corrected
SBM (DCSBM) (Dasgupta, Hopcroft, & McSherry, 2004; Karrer & Newman,
2011), in which the probability for a link to appear between two nodes i, j is
assumed to be of the form:

pi j ∼ kik jΩαβ, (3.10)

where α and β are the labels of the communities node i and j belong to. Observe
that in addition to the dependence on the class labels α, β, the probability pi j is
now influenced by the degrees ki, k j of the respective nodes, similar to the soft
configuration model.

In contrast with the community detection methods that we have seen so far,
maximising the likelihood of an SBM does not necessarily aim to maximise
some internal density, or alternatively, to minimise a cut. Instead we assume that
the data has been generated according to a given model, and look for the model
parameters that would most likely have generated the network data that we
observe. This network may contain assortative or disassortative communities,
or a mixture of the two. For instance, for a bipartite network, fitting a (degree
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corrected) stochastic block model with two groups should find the bipartite split.
It can also happen that competing maxima of the likelihood are associated to
different types of block structures (Peel, Larremore, & Clauset, 2017).

We remark that the number of groups has to be specified to fit a (DC)SBM to
any observed network data. To make this approach operational for community
detection when the number of groups is not known a priori, one thus has to
employ some kind of model selection mechanism to choose an appropriate
number of groups. One powerful approach for model selection is to employ
a Bayesian procedure and select the number of groups based on a minimum
description length principle (Peixoto, 2019).

ENSEMBLE OF GRAPHS VERSUS SINGLE REALISATION
A conceptual difference between the SBM perspective and the perspective
employed, e.g., when minimising a cut, is that the former aims to provide a
generative model for the network, whereas the latter considers the observed
network essentially as a fixed entity. In order to illustrate the different
answers provided by each type of method, let us consider a real-world
graph generated by a possibly complex random assignment of edges. From
a cut minimisation perspective, given that network, we would like to find
groups of weakly-connected nodes. For instance, we may want to help
to stop the spread of a rumour and thus partition the network into weakly
connected modules of nodes. Whether or not the modular structure that is
observed resulted from random fluctuation in the creation of the graph,
these modules will be relevant for our task. In other words, we consider
the single observed network independently of the mechanisms that may
have generated it.

The problem would appear completely different from an SBM perspec-
tive. Let us assume for simplicity of our argument that the observed graph
has likely been generated according to a realisation of an Erdős-Rényi
grapha. In this case, a model selection approach paired with an SBM is
expected to find that that the ER model with no communities is sufficient
to explain the data, as the variations in the data can already be explained
by random fluctuations rather than by hidden group labels.

This example illustrates that different motivations for community
detection may find different useful answers even for the very same network.
Rather than looking at community detection as a generic tool that is
supposed to work in a generic context, considering the application and
the modelling questions in mind is thus critical when choosing between
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or comparing different methods, especially if they are based on different
principles. This statement should be kept in mind for Chapter 6, where
we will develop flow-based, also called dynamical, community detection
methods, instead of the structural, combinatorial methods presented so far.

aNote that ER networks in a sparse regime are in fact often disconnected.

Before closing, let us note that there are certain connections between the
Newman-Girvan modularity of Section 3.1 and the notion of block modelling.
First, it can be shown that when modularity is equipped with a “resolution
parameter" its optimisation leads to the same partition as that of the so-called
planted partition model with an appropriate, fixed number of communities
(Newman, 2016). The planted partition model is a simplification of stochastic
block models where the affinity matrix Ω can only take two values, pin and
pout , defining the probability for an edge inside or across communities. In
addition, starting from the formulation (3.3) of modularity as the trace of the
C × C matrix

Q =
1

2m

[
HT

[
A −

kk>

2m

]
H

]
, (3.11)

one can search for other types of block structures by characterising the goodness
of a partition with a subset of the elements of Q, not necessarily on its diagonal.
This can be done, for instance, by specifying a block structure with a binary
affinity matrix Ωαβ = 1 for connected groups, and zero otherwise (Reichardt &
White, 2007), and optimising

C∑
α,β=1

QαβΩαβ . (3.12)

That method allows to find the best partition with a given number of groups
and a given block structure. Within this framework, finding disassortative
communities can be done by maximising the off-diagonal elements of (3.11),
which is equivalent to minimising the standard Newman-Girvan modularity.

3.4 Further discussion and references
Community detection has been an active field of research for the last 15

years, with contributions and applications from and to different disciplines. In
this chapter, we have only scratched the surface of the question, focusing on
methods that will serve as a basis for the discussions that will follow, especially
in Chapters 6 and 7. For a more thorough and complete overview of community
detection, we refer the reader to the review papers (Fortunato, 2010; Fortunato &
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Hric, 2016; M. Porter, Onnela, & Mucha, 2009; Schaeffer, 2007; Schaub et al.,
2017). Another insightful resource is the recently edited book (Doreian et al.,
2020), whose collection of chapters provides introductory and more advanced
topics on clustering and block modelling in networks. Specialised aspects of
community detection are also discussed in more focused references, for instance
(Malliaros & Vazirgiannis, 2013) for directed networks and (Rossetti & Cazabet,
2018) for temporal networks.
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4 Time scale separation and dynamics on modular
networks

In this and the next chapter, we discuss time scale separation and symmetries,
two concepts often used to simplify the description of a dynamical system. In
particular, we explain how these concepts are linked with modular network
structure in case of a linear dynamics. Our exposition builds on Schaub et al.
(2019), but provides a substantial amount of additional detail.

Time scale separation is the phenomenon when certain state variables of a
dynamical system evolve much faster than other state variables. Accordingly, we
may group the state variables into fast variables and slow variables and attempt
a simplified analysis. If we are interested in the system behaviour over short
time horizons, we may treat the slow state variables as approximately constant
and analyse solely the fast variables; if we are interested in the system behaviour
over long time horizons, we may treat the fast variables as if they are negligible,
e.g., we may consider that they have equilibrated and are not evolving any more.
In general, this analysis of the system behaviour is only approximate. However,
the error made can be bounded under certain assumptions. If this is the case,
we obtain a simplified system description that may be significantly less complex
than the original system. Generally, there may be multiple time scales present in
the system, rather than just two, and we may be able to divide our state variables
into multiple groups, leading to a simplified multi-scale description.

How can the separation of time scales be related to networks with modular
structure? In the following, we will consider general linear dynamics on modular
networks and will see that time scale separation is in this case closely related to
a separation of eigenvalues in the spectrum of the system matrix (the graph)
governing the state evolution of the system.

4.1 Time scale separation for general dynamics
Let us exemplify the concept of time scale separation more formally with the

following example of a two-dimensional dynamical system:

dx
dt
= f (x, y), (4.1a)

ε−1 dy
dt
= g(x, y). (4.1b)

We assume for simplicity that f ,g are bounded functions of order O(1), and
ε � 1 is a small constant relative to those bounds. Observe that in the
above system the state variable x(t) changes much more rapidly than y(t),
since dy/dt = εg(x, y) is small by construction. Alternatively we may define
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the slow time variable τ := ε t, such that Equation 4.1b can be rewritten as
dy/dτ = g(x, y). This rewriting emphasizes the separation of time scales in
the dynamics: y evolves according to the slow time scale τ, whereas x evolves
according to the faster time scale t.

As alluded to at the beginning of this chapter, when a time scale separation is
present in a system, the dynamics of x and y are approximately decoupled in two
different regimes: for the fast behaviour, we may simply concentrate on x, and
assume y to be approximately constant; for the slow, long-term behaviour we
may focus on y and assume that x is in its asymptotic state for the given value of
y, thus forgetting about the detailed dynamics of x. When several distinct time
scales are present, we can similarly approximate the dynamics over particular
time scales by reduced dynamics that can be obtained by finding quasi-invariant
subspaces in the original system. These concepts emerge naturally in the study
of networked dynamics, as we discuss below.

4.2 Time scale separation for linear network dynamics
Let us now consider time scale separations in linear dynamical systems

defined on a network. To do so, we continue our analysis of the system Ûx = Fx

with x(0) = x0 of the previous sections. We assume that the system matrix F is
at least marginally stable, which implies that the dynamics remains bounded for
all times. To reveal the characteristic time scales of the process, it is useful to
start from the spectral expansion (2.12) of the solution

x(t) =
n∑
i=1

eλi t viu
>
i x0 =

n∑
i=1

(
u>i x0

)
eλi t vi, (4.2)

showing that the time scales of the process are dictated by the eigenvalues of
the matrix F. Each eigenmode (right eigenvector) decays with a characteristic
time scale τi = −1/λi . Hence, if there are large differences (gaps) between
eigenvalues, the system will have time scale separation. For instance, if the
k largest (dominant) eigenvalues {λ1, . . . , λk} are well separated from the
remaining eigenvalues such that λk � λk+1, the eigenmodes associated with
{λk+1, . . . , λn} become negligible for t > −1/λk+1 and it follows that the system
can be effectively described by the k dominant eigenmodes for t > −1/λk+1.
More technically, we say that the first k eigenvectors form a dominant invariant
subspace of the dynamics and there exists an associated lower dimensional
(k < n) approximate description of the dynamics on the network after the time
scale τ ≈ −1/λk+1.

To see this explicitly, we define the approximate system dynamics x̂k (t) =∑k
i=1

(
u>i x0

)
eλi t vi that considers only the first k dominant eigenmodes of the
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system and compute how the approximation error εk(t) = ‖x(t)− x̂k (t)‖ evolves
over time:

εk(t) = ‖x(t) − x̂k (t)‖ =

 n∑
i=k+1

(
u>i x0

)
eλi t vi

 (4.3a)

≤

n∑
i=k+1

eλi t
(u>i x0

)
vi

 ≤ eλk+1t
n∑

i=k+1

(u>i x0
)
vi

 (4.3b)

≤ eλk+1tεk(0). (4.3c)

As the above computations shows, the initial error decays exponentially with a
rate of at least λk+1, e.g., after t ≈ −3/λk+1 the initial error of neglecting all but
the first k modes has been reduced by a factor of e−3 ≈ 0.05. In contrast, while
the amplitude of the remaining signal x̂k (t) will have decreased as well (due
to the system stability), this decrease will be at a rate of at most λk , which is
far slower due to the separation of time scales. Indeed, for a marginally stable
system, some of the first k modes might not have decayed at all and can thus not
be neglected. Similar arguments can be made when focusing only on the fast
time scale, or dealing with multiple separated time scales. This line of reasoning
is at the core of model order reduction methods for dynamical systems.

As we have seen, the spectral properties of the coupling matrix F of the
network dynamics are responsible for the time scale separation. To connect
this finding with modular structure, we need to understand how this structure
can influence the spectral properties of the linear operator F. As we will see,
for a large class of stable dynamics, including diffusion processes as well as
consensus and opinion formation models, a time scale separation can be induced
by localised substructures in the graph.

4.3 Assortative modular network structure and timescale separation
In this section, we will discuss how assortative modular structure can give

rise to a separation of time scales in a network. We will first discuss a setup in
which the network is arbitrary but fixed, and we can model the network as a
perturbation of a perfectly assortative modular network with C disconnected
components. Thereafter, we will discuss how this picture can be translated into
a stochastic setup, in which there is a random generative process from which
the network is drawn.
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4.3.1 Matrix perturbation theory for assortative modular networks

For simplicity, let us start with the concrete example of a consensus dynamics
Ûx = −Lx with initial condition x(0) = x0, which takes place on a network
composed of C modules with an adjacency matrix of the form

A =

©«
A1

A2
. . .

AC

ª®®®®®¬
+ Anoise =: Astructure + Anoise. (4.4)

Each block Ai in the block-diagonal matrix Astructure is supposed to correspond
to a densely connected graph, and Anoise is a weak perturbation of this strong
assortative modular structure. Let us denote the dimension of each block by ni ,
such that

∑
i ni = n.

To see how a structure like the one above can give rise to a separation of time
scales in the consensus dynamics, we have to assess what the spectrum of the
corresponding Laplacian L = Lstructure + Lnoise looks like. To this end, we treat
Lnoise as a perturbation of Lstructure and employ Weyl’s perturbation theorem to
obtain bounds for the eigenvalues of L. Hence, we first consider the case where
Lnoise = 0, i.e., the graph consists of C disconnected components. It follows
from the properties of Laplacian matrices that in this case L has an eigenvalue
λ = 0 with multiplicity C. In fact, for Lnoise = 0 the consensus dynamics
completely decouples and the eigenspace associated to the zero eigenvalues can
be spanned by C indicator vectors h(1), . . . ,h(C) of the connected components of
the network, corresponding to the C diagonal blocks in the adjacency matrix A:

[h(i)]j =
1 if 1 +

∑
`<i n` ≤ j ≤

∑
`≤i n`

0 otherwise.
(4.5)

In this extreme case of an assortative community structure, we thus have at least
one clear separation of time scales: the zero eigenvalues correspond to modes
with no time-evolution at all, whereas all other eigenmodes will be associated
with an exponentially decaying signal with rate λi(L) > 0 for i > C.

Let us now consider the case where Anoise , 0 but may be considered as a
small perturbation of Astructure. In this case we can use the so-called Weyl’s
perturbation theorem (Bhatia, 2013, Chapter III.2) to gain insight about the
spectrum of L:

Theorem 1 (Weyl’s perturbation theorem) Let M , P be n × n Hermitian
matrices9. Let λ↓(M) denote the vector of decreasingly ordered eigenvalues of

9When a matrix has only real entries, as considered throughout this book, it is Hermitian if and
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B CA

Figure 4 Consensus dynamics on a structured network. A Visualisation of
a network with 3 groups and an adjacency matrix of the form (4.4). BWhen
observing a consensus dynamics on this network there is a clear time scale

separation: after t ≈ 1/λ4 = 0.2, approximate consensus is reached within each
group (indicated by color). Eventually global consensus is reached across the

network.

M , such that λ↓1(M) ≥ . . . ≥ λ
↓
n(M), and define λ↓(P) analogously. Then for

each j = 1, . . . ,n

|λ
↓

j (P) − λ
↓
n(M)| ≤ max

`
|λ
↓

`
(P) − λ↓n(M)| ≤ ‖P − M ‖, (4.6)

Described in words, Weyl’s inequalities states that the ordered eigenvalues of
the perturbed matrix P are close to the eigenvalues of the unperturbed matrix
M , i.e., their absolute difference is at most given by the spectral norm ‖P −M ‖,
where the spectral norm of a matrix is defined as its largest singular value.

We can apply Weyl’s perturbation theorem to our specific example by setting
P = L and M = Lstructure, which means that the bound ‖P − M ‖ = ‖Lnoise‖ is
precisely the spectral norm of the perturbation. Hence, if there was a significant
eigenvalue gap in Lstructure and the perturbation Lnoise is sufficiently small in
spectral norm, there will still be an eigenvalue gap in L. This means that the
consensus dynamics on our modular network will also display a separation of
time scales. An illustration of this is given in Figure 4.

Note that Weyl’s perturbation theorem is not specific to the consensus
dynamics discussed above, but can be applied to any Hermitian matrix (or
symmetric matrix, for real valued matrices). In particular, let us consider again
a dynamics on an undirected network governed by a linear operator of the
form F = DAGD

−1, as discussed above. Observe that F can be related via
a similarity transform to the symmetric matrix Fsym = D−1/2AGD

−1/2 and
both matrices thus have the same spectrum. Therefore we can, with little extra
work, employ Weyl’s theorem for any dynamics on an undirected network, if
we can express the matrix Fsym as a linear combination of a “structure” part
associated to slow eigenvalues and a “noise” part with a comparably small

only if it is symmetric.
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spectral norm. Importantly, if the network under consideration has indeed an
assortative modular structure, then we can typically express Fsym as a low rank
matrix describing the modules that get perturbed by a small (sparse) noise
component. This is similar to the composition of the consensus dynamics
considered above, and highlights how assortative modules can more generally
give rise to a time scale separation in a linear system dynamics.

4.3.2 Stochastic assortative modular structure and separation of time
scales

Thus far we have considered undirected networks whose adjacency matrix
was arbitrary but fixed, and associated the presence of a time scale separation to
the presence of a low-rank component with slow eigenmodes that is perturbed
by noise. Let us now consider the case in which the observed network has been
drawn from a random graph model with an assortative modular structure.

For instance, the adjacency matrix might have been generated from a planted
partition model, a simplified assortative variant of the more general stochastic
block model (SBM) mentioned before in Section 3.3. Recall that just like the
SBM, the planted partition model posits that each node is assigned a group label.
Then, nodes with the same group label are connected with probability pin and
nodes with different group label are connected with probability pout. We will
denote the indicator matrix of the partition associated to this model by H where,
as before, Hiα = 1 if node i belongs to community Aα and Hiα = 0 otherwise.

Consider now a linear dynamics evolving on an undirected graph with
adjacency matrix APP drawn from the planted partition. For simplicity, let us
focus on a normalised Laplacian dynamics evolving according to Ûx = −Lx,
though similar arguments can be applied for other system matrices F. To show
that a structured random graph model such as the planted partition model does
indeed induce a separation of time scales if there is well defined community
structure in terms of the model parameters, we will again leverage Weyl’s
eigenvalue perturbation theorem (Theorem 1).

To invoke Weyl’s perturbation theorem, we again have to find a suitable
decomposition of the normalised LaplacianL into a “structure” component and
a “noise” component perturbing this structure. Unlike in the deterministic setting
discussed above, now the graph is random and, accordingly, the normalised
Laplacian is a random matrix, so our decomposition will need to involve
some random matrices as well. In the case of the normalised Laplacian it
is useful to consider the Laplacian L(E[A]) of the expected adjcency matrix
under the planted partition model as the structure component, and the deviation
Lnoise = L(A)−L(E[A]) of the normalised Laplacian of the observed adjacency
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matrix from the normalised Laplacian of the expected adjacency matrix as our
noise component:

L = L(E[A]) +L(A) −L(E[A]) = Lstructure +Lnoise. (4.7)

Observe that L(E[A]) in the above decomposition is in fact as a low-rank
matrix, shifted by an identity matrix. Specifically, L(E[A]) can be written
as L = I − HΘH> for some matrix Θ ∈ RC×C that will depend on the
parameters of the planted partition model. For an assortative planted partition
model, L(E[A]) will thus have at most C small eigenvalues corresponding to
slow time scales, whereas the remaining eigenvalues will be equal to 1. To
invoke Weyl’s perturbation theorem, we thus need to guarantee that ‖Lnoise‖ =

‖L(A)−L(E[A])‖ is small in a suitable sense, i.e., that the normalised Laplacian
of the observed adjacency matrix is close to the normalised Laplacian of the
expected adjacency matrix. However, A is a random matrix and we thus cannot
guarantee that the norm ‖Lnoise‖ will be small in general. For instance, there
is a small but nonzero probability that our adjacency matrix will be almost
empty, in which case we will have a large perturbation ‖Lnoise‖ that can be
close to the largest eigenvalue λ↓1(L(E[A])) of the normalised Laplacian of the
expected adjacency matrix. Hence, the best we can hope for is to guarantee
that ‖Lnoise‖ will be small with a high probability. The typical bound one aims
to obtain in this scenario is thus to have the norm of the noise term ‖Lnoise‖

to be smaller than a certain number δ with a (high) probability 1 − ε(δ) that
may depend on the chosen bound δ. Such a result can indeed be proven using
so called concentration inequalities which bound the difference of a random
variable (matrix) from its expectation10 (Wainwright, 2019).

4.4 Non-assortative network structures and directednetworks.
4.4.1 Beyond assortative network structures

In the above discussion, we have focused on assortative community structure,
i.e., a notion of community that posits that a community should have a large
number of connections to nodes within its own group and only relatively few
links to nodes outside. However, a separation of time scales may also be induced
by network structures that are not block-homogeneous in this sense.

For instance, for many networks embedded in space, such as power-grids,
road-networks, or other supply and infrastructure networks, there can be well

10Note that a probabilistic bound on ‖Lnoise ‖ is not a concentration inequality itself, since the
expected value of the normalised Laplacian E[L(A)] is not equal to L(E[A]).
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defined network modules that are only weakly coupled to the rest of the network.
Such modules may be detected when focusing on a cut-based notion of modular
structure, i.e.. the number of links between communities should be minimal.
Yet, in contrast to typical assortative community structure, these modules may
internally not be very densely connected, e.g., because of the geometry of the
space in which the network is embedded or some other constraints (such as
connection costs). As a concrete example, think of a street network inside a city
that is divided by a river which imposes a natural barrier to the connectivity of
the network and divides the city into two parts. In many circumstances, it will
be meaningful to think of such a network as split into two modules. Clearly,
such a split can influence a dynamical process on a network, too.

Indeed, presuming we have a diffusion dynamics governed by a normalised
Laplacian L, the presence of a sparse cut in the connectivity can be related to
the spectral properties of the Laplacian via the Cheeger inequality and hence
can lead to a separation of time scales. To state the Cheeger inequality properly,
we define for every set of nodes S ⊂ V the conductance φS as:

φS =

{ ∑
i∈S, j<S Ai j

min{vol(S),vol(V − S)}

}
, (4.8)

where vol(S) :=
∑

i∈S ki is the total connectivity of the set, called the volume of
S. The conductance of a graph is then defined as the minimal conductance for
all possible node-sets: φG = minS φS . Note that the graph conductance is small
if there exists two sets of nodes that are of similar size and have few connections
between them. We can now state the Cheeger inequality, which relates the graph
conductance to the second smallest eigenvalue of the normalised Laplacian as
follows11

φ2
G

2
< λ2 ≤ 2φG . (4.9)

The Cheeger inequality shows that a small value of the graph conductance is
associated to a small spectral gap λ2, and hence a comparably slow relaxation of
the diffusion dynamics to its stationary state. This means that if the network can
be divided into two well-separated node sets with a small cut between them, this
bottleneck will slow down diffusion and can thus lead to a separation of time
scales. Note that this result holds irrespective of whether the nodes in these two
sets are homogeneously connected with each other in a dense, assortative way,
corresponding precisely to the situation outlined above. Indeed, many networks
contain such natural substructures which are not assortative yet act effectively as
a dynamical module over a particular time scale (Schaub, Billeh, Anastassiou,

11Note that there are several variations of the Cheeger inequality, e.g., for different matrices
describing the graph.
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Koch, & Barahona, 2015; Schaub, Delvenne, Yaliraki, & Barahona, 2012).

4.4.2 Time scale separations on directed networks

While we focused on a linear dynamics on undirected networks above,
a separation of time scales is of course also possible for a linear dynamics
on a directed network. As alluded in Section 2.3.3, analysing such directed
networks is however mathematically far more complicated. While the time
scales of a linear system on a general directed network will still be governed
by the eigenvalues of the matrix, these eigenvalues will generally not be real
anymore but complex. This implies, for instance, that the system can now
display oscillatory dynamics which were not possible for the dynamics on the
undirected graphs considered before. More importantly, from a theoretical point
of view, the foundations of this chapter based on Weyl’s perturbation theorem
(Theorem 1) are not applicable any more.

Nonetheless, there are a number of studies that discuss the impact of network
structure on the time scales present in a linear dynamical system taking place
on a directed graph. In particular, for linear diffusion dynamics, it can be shown
that networks with a block-cyclic structure (Van Lierde et al., 2019) exhibit a
separation of time scales associated to slow-oscillations between groups of nodes
in a network. Such groups of nodes may accordingly be seen as communities
within the network, which are here to be understood in a dynamical, rather than
a structural fashion. Similar ideas have also been put forward in Banisch and
Conrad (2015) and Conrad, Weber, and Schütte (2016), where communities
are defined as those directed graph structures that retain probability flow over
long time scales, and thus are associated to a separation of time scales in
the network. The Markov stability framework, which we discuss in detail in
Chapter 6, provides another example for exploiting this kind of time scale
separation phenomena to define community structure in networks.

4.5 Further discussion and references
The topics covered in this section range from fairly classic to relatively

new results and methods. The concept of time scale separation is a well
established technique for the analysis of dynamical systems and more extensive
discussions can be found in most standard texts on dynamical systems. Of
particular relevance to our context is the classic result by Simon and Ando
(1961) on the aggregation of the states in Markov chains, which can be directly
related to diffusion processes and random walks on graphs. Matrix perturbation
theory is covered in a range of standard texts on (Numerical) Linear Algebra,
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including Golub and Van Loan (2013), G. W. Stewart (2001) and Bhatia (2013).
Many results on the perturbation of eigenvalues can be traced back to Weyl. Our
presentation of Weyl’s eigenvalue perturbation theorem, in Theorem 1, is based
on Bhatia (2013), which contains a far more extensive discussion on this and
related results. The use of concentration inequalities to study (perturbations
of) random matrices is a far more recent topic. Specifically in the context of
analysing various high-dimensional problems in Machine Learning and Data
Science, including inferring the partitions within stochastic block models (see,
e.g., Lei, Rinaldo, et al. (2015); Rohe, Chatterjee, Yu, et al. (2011)), these tools
have gained prominence in the literature recently. For an introduction to these
techniques see, e.g., Wainwright (2019).

In this chapter, we always considered situations with non-overlapping com-
munities, as the nodes naturally belonged to one community, and edges were the
objects bridging between them. Interesting venues of future research include a
study of how linear dynamics is affected by overlapping communities, where
so-called broker node (Burt, 2004), belong to more than one community. This
question would be even more challenging in the situation of pervasively over-
lapping communities, where each node may belong to several communities, as
in social networks where people usually belong to more than one social circle
(Ahn et al., 2010).
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5 Symmetries and dynamics on modular networks
In the previous chapter, we introduced the concept of time scale separation as

a means to establish a simplified description of a dynamical system on a network.
In this chapter, we concentrate on how the presence of symmetries can provide
another pathway towards a simplified system description. Our presentation here
again shares similarities with Schaub et al. (2019). As a general theme, we will
see that whereas the question of time scale separation was mostly concerned
with the eigenvalues of the system matrix, symmetries are closely related to a
particular structure of the eigenvectors.

5.1 Equivalence classes and symmetries of nodes
To introduce the general idea of how symmetries can simplify the analysis of a

dynamical system on a network, let us once more consider the specific examples
of a consensus process Ûx = −Lx. Note that in order to write down this dynamical
system, we have associated to each node a particular label i ∈ {1, . . . ,n}, i.e.,
we have created a labeled graph whose algebraic representation is provided by
the Laplacian L (see Figure 5)

Let us now assume that there exists a relabelling of the nodes, defined a
the permutation function γ : {1, . . . ,n} → {1, . . . ,n}, which leaves L invariant.
In the simplest case where we merely switch the labels of two nodes i and j,
this invariance means that the connections of i and j to any other node are
the same, i.e., node i and j have the same structural connectivity patterns.
Instead of simply exchanging tow nodes i and j we may consider more general
permutations γ, to which we associate a permutation matrix Γ with entries
Γγ(i),i = 1 and zero otherwise. Exploiting the fact that permutation matrices
are orthogonal, that is ΓΓ> = I , we can express a general symmetry induced
invariance algebraically as

L = ΓLΓ> ⇔ LΓ = ΓL. (5.1)

Now assume that at any point in time t0, we observe that the state variables
associated with two interchanged nodes have identical values, such that xi(t0) =
xγ(i)(t0). For instance, this scenario may be of interest in the context of consensus
dynamics, opinion formation or synchronisation processes on networks (Bullo,
2019; Proskurnikov & Tempo, 2017). From our argument above, we can
conclude that the state variables will evolve identically for all times thereafter,
i.e., we have xi(t) = xγ(i)(t) for t > t0. This can be proven by noting that at
time t0 we will have x = Γx, and thereafter the evolution is governed by the
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Figure 5 Graphs with symmetry. Left: an unlabelled star graph that is highly
symmetric. Right: Assigning labels to the nodes as indicated leads to exactly

the same adjacency matrix A1 = A2 = A3

differential equation

Ûx = −Lx = −LΓx = −ΓLx = Γ Ûx. (5.2)

Hence, if we can identify a permutation of the node labels that leaves
the system matrix L invariant, we can consider the nodes whose labels were
interchanged as an equivalence class of nodes that follow the same equations
of motion once their state variables agree at a given time. This corresponds
to the idea of node roles, as discussed in Section 3.3, and more specifically to
so-called automorphic equivalence (Brandes, 2005, Chapter 9). However, here
we are concerned with the dynamical consequences of such an equivalence.
Specifically, for every set of nodes that can be interchanged via a symmetry, we
have just one equation of motion instead of many independent equations, if the
node states are equal at some point in time. Thus we can reduce the number of
equations and lump together all the nodes that are equivalent to each other. The
reduction in complexity of the system description can be quite significant.

We remark that, in contrast to the approximate system description that
we obtained when considering time scale separation, the reduced description
based on node equivalence classes is exact at all times provided the nodes with
interchanged labels have identical state variables initially. This can also be
seen by examining the consequences of Equation (5.1) for the eigenvectors of
L. Specifically, let v be an eigenvector of L with a simple eigenvalue λ, i.e.,
an eigenvalue with algebraic multiplicity 1. Then Γv will be an eigenvector of
L with the same eigenvalue, since LΓv = ΓLΓ>Γv = ΓLv = λΓv. However,
as the eigenvector of a simple eigenvalue is unique up to a scaling factor, this
implies that eigenvector entries corresponding to the nodes related by symmetry
must be the same.

Symmetries and node equivalence under linear dynamics
As we discussed in Section 3.3, a number of equivalence notions of nodes

have been proposed in the literature, especially within the social network analysis
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literature. In the context of social networks, such equivalences are also often
called node roles (Brandes, 2005, Chapter 9), as the position of a node in
a social network is typically thought to define its social status, an idea that
is also at the core of centrality measures (Wasserman et al., 1994). In light
of our discussion above, many of these equivalence notions can be seen as
considering specific classes of permutations of either the adjacency matrix
A or the combinatorial Laplacian L. For instance two nodes i, j are said to
be structurally equivalent if there exists a permutation γstruct. : V → V that
exchanges only the labels i, j, yet leaves the (labeled) adjacency matrix of the
graph invariant (A = Γstruct.AΓ>struct.).

However, the above discussion can be generalised beyond the adjacency
matrix and the Laplacian matrix to coupling matrices of any general linear
dynamics Ûx = Fx. If there is a permutation between the node labels that
leaves the system matrix F invariant, these permutations give rise to a set of
(dynamic) equivalence classes of the nodes, in which two nodes are considered
equivalent if they can be mapped onto each other by such a permutation. We
can equivalently think of these equivalence classes as inducing a partition of the
nodes into disjoint groups, where two nodes are in the same group if they are
in the same equivalence class. Importantly, these equivalence classes are not
defined solely by the underlying topology of the network, but by the properties
of the linear dynamical process defined on it, as encoded in the system matrix F.

5.2 Equitable and externally equitable partitions
Closely related to the symmetry-induced partitions discussed above are

so-called equitable partitions, or EPs for short (Godsil & Royle, 2013) and the
related concept of an externally equitable partition (EEPs). As we will see,
EEPs provide another viewpoint to derive an exact, simplified description of a
dynamical (diffusion) process taking place on a network (O’Clery, Yuan, Stan,
& Barahona, 2013; Schaub et al., 2016). Conceptually, instead of focusing on
symmetries of the operator F that drives the dynamical system, we will now
focus directly on invariance properties with which we can characterise groups
of nodes that are dynamically similar.

In order to define EEPs, we first recall the well known graph-theoretic notion
of an EP (Godsil & Royle, 2013). An equitable partition splits a graph into a
partition P = {A1, . . . ,AC} of non-overlapping groups of nodes, such that for
each node i in group Aα, the number of connections to nodes in a group Aβ is
only dependent on α, β. In other words, nodes inside each group of an equitable
partition have the same out-degree with respect to every group. For an EEP, this
condition is relaxed, such that all nodes within groupAα are merely required to
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have the same number of links to any other group Aβ with α , β. We display
an example of an EEP of a graph in Figure 6A.

Importantly, for every EEP we can derive an algebraic relation akin to Equa-
tion (5.1). Specifically, consider an EEP of a graph of n nodes into C groups
encoded via the n×C partition indicator matrix H . Then the following algebraic
relationship holds:

LH = HLπ, (5.3)

where Lπ is the C × C Laplacian of the so-called quotient graph induced by H :

Lπ = (H>H)−1H>LH = H+LH . (5.4)

Here the C × n matrix H+ is the (left) Moore-Penrose pseudoinverse of H .
We remark that although the Laplacian L of the original (undirected) graph
is symmetric, the Laplacian Lπ of the quotient graph will generally be non-
symmetric. However, it can be shown that the eigenvalues of the quotient graph
correspond to a subset of the eigenvalues of the original graph Laplacian and
thus the eigenvalues of Lπ are also real (O’Clery et al., 2013; Schaub et al.,
2016).

Note that the quotient graph is merely a coarse-grained version of the original
graph: (i) each equivalence class (group) of nodes gets collapsed into one node;
(ii) the weights of the links between these new nodes correspond to the number
of links each equivalent node has to the other groups in the original graph
(Fig. 6A). To see this algebraically, observe that multiplying a vector x ∈ Rn by
H> from the left leads to a C dimensional vector that records the sums over all
components of x within each group. Further, H>H is a diagonal matrix with
the number of nodes per group on the diagonal. Hence, H+ = (H>H)−1H>

can be interpreted as a group averaging operator (O’Clery et al., 2013).

5.2.1 Dynamical implications of EEPs

The algebraic characterisation of an EEP (5.3) implies that the partition
indicator matrix H defines an invariant subspace with respect to the Laplacian
L. Specifically, if we multiply the Laplacian matrix with the indicator matrix H ,
we obtain a linearly rescaled (by Lπ) version of H . As all invariant subspaces
of L are expressible in terms of the eigenvectors of L, it follows that there
exists a set of eigenvectors of L, such that for each group of the partition, the
eigenvector takes the same value for each node. More precisely there exists a
set of C eigenvectors that can each be expressed as v = Hvπ for some vector
vπ ∈ RC . As it turns out these vectors vπ correspond to the eigenvectors of
Lπ . A further consequence of this fact is that the eigenvalues associated with
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Quotient graph
Full graph

Figure 6 The external equitable partition and its dynamical implications.
A Left: A graph with n = 12 nodes with an external equitable partition into

three groups (color coded). Right: The quotient graph associated to the EEP. B
Invariance of the EEP: The consensus dynamics on the full graph, determined

by Equation (2.16) (lines), from an initial condition x = Hy is shown in
comparison to the associated quotient dynamics (5.5) governing y (circles). If
the states within each group are equal, the dynamics will be described by the
dynamics of the quotient graph for all times. C Group-averaging dynamics of
the EEP: For consensus dynamics, the quotient graph dynamics (circles) also

describes the group-averaged dynamics (dash-dotted lines) of the
unsynchronised full graph dynamics (lines), as given by Equation (5.6).
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these eigenvectors (that span the invariant subspace associated to H) are shared
with Lπ . We refer to O’Clery et al. (2013); Schaub et al. (2016) for further
discussions on these aspects.

The algebraic properties of an EEP have implications for any Laplacian
dynamics L. For instance, for consensus dynamics, we obtain the following
implications (O’Clery et al., 2013). First, an EEP is consistent with partial
consensus such that the agreement within any present group is preserved.
Specifically, consider an initial state vector x = Hy for some arbitrary y, such
that every node within a groupAα has the same initial value yα. It then follows
from the properties of an EEP, that the nodes inside each group remain identical
for all times, and that dynamics of the group variables y can be exactly described
by the quotient graph:

x(t) = Hy(t) with Ûy = −Lπ y, (5.5)

which can be directly derived from Equation (5.3). The dynamical invariance
induced by the EEP thus provides a simpler model of the system in the same
vein as the symmetry reduction discussed before.

A second consequence of the presence of an EEP is that the dynamics of the
group-averaged states 〈x〉 is exactly described by the quotient graph:

d〈x〉
dt
= −Lπ 〈x〉 where 〈x〉 := H+x. (5.6)

This can be shown by noting that there exists a similar relationship to Equa-
tion (5.3) between the group averaging operator H+ and the Laplacians of the
original and quotient graphs:

H+L = LπH+. (5.7)

As a consequence the group-averaged dynamics is also governed by the lower
dimensional quotient Laplacian (Figure 6C). Thus, if we are only interested in
the averages over the groups of an EEP, we can reduce our model significantly.

Finally, a third implication of the EEP structure relates to the dynamical
system with inputs. It can be shown (O’Clery et al., 2013) that all the results
for the autonomous consensus dynamics with no inputs can be equivalently
rephrased for the system with inputs:

Ûx = −Lx + u(t), (5.8)

when the input u(t) = Hv(t), v(t) ∈ RC is consistent with the cells of an EEP.
In that case, the nodes inside each cell remain identical for all times, as in
Equation (5.5).

Remark: While we have focused here on the implications of an EEP for
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linear consensus dynamics, invariant partitions like the EEP play a similar
role for other linear and nonlinear dynamics (e.g., Kuramoto synchronisation).
See Schaub et al. (2016) for an extended discussion including synchronisation
dynamics, as well as dynamics on signed networks.

5.3 Stochastic symmetries and equivalences
In the previous sections, we have discussed symmetries and (externally)

equitable partitions of a graph, and their implications for linear dynamics.
Rather than applying these concepts to a specific graph, we may also employ
them in the context of random graphs, as we will discuss in this section.

As a concrete example, consider again the stochastic blockmodel as introduced
in Section 3.3. Neglecting the issue of self-loops, based on the definition of the
stochastic block model (cf. Equation (3.9)) it can be shown that the expected
adjacency matrix of the SBM can be written as

E[A] = HΩH>, (5.9)

where H is the partition indicator matrix as described previously and Ω is
the affinity matrix of the SBM. Equation (5.9) is simply a consequence of
the stochastic equivalence of the nodes: indeed, for any permutation Γ that
maps nodes within the blocks onto each other, we will have ΓE[A]Γ> = E[A].
Following our discussion at the end of Section 5.1, this implies that the expected
adjacency matrix has piecewise-constant eigenvectors, since all nodes within a
block are related by symmetry.

It turns out that this knowledge about the eigenvectors of the expected
adjacency matrix, can also help us to understand the eigenvectors of a network
sampled from an SBM. For this we will turn to the Davis-Kahan theorem, which
enables us to relate the eigenvectors of a matrix A to the eigenvectors of a
perturbed version Â of that matrix. We state this theorem here in the form given
in Yu, Wang, and Samworth (2015):

Theorem 2 (Davis-Kahan) Let M, M̂ ∈ Rn×n be symmetric, with eigenvalues
λ1 ≥ . . . , λn and λ̂1, . . . , λ̂n, respectively. Fix r, s such that 1 ≤ r ≤ s ≤ n
and assume that ∆λ := min(λr−1 − λr , λs − λs−1) > 0, where we set λ0 = ∞

and λn+1 = −∞. Let d = s − (r − 1) and let V = [vr , . . . , vs] ∈ Rn×d

and V̂ = [v̂r , . . . , v̂s] ∈ R
n×d be the matrices of (orthonormal) eigenvectors

corresponding to the eigenvalues λr , . . . , λs of M and the eigenvalues λ̂r , . . . , λ̂s
of M̂ , respectively. Then, there exists an orthogonal matrix O such that:

‖V̂ − VO‖F ≤

√
8d‖M − M̂ ‖2
∆λ

(5.10)
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Let us translate these results into our context here. We aim to apply the
Davis-Kahan theorem with the matrices M = E[A] and M̂ = A corresponding
to the expectation of the adjacency matrix under the SBM and one sample from
the model. The left hand side of Equation (5.10) would then corresponds to a
distance between the eigenvectors of E[A] and A, modulo a rotation/reflection12
of those eigenvectors via the matrix O. To obtain a bound on this distance
we need to ensure that the right hand side is small, which can be guaranteed
if two requirements are fulfilled. First, the SBM needs to have parameters
such that the nonzero eigenvalues of the expected adjacency matrix E[A] are
well-enough separated from zero, i.e., ∆λ will be large enough. Second, we
require that the difference ‖A − E[A]‖ between any sampled adjacency matrix
and its expectation, is comparably small with high probability. Specifically this
terms need to be much smaller compared to ∆λ (note that both terms may in
general depend on n). Using concentration of measure techniques, as mentioned
in Section 4.3.2, such a matrix concentration result for ‖A − E[A]‖ can indeed
be established for the SBM (Le, Levina, & Vershynin, 2017; Lei et al., 2015),
provided the expected degrees of the nodes are not too small.

Given these two conditions are fulfilled, we can then invoke the Davis-
Kahan theorem (G. W. Stewart, 2001; Yu et al., 2015) to conclude that the
eigenvectors of a sampled adjacency matrix A from the stochastic blockmodel
will remain close to the eigenvectors of the expected adjacency matrix with
high probability. Since the expected adjacency matrix has piecewise-constant
eigenvectors, the eigenvectors of the sampled adjacency matrix will thus be
approximately piecewise constant. In particular, this also demonstrates that
the dominant eigenvectors of the adjacency matrix can be used for spectral
clustering, which provides support for the use of spectral methods for community
detection or graph partitioning, as introduced in Section 3.2.

The connection between equitable partitions and SBMs provides a simple
example for the utility of considering symmetry properties (or node-equivalences,
respectively) of the expected adjacency matrix of (edge-independent) random
graph models. An alternative way to reach this conclusion is to observe that
the expected adjacency matrix under the SBM can be split according to an
equitable partition. However, the requirements of an SBM are in fact stronger
than imposing that there exists an EP for the expected adjacency matrix of the
model. We may thus introduce the concept of a stochastic equitable partition
sEP (Schaub & Peel, 2020), which says that the expected adjacency matrix
can be equitable partitioned (see Figure 7 for an illustration). Importantly, the

12Note that the term O is unavoidable here, in general, as only the eigenspaces are uniquely
defined but not the specific eigenvectors. Indeed even even a single normalized eigenvector is
unique only up to sign.
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number of expected adjacency matrices with an sEP with C groups is generally
larger than the of number of SBMs with the same number of groups.

Rather than considering only sEPs, we may further consider stochastic
EEPs, which we can define analogously to sEPs by requiring that the expected
adjacency matrix of a random graph model can be partitioned according to
an EEP. This construction has similar implications for the eigenvectors of the
graph Laplacian of a graph sampled from this model, as discussed for sEPs
in terms of the adjacency matrix. This line of thought opens many other
possibilities and generalisations of the concept of stochastic equivalences. For
instance, it enables us to provide an interesting characterisation of the concept
of hierarchical random graph. As discussed in Schaub and Peel (2020), we
may conceptualise a hierarchical modular structure as one that exhibits a sEEP
for each hierarchical partition. Moreover, since EEPs are also characterised
by piecewise constant eigenvectors, we can make similar arguments as in the
case of the SBM and can derive that the eigenvectors of a sampled adjacency
matrices will be approximately constant on each node-group under suitable
assumptions.

5.4 Differences and relationships between EEPs andtime scale separation
Let us discuss briefly the difference between the presence of an EEP and time

scale separation in a network. Both concepts can be related to strictly invariant
subspaces (EEPs) or almost invariant subspaces (time-scale separation) in the
dynamics. However, the link between structure and dynamics that each of them
represents is different. In fact the notions of EEP and time scale separation are
distinct but not mutually exclusive.

The presence of an EEP is related to symmetries in the graph, which translate
into the fact that a set of Laplacian eigenvectors have components that are
constant on each cell in the graph. These eigenvectors can be associated
to any eigenvalue of the graph, i.e., these eigenvectors can be fast or slow
eigenmodes. In broad terms, for an EEP the piecewise constant structure of
the eigenvectors with respect to the groups is important, but the eigenvalues
themselves are not relevant. This notion is therefore different from the time scale
separation discussed in Section 4.1, where the defining criterion focuses on the
eigenvalues—more precisely, on the existence of gaps between eigenvalues that
separate them into groups associated with different time scales.

In our particular example in Figure 4, the associated eigenvectors were
indeed approximately piecewise constant on each group (i.e., on each block of
nodes). Hence in this case both the approximate EEP structure and the time
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Figure 7 Overview of network partition equivalence relationships. The top
line describes partitions (represented by a partition indicator matrix H) into
groups of equivalent nodes in a given graph (represented by an adjacency
matrix A or a Laplacian L). The bottom line presents the corresponding

probabilistic relaxation in which the equivalence relation is considered in terms
of the expected adjacency matrix E[A] over the ensemble of networks generated
by a random graph model (Note that for simplicity we allow for graphs with
self-loops in the algebraic expressions of structural and stochastic equivalence).
Structural equivalence: Nodes are equivalent if they link to the same neighbors.

Here Θ is a {0,1} matrix. Stochastic equivalence: Nodes are structurally
equivalent in expectation. Equitable partition: Nodes are equivalent if they
have the same number of links to equivalent nodes. Stochastic equitable

partition: The partition is an EP in expectation. Externally equitable partition:
Nodes are equivalent if they have the same number of links to equivalent nodes,

outside their own group. Stochastic externally equitable partition: The
partition is an EEP in expectation. Figure adapted from (Schaub & Peel, 2020).

scale separation are well aligned. In fact, in the case of an approximate EEP
structure, we actually need some kind of eigenvalue separation to invoke the
Davis-Kahan theorem. However, time-scale separation and EEP structure may
not always be aligned, and we can have EEPs associated to fast eigenmodes as
well. Likewise, the eigenvectors corresponding to the slowest time scales in a
system with time-scale separation, do not have to be exactly piecewise constant
and correspond to an EEP in general (Schaub et al., 2015; Schaub, Delvenne, et
al., 2012).

5.5 Further discussion and references
The importance of symmetries for dynamics is a classical topic and has been

considered in the context of network dynamics, e.g., by Golubitsky and Stewart
(2006, 2015); I. Stewart, Golubitsky, and Pivato (2003). For more thorough
discussions on the relations between EPs, EEPs, automorphic equivalence
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and graph isomorphism, we refer to (Chan & Godsil, 1997; Grohe, Kersting,
Mladenov,&Selman, 2014;Grohe&Schweitzer, 2020). Important references on
how to use these concepts in the context of the analysis of networks and network
dynamics include (Cardoso, Delorme, & Rama, 2007; Egerstedt, Martini, Cao,
Camlibel, & Bicchi, 2012; Pecora, Sorrentino, Hagerstrom, Murphy, & Roy,
2014; Sanchez-Garcia, 2018).

We have emphasised here the conceptual differences between time scale
separation and presence of EEPs in a network. An interesting venue of research
would be to explore further the intersection between these concepts. For instance,
it would be of interest to develop metrics that can capture how close a given
partition is both to being a EEP and how dominant its associated eigenvectors are.
First steps in this direction include information theoretic approaches focusing
on Markov dynamics on networks (Faccin, Schaub, & Delvenne, 2018, 2020).

A different direction for future research would be to generalise the concept of
an EEP. As discussed, we can associate an EEPwith an invariance with respect to
the graph Laplacian (see Equation (5.3)). Using this algebraic characterisation
as a starting point, we may also define partitions that are invariant (and in
this sense “equitable”) with respect to other matrices. For instance, we may
define a signed external equitable partition with respect to the so-called signed
Laplacian (Schaub et al., 2016), but many other choices are possible as well and
would warrant further exploration.
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6 Dynamical methods for assortative communities
In the last two chapters, we have discussed howmodular network structure can

affect dynamics and, in particular, diffusion dynamics on networks. Specifically,
we have seen in Chapter 4 that strong assortative communities can induce a
time scale separation, or equivalently, a separation between the eigenvalues of
the system matrix governing the dynamics. In the following sections, we will
consider the reverse direction and ask how we can utilise a dynamical process
to detect communities within a network, focusing on assortative community
structure. The intuitive idea is that as assortative communities can induce a
time-scale separation, we can search for particular subparts in a network in
which a diffusion process will be trapped for (unexpectedly) long time. This
idea underpins a number of successful community detection methods, often
called dynamical or flow-based methods, including the WalkTrap algorithm of
Pons and Latapy (2005) or the so-called map-equation framework by Rosvall
and Bergstrom (2008). Here we will concentrate on the Markov stability
method (Delvenne, Schaub, Yaliraki, & Barahona, 2013; Delvenne, Yaliraki, &
Barahona, 2010; Lambiotte, Delvenne, & Barahona, 2014; Schaub, Delvenne,
et al., 2012), as it is conceptually closest to our previous discussions and
moreover provides a framework under which we can understand a number of
other well-known community detection algorithms from a dynamical lens. We
provide a brief discussion of alternative approaches and related ideas at the end
of the chapter.

6.1 Basics of Markov stability
In this section, we present the Markov stability framework (Delvenne et al.,

2010), which enables us to define quality functions for community detection
based on randomwalk dynamics. Strikingly, it can be shown thatMarkov stability
has connections to a number of methods used in network analysis (Delvenne
et al., 2013) which have been developed without any dynamical process in
mind. In particular, Markov stability provides an alternative interpretation of
the Newman-Girvan modularity (3.3), which can explain some of the limitations
of modularity from a dynamical perspective, and remedy them through the
introduction of a resolution parameter associated to the dynamics.

Consider an ergodic random walk process, in discrete or continuous time, on
a network. TheMarkov stability of a partition of the graph at time t is defined
as the difference of two probabilities (Delvenne et al., 2010; Lambiotte et al.,
2014): First, the probability of a stationary random walker to be in the same
community at time 0 and at time t. Second, the probability of a stationary
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random walker to be in the same community at time 0 and in the limit t →∞.
Thus, Markov stability can be interpreted as measuring the persistence of a
random walk process inside the communities of the partition. Within a given
time scale t, Markov stability is large when it is unlikely for the random walker
to have left the community in which it started. As we will see, Markov stability
can also be understood as the autocovariance of a signal encoding the sequence
of communities visited by the random walk process. Note that it can be defined
for different random walk processes, each one giving rise to a different quality
function and, in principle, to a different optimal partition of the same network.

Let us remark that for an ergodic random walk, i.e., a random walk on
an aperiodic, strongly connected graph, the second, asymptotic probability
appearing in Markov stability is equivalent to the probability of two independent
walkers to be in the same community at time t by chance, as the information of
the initial conditions is lost for long times. In the following, we will exclusively
consider this case of aperiodic, strongly connected graphs. Importantly, if the
underlying graph does not satisfy those properties we can always construct such
a dynamics by incorporating a “teleportation” probability at each step of the
random walk (Brin & Page, 1998; Lambiotte & Rosvall, 2012), i.e., a small
probability to randomly jump to any other node in the graph.

We have discussed Markov stability on an abstract and general level so far.
To be more concrete, let us first concentrate on a discrete-time random walk on
an undirected network. The time evolution of the probability pi(t) to be located
on node i at time t is governed by the equation

p>(t + 1) = p>(t)T , (6.1)

where T = K−1A is the transition matrix of the associated Markov chain (2.23).
Under the assumptions of a connected and non-bipartite graph, the process
converges to a unique stationary distribution

π> = k>/2m, (6.2)

where k is the vector of degrees in the network.

Based on this process, we define the clustered autocovariance matrix of
the diffusion process at time t as follows. Given a partition of a network,
encoded as before by the indicator matrix H , we assign a different real value Xα
(α = 1, ...,C) to the vertices of each of the C communities, such that each node
within the same community is assigned the same value Xα. We now consider
the sequence of values X(t) elicited by a random walk process on the network,
assuming that the random walk has been initialised in its stationary state at time
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t = 0. The autocovariance of this process evaluated over a period of time t is:

cov [X(0)X(t)] = E[X(0)X(t)] − E[X(0)]E[X(t)], (6.3)

where E[X(t)] is the expectation of the random variable X(t). For a discrete-time
random walk, this autocovariance is given by

cov [X(0)X(t)] = X>R(t,H)X, (6.4)

where X is the 1 × C column vector of labels assigned to the C communities
and where

R(t,H) = H>
[
ΠT t − ππ>

]
H (6.5)

is by definition the C × C clustered covariance matrix. In this last expression,
Π = diag(π) is a diagonal matrix encoding the stationary distribution of the
random walk (π> = π>T ).

Observe that the clustered autocovariance matrix R(t,H) does not depend
on the arbitrary values Xα used to encode the communities. By construction,
(ΠT t )i j measures the flow of probability from node i to node j in t steps, starting
from the stationary distribution of the random walk. Due to the multiplication
by the indicator matrices, the term [H>ΠT tH]αβ thus measures the flow of
probability between any two communities Aα and Aβ over time t. Moreover,
as we have assumed that the dynamics is ergodic, the probability to arrive on
node j becomes independent of its initial state in the long time limit:

lim
t→∞
(ΠT t ) = ππ>. (6.6)

Hence, the second term in the clustered covariance, H>ππ>H , describes
the flow of probability between two communities as t → ∞. Note that this
also implies that all the elements of R(t,H) will converge to zero as t → ∞,
irrespectively of the partition considered.

In general, the (α, β) entry of the C × C matrix R(t,H) describes the
probability that a random walker will be at community Aα at time zero and
community Aβ at time t, minus the probability of these events happening by
chance at the stationary state. Intuitively, there is a strong assortative community
structure over a time scale t, if the probability flows are contained within
the communities, hence concentrating high values on the diagonal of R(t,H).
Accordingly the Markov stability for discrete-time random walks is defined via
the trace of the clustered autocovariance matrix (Delvenne et al., 2013, 2010):

r(t,H) = min
0≤t≤s

Tr [R(s,H)] ≈ Tr [R(t,H)] (6.7)
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in line with the abstract definition given at the beginning of this section13. The
Markov stability r(t,H) of a partition defined via Equation (6.7) can be used
to rank partitions of a given graph at different time scales. For every value of
t, community detection can thus be performed by optimising r(t,H) over the
space of all possible partitions, resulting in a sequence of optimal partitions
over different time intervals.

The Markov stability r(t,H) of a partition (6.7) has connections with several
concepts related to community detection and graph theory. For instance, when
considered at time t = 1, it is straightforward to show that r(1,H) is equal to the
Newman-Girvan modularity Q, see Equation (3.3). This provides an alternative
interpretation of modularity in terms of flows of probability instead of density
of links inside communities. When t = 0, the Markov stability of a partition
simplifies into

r(0,H) = 1 −
C∑
α=1

π2
α =: GS(π,H), (6.8)

where πα =
∑

i∈Aα
πi is simply the probability that a stationary random walker

is in community Aα. We may interpret this probability as the volume of the
community. Further, r(0,H) is equivalent to the Gini-Simpson diversity index
(Simpson, 1949) of the probability distribution induced by the partition, but also
to the Rényi entropy of order 2 in Information Theory (Rényi et al., 1961) and
to the Deridda and Flyvbjerg number in Physics (Derrida & Flyvbjerg, 1986).
Indeed, this quantity has the intuitive properties of an entropy measure, and it is
large when the partition is made of many communities of equal volume and is
low when it has few and uneven communities.

6.2 Time as (nonlinear) resolution parameter
To further explore the dependency of Markov stability on time, it is insightful

to use a continuous-time formulation, and to consider the continuous-time
random walk, see Equation (2.22), whose master equation reads

d
dt

p> = −p>Lrw. (6.9)

Under the condition that the network is undirected and connected, the process
converges to the same unique stationary distribution as the standard discrete time

13Note that the minimisation in the above formula ensures generality of the definition. Indeed, in
almost bipartite (disassortative) graph, Tr R(t ,H) can oscillate for discrete time-dynamics. We
therefore take the lowest point over the interval as the quality function r(t ,H). The minimisation is
however not necessary in most cases and, in particular, it can be proven that it is not required in the
continuous time case, for which Tr R(t ,H) is always monotonically decreasing (see Delvenne et al.
(2013) for more discussion.
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random walk (6.2). Using the formal solution to the continuous time process

p> = p>0 exp(−tLrw), (6.10)

and an analogous derivation as in discrete time, the Markov stability for a
partition of a continuous-time random walk takes the form

r(t,H) = Tr
[
H>

[
Π exp(−tLrw) − ππ

>
]
H

]
. (6.11)

As before, this expression provides a quality function that is parametrically
dependent on time.

Observe that the matrix exponential comprises matrix powers of all positive
integer exponents, corresponding to walks of all lengths in the graph. These
matrix powers are scaled by time, such that larger values of t give more weight
to longer walks, corresponding to an exploration of the network at a larger
scale. Time thus acts as a nonlinear resolution parameter which enables us
to change the scale of the preferred communities within the Markov stability
framework: short times lead generally to smaller communities, longer time to
larger communities.

To understand how time acts as a resolution parameter, it is instructive to
consider the behaviour of (6.11) in the limit of small and large times. When
t = 0, one recovers again the Gini-Simpson index, whose maximisation leads to
a partition of n communities, each made of one single node. This solution is
expected from our interpretation of the Gini-Simpson index as an entropy, and
it provides the finest-grained partition of a network. In order to explore further
the limit of small times, we perform a Taylor expansion of (6.11) around t = 0
and obtain a linearised version of Markov stability

r(t,H) ≈ r(0,H) + t
dr(t,H)

dt

����
t=0
= r(0,H) − t Tr

(
H>

L

2m
H

)
(6.12)

or equivalently

r(t,H) ≈ GS(π,H) − tCut (6.13)

where Cut = Tr[H>LH]/2m simply counts the fraction of the edges between
the communities. This expression provides an interpretation of Markov stability
as the competition between two objectives. The second term is minimised if we
have a small number of links between communities, which favours aggregating
the nodes into large groups of vertices. The first term, the Gini-Simpson index,
favours however a large number of equally-sized, balanced communities. The
relative weight between both objectives is modulated as the Markov time t
increases. Starting from t = 0, where the assignment of every node to its
own community is optimal, the optimisation of r(t,H) leads to larger and
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larger communities as time increases. Interestingly it can also be shown that
Equation (6.13) is equivalent, up to a multiplicative constant, to the Potts
model heuristic proposed in Reichardt and Bornholdt (2006), which provides a
parametric generalisation of modularity. Note that while this correspondence
holds for the linearisation of the Markov stability of a partition, in general
the time parameter will act non-linearly (see Delvenne et al. (2013); Schaub,
Delvenne, Lambiotte, and Barahona (2018) for further discussion).

In the limit t →∞, making use of the spectral decomposition of Lrw, stability
simplifies to

r(t,H) ≈
1

2m
e−λ2t

C∑
α=1

∑
i, j∈Aα

[u2]i[u2]j, (6.14)

where it is assumed that the second dominant eigenvalue λ2 of Lrw is not
degenerate and u2 is its corresponding left eigenvector. The Markov stability of
a partition r(t,H) is therefore maximised for large times by a split of the network
into two communities, defined by the signs of the entries of the eigenvector
u2, which is also known as the normalised Fiedler eigenvector. Note that the
solution obtained in this way is the same as in the graph partitioning problem of
section 3.2, except that now this split is not the result of an approximation but is
exact for sufficiently large values of the time parameter.

The above results highlight that Markov stability provides a rich framework
for community detection, in which the time scale of the diffusive process acts
as an intuitive resolution parameter, that allows us to uncover the multi-scale
structure of the network, by tuning the characteristic size of the communities
in the optimal partition. However, the practical application of the method still
involves at least two non-trivial steps.

First, efficient algorithms are needed to optimiseMarkov stability. Thankfully,
it is always possible to rewrite the Markov stability for a given random walk
process as the modularity of another weighted, symmetric network. Any
modularity maximisation algorithm can therefore be used for Markov stability
optimisation. For the continuous-time random walk process considered in this
section, for instance, the Markov stability r(t,H) of a network with adjacency
A is equivalent to the modularity of a network with adjacency matrix Y (t) =
Π exp(−tLrw) which encodes the flow of probability in a period of time t
between two nodes. Note that the adjacency matrix Y (t) depends explicitly on
time and is associated to a weighted network that becomes increasingly dense
over time. In addition to the computational cost for the matrix exponential, this
significantly increases the storage cost of the network, and limits the efficiency of
methods designed for modularity optimisation of sparse networks. In situations
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Figure 8 Flow communities at multiple scales in an airport network. The
network is made of n = 2905 nodes and m = 30442 directed edges, whose
weight encodes the number of flights between airports. Representative

partitions are selected at dips in the normalised variation of information and
identify different levels of resolution, here with (b) 44, (c) 18 and (d) 5

communities. Figure reproduced from Lambiotte et al. (2014) with permission.

when these limitations become prohibitive (typically for network sizes on the
order of 105 nodes), a practical solution is to turn to the linearised version of
stability, whose optimisation can be performed with minor modifications of
modularity optimisation techniques.

Second, the optimisation of Markov stability across time leads to a sequence
of partitions that are optimal at different time scales. This leaves us with
the problem of selecting relevant time-scales for our description. This is a
well-known challenge for multi-resolution methods that may be addressed by
considering the robustness of the optima obtained at different values of time
(Lambiotte et al., 2014). Notions of robustness are often considered when
dealing with NP-hard optimisations, and aim to capture the ruggedness of the
landscape of the quality function to be optimised (Good et al., 2010). In this
context, we determine the significance of a given optimum of Markov stability
by estimating how it is affected by the addition of noise, for instance by adding
small perturbations to the network, or by making small modifications to the
optimisation algorithm. A partition is said to be robust if such perturbations
have little effect on the outcome and the perturbed result remains close to the
unperturbed one. In order to measure the similarity between two partitions P1

and P2, a popular choice is the normalised variation of information (Meila,
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2007)

V̂(P1,P2) =
H(P1 |P2) + H(P2 |P1)

log n
, (6.15)

where H(P1 |P2) is the conditional entropy of the partition P1 given P2, i.e.,
the additional information needed to describe P1 once P2 is known assuming
a uniform probability on the nodes. The normalised variation of information
V̂(P1,P2) ∈ [0,1] has the desirable property to be a metric in the space of
partitions and thus to vanish only when the two partitions are identical. Equipped
with this similarity measure, we can characterise the robustness of the optimal
partition for each value of time. We then select partitions at timescales which
have local minima in the normalised variation of information, i.e., are associated
to a higher level of robustness. As an illustration, we show in Figure 8 the result
of such an analysis for a weighted network of airport connections. Relevant
structure can be found at different resolutions, revealing different levels of
geographical and socio-political groupings.

6.3 Flow-based versus structure-based methods indirected networks
Many methods for community detection in networks are combinatorial, in

the sense that they are based on counting edges inside and between groups of
nodes. This is the case for modularity for instance, which counts the number of
edges inside communities and compares this expected count in a null model.
In contrast, flow-based methods such as Markov stability aim to quantify the
effect of the network topology on the flow of a diffusion process on the network.
As we have seen above, combinatorial and flow-based methods may be related,
and even be equivalent, in the case of undirected networks. However, this
equivalence often breaks down when the network is directed.

Markov stability naturally extends to directed networks, for instance by
considering the random walk defined by Equation 6.1 with a transition matrix
given by T = K−1

outA, where Kout is a diagonal matrix with the out-degrees of
each node. Under the assumption that the directed network is strongly connected
and aperiodic14, the process converges to a unique stationary distribution π

defined as the dominant left eigenvector of the transition matrix. In contrast
to undirected networks, this stationary distribution does not only depend on
the degree of each node, but captures the global connectivity patterns in the
network and is obtained from a combination of walks of all length. If we

14While this assumption is often not met in real data, if the network under consideration is not
strongly connected and aperiodic, we can use the teleportation trick discussed before.
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include a teleportation probability in the process, this stationary distribution is
also equivalent to the PageRank (Gleich, 2015), which is a popular measure of
centrality for (directed) networks.

Note that, accordingly, unlike in the case of undirected networks, the Markov
stability of a partition at t = 1

r(1,H) = Tr
[
H>

[
ΠT − ππ>

]
H

]
(6.16)

differs from the standard expression of modularity (3.3), as well as from its
most common generalisation to directed networks

Q =
1
M

Tr
[
H>

[
A −

koutk
>
in

M

]
H

]
, (6.17)

where the null model is obtained from a directed version of the soft configuration
model (Nicosia, Mangioni, Carchiolo, & Malgeri, 2009). While optimisation of
r(1,H) leads to partitions with persistent flows of probability within modules,
modularity favours partitions with high densities of links. The two quantities
also differ in their “null models” terms, as the importance of a node is captured
by its PageRank πi for Markov stability, and by its local connectivity (kin, kout)
in the case of modularity. For these reasons, the optimal partitions of Markov
stability and modularity usually provide different, complementary community
structures for the same directed network. There is no a priori reason that one
solution is better than the other one, as they arise from different perspectives
and embody different notions of community. Echoing our discussion in 3.3,
for a better understanding of a specific real-world network, one should thus
clearly identify the network aspects that one seeks to understand, when choosing
between a combinatorial and a flow-based method.

Before closing this section, let us note that the optimisation of Markov
stability for directed networks can also be performed by standard modularity
optimisation algorithms after noting that the Markov stability of a given directed
network is equal to the modularity of an undirected network whose adjacency
matrix is given by

ΠT + (ΠT )>

2
. (6.18)

In this weighted network, the importance of an edge is determined by the
stationary flow of probability between the nodes, reinforcing our observation
that Markov stability takes flows as the measure of importance in a network.
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6.4 Different dynamics lead to different quality functions
Until now, we have always considered Markov stability for unbiased discrete-

time randomwalks and their continuation in terms of the random-walk Laplacian.
However, these linear processes might not be adequate to properly describe
the specific dynamics taking place on a graph under scrutiny. Among the
systems where unbiased random-walks may be unrealistic, one can think of
traffic networks, where a bias is necessary to account for local search strategies
and navigation rules. One strength of the Markov stability framework is its
generality, as it can be defined for any random walk process, thus allowing the
user to equip the network with an appropriate dynamical model. A natural
choice is for instance

d
dt

p> = −p>L, (6.19)

where L is the combinatorial Laplacian and whose stationary state is uniform

π = 1>/n. (6.20)

In that case, an important difference is that the diversity index at t = 0 now
takes the form

r(0) = 1 −
C∑
α=1

(nα
n

)2
, (6.21)

where nα is the number of nodes in community Aα. The resulting Markov
stability thus favours partitions where the communities have the same number of
nodes, instead of the same number of edges as in (6.8). This example emphasises
the importance of choosing appropriate dynamical processes in order to uncover
dynamical communities in networked systems. Interesting alternatives include
biased random walks, such as the Ruelle-Bowen walk (Delvenne & Libert,
2011) but also higher-order Markov processes (Salnikov, Schaub, & Lambiotte,
2016), where the trajectories of the walkers may be calibrated on empirical data
(Rosvall, Esquivel, Lancichinetti, West, & Lambiotte, 2014).

RELATIONS TO MODEL ORDER REDUCTION
Dynamical community detection and reduced order models, as discussed in
Section 4.2, both decrease the dimensionality of a linear dynamical system
on a network, but in different ways. To clarify this point, let us assume
that a dynamical system on a network exhibits C slow eigenvectors. Then,
from a model order reduction perspective, the linear system of n equations
for the dynamical process can be reduced to a C-dimensional description
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in the long time limit. The resulting model, which focuses on the evolution
of the dynamics in the subspace spanned by the slow eigenvectors, has
a bounded error that shrinks over time. This classical result from linear
dynamical systems theory is particularly helpful if we want to construct a
coarse-grained description of an autonomous dynamical system. However,
from a network perspective, this solution is not entirely satisfying as the
new coordinates (the slow eigenmodes) are not necessarily concentrated on
groups of nodes (cf. our discussion in Section 2.3.2), and yet the nodes are
the interpretable objects of networks. In contrast, flow-based community
detection methods, such as Markov stability, provide a network-based
viewpoint for dimensionality reduction, as they aim to identify groups of
nodes that collectively affect the dynamics in the same way.

6.5 Further discussions and references
This chapter has focused exclusively on Markov stability as an example of

a flow-based framework for community detection. This choice was motivated
by the flexibility of the framework and its clear connections with modularity
and the concept of time-scale separation in dynamical systems. However, other
approaches have been proposed in the literature, often sharing the intuitive idea
that a partition is good if random walkers remain confined for long times inside
communities before escaping them, e.g., (Piccardi, 2011). A popular alternative
to Markov stability is the map equation (Rosvall & Bergstrom, 2008), which is
centered around the idea that community structure allows us to compress the
information required to describe the trajectory of a random walker on a network.
While not part of the original map equation formalism, the map equation can be
equipped with a time-scale that determines the (sampling) rate at which one
observes the random walk trajectory (Schaub, Lambiotte, & Barahona, 2012),
akin to Markov stability.

Recent works have also shown that spectral methods associated to the so-
called non-backtracking random walks can successfully recover communities in
sparse networks up to a well-defined theoretical (Krzakala et al., 2013) in certain
random graph models. This result could, e.g., be explored further within the
framework developed in this chapter, by constructing aMarkov stability based on
non-backtracking walks. Future research directions also include the possibility
to design flow-based methods for temporal networks, where the random walkers
would be diffusing on a network topology that evolves itself in time (Holme
& Saramäki, 2019; Masuda & Lambiotte, 2020; Mucha, Richardson, Macon,
Porter, & Onnela, 2010), for hypergraphs, where interactions between nodes
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are not necessarily pairwise (Carletti, Fanelli, & Lambiotte, 2020; Eriksson,
Edler, Rojas, & Rosvall, 2020) and for graphons, that can be seen as continuous
generalisations of networks (Klimm, Jones, & Schaub, 2021).
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7 Dynamical methods for disassortative
communities and general block structures

The last chapter has shown that a dynamical perspective can help to design
quality functions to detect assortative communities at different scales. In
this chapter, we turn our attention to more general block structures. In the
specific case of disassortative communities, following our discussion at the
end of Section 3.3, a quality function for disassortative communties could be
derived by extending the approach of Equation (3.12), i.e., by building a quality
function based on the C × C clustered covariance matrix (6.5) and keeping the
off-diagonal elements rather than the trace (i.e., minimise Markov stability, as
discussed in Delvenne et al. (2013, 2010)). Here, rather than concentrating on
the diffusion based formalism of the previous chapter, we will discuss a related
but different perspective, which has close connections to the active research
area of network embeddings (Grover & Leskovec, 2016; Perozzi, Al-Rfou, &
Skiena, 2014).

The purpose of embedding techniques is to map the nodes of a network into
a low-dimensional metric vector-space, where proximity in the embedding is
associated to node-similarity in the network. The advantage of such a procedure
is that once we have obtained a node embedding, we can repurpose the large
array of methods available to analyse vector space data for the study of networks
by applying them to the embeddings of the nodes. In most cases such embedding
techniques try to map nodes that are well-connected in the network to similar
embedding coordinates, and hence clustering the resulting points in the vector
space can be used to uncover assortative communities. In the following we will
first provide a brief survey of such (spectral) embedding procedures. We then
discuss how we can use a dynamical perspective to define more generalised
notions of node similarity and, as a result, can derive embeddings from which
more general block-structures can be extracted.

7.1 Kernels and embeddings for assortativecommunities
Intuitively a network (node) embedding is a map which assigns each node i

in the node setV of a network G to a point in the Euclidean space Rm0 , whose
dimension m0 is typically much smaller than the number of nodes n. Each
node i is mapped to a m0-dimensional vector x(i), and the whole network is
thus represented by a cloud of points in Rm0 . An obvious application for node
embeddings is graph drawing, but network embeddings are also central tools
for clustering and node classification.
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A classical method to derive a node embedding is the so-called Laplacian
eigenmap (Belkin & Niyogi, 2001), whose goal is to find an embedding of a
(connected, undirected) graph, by minimising:

F(X) =
n∑

i, j=1
Ai j ‖x

(i) − x(j) | |2 = Tr X>LX, (7.1)

s.t. X>KX = I and X>K1 = 0. (7.2)

where, as usual, K is the diagonal matrix of degrees and where the rows of the
matrix X = [x(1), . . . , x(n)]> ∈ Rn×m0 contain the embedding coordinates. The
embedding dimension m0 is a free parameter and the constraints guarantee that
the embedding does not collapse to a subspace of dimension smaller than m0.

The attentive reader will have noticed that the above problem is very close
to the minimal cut problem discussed in Section 3.2, and indeed the above
objective function is small when nodes that are connected in the graph have an
embedding with a small distance. Let v(i) be the solutions of the generalised
eigenvalue problem Lv(i) = λiKv(i), ordered according to increasing eigenvalues
λ1 = 0 ≤ λ2 ≤ . . . ≤ λn. Following the same arguments as in Section 3.2, it is
straightforward to show that the cost function is minimised by concatenating
the m0 generalised eigenvectors v(2), . . . , v(m0+1) of the Laplacian.

The above results showcase the intimate relations between graph embeddings
and spectral methods for graph partitioning. If we want to use the embedding co-
ordinates for the purpose of community detection, we are however not interested
in the explicit embedding coordinates of the nodes, but in measures of similarity
or distance, which can then be used to cluster the node embedding (and thus the
network). Hence, graph kernel functions, as discussed in Section 2.5.2, which
bypass the computation of explicit embeddings, are often considered instead of
explicit embedding computations. Note for instance, that the coordinates (2.28)
associated to the heat kernel are closely related to the Laplacian eigenmaps X
obtained from optimising Equation (7.1).

As we have discussed extensively in the previous chapters, the spectral
properties of the Laplacian appearing in eigenmaps are also directly related
to properties of random walks on networks. In fact, there exist a range of
embedding techniques that depend even more explicitly on random walks, such
as DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016),
where the underlying idea is to use trajectories of random walks over a fixed
number of steps to characterise the neighbourhood of each node to be embedded.
All these embedding techniques are based on the principle that “proximity”
of nodes in the network, as measured via a diffusion process, should lead to
proximity in the vector space. For this reason, running standard clustering
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algorithms like k-means on the resulting data points in the embedding leads
to communities that are assortative in nature (Tian, Gao, Cui, Chen, & Liu,
2014). This idea also underpins the popular Walktrap algorithm (Pons & Latapy,
2005), where the so-called random walk distance is calculated between the
nodes, and then a standard agglomerative hierarchical clustering algorithm is
used to uncover communities. Kernel methods, for instance based on the heat
kernel (2.27), also have intimate connections with community detection and
block modelling (Kloumann, Ugander, & Kleinberg, 2017).

7.2 Dynamical embeddings for general linear dynamics
The previous section discussed how network embeddings and kernels can be

constructed from the properties of random-walk processes on networks. Here
we present a framework introduced in Schaub (2014); Schaub et al. (2018) that
differs in three ways from these canonical methods.

First, we will be concerned with embeddings derived from general linear
dynamics, which may approximate more appropriately dynamics of real-world
systems, e.g., in situations such as epidemic spreading that do not show a
diffusive, but a multiplicative behaviour. Considering general linear dynamics
also provides the flexibility to define embeddings on networks with signed edges,
for which we cannot define a diffusion process in a simple way.

Second, the dynamical embeddings that we will consider here are defined
for general directed networks, without the requirement that they are strongly
connected. In contrast, for random-walk based methods, we often need a
strongly connected graph to ensure an ergodic dynamics. While this can be
ensured by using the teleportation trick discussed above, this inadvertently
corresponds to a perturbation of the random walk dynamics, which may not be
desired. Moreover, using the teleportation trick adds an extra parameter to the
analysis, the teleportation probability.

Finally, for the more general dynamical framework considered here, the
proximity of two nodes in the embedding will not depend on the proximity of
nodes within the network. Rather two nodes will be considered similar, and
accordingly have similar embedding coordinates, if they have a similar effect on
the overall network dynamics. As we will see, this dynamical viewpoint enables
us to uncover more general block structures than assortative communities. At
the same time, however, it turns out that this dynamical notion of similarity
generalises the diffusion based methods discussed before in certain conditions,
and we can, e.g., recover the continuous-time Markov stability framework for
undirected network as a special case (Schaub et al., 2018).

Note that for the remainder of this section, we will consider directed networks
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by default, unless otherwise stated. In order to derive a dynamical embedding
of the nodes in the network, we build upon the general theory of linear systems.
Specifically, our embedding associates to each node the trajectory of its (zero-
state) impulse response. We can then use these impulse responses, parametrised
by time t, as embeddings for any two nodes, and use the resulting coordinates,
e.g., to define a dynamical similarity measure between two nodes. To introduce
these ideas, let us reconsider the case of a discrete-time random walk dynamics
from this perspective:

p>(t + 1) = p>(t)T ⇔ p(t + 1) = T> p(t), (7.3)

Let us now assume that we inject an unit impulse to a given node i at time t = 0,
such that p(0) = ei is the indicator vector with a value of 1 at position i and
zero otherwise. The impulse response of the system at time t is now given by
the vector pi(t) defined by pi(t) = [T>]

t ei , which is simply the i-th row of
the t-step transition matrix T t of a discrete time-random walk, interpreted as
column vector. In other words, we first assign all probability mass to node i at
time t = 0, and then observe how it spreads throughout the network over time.

This procedure can be repeated for each node i, thus defining an embedding
for each node via the map i 7→ pi(t) into the n-dimensional space of node
signals. To capture the relation between two nodes, different choices of similarity
functions between the vectors pi(t) are possible. For simplicity, we consider
here the kernel defined by the bilinear inner product

Ψ(t) =
[
ψi j(t)

]
i, j=1,...,n

(7.4)

with ψi j(t) = pi(t)>W p j(t),

where theweightingmatrixW allows, in general, to givemore or less importance
to certain nodes, for instance based on their degrees. This kernel is directly
associated to a distance matrix D(2)(t), whose entries correspond to a squared
Euclidean distance of the form

D(2)i j (t) = ‖W
1
2
(
pi(t)− p j(t)

)
‖2 = ψii + ψj j − 2ψi j . (7.5)

As in the case of Markov stability, Ψ(t) and D(2)(t) inherently depend on time,
and the kernel and distance measures are thus expected to exhibit different
patterns of similarity between nodes for different time scales in general.

Note that if the diffusion dynamics is ergodic and has an unique stationary
state, limt→∞ pi(t) = π (which we do not assume, in general), then the distances
between all nodes eventually become zero. As illustrated in Figure 9, the
proximity induced by the dynamical embedding is, in contrast to the Markov
stability framework, not associated to the presence of regions where the flow



72 Cambridge Elements

Figure 9 Dynamical similarity measures for random walks.
A Visualisation of a (not strongly connected) directed network and its

adjacency matrix. There are three main types of nodes identified by their
different colours (subgroups within those three groups indicated by lighter

colour). B The block structure in the similarity matrix Ψ(t) = T t [T t ]>, where
W was chosen to be the identity matrix, identifies the dynamical role of the
nodes at different times. Note that nodes within the cyan and violet groups are
not connected to each other, i.e., the grouping is not assortative. Figure adapted

and reproduced from Schaub et al. (2018) with permission.

of probability is trapped. Instead, two nodes i, j are similar if they induce a
similar state in the network at a particular time scale t. For the case of a discrete
time diffusion this means that random walks starting on these two nodes tend
to arrive at the same destination after time t. Accordingly, a high dynamical
similarity does not necessitate direct proximity in the underlying graph.

This definition may also be understood in terms of a node equivalence that
we may denote “dynamical equivalence” (cf. Section 3.3 for a discussion on
structural node equivalence notions). We provide an illustration of these concepts
in Figure 9, where it can be seen that over particular time scales the kernel
(7.4) naturally uncovers cyclic and bipartite structures that do not correspond
to assortative blocks, and that are not directly apparent from inspection of the
adjacency matrix.

These ideas can be directly extended from diffusion dynamics to any linear
system. For instance, let us consider the case of the dual, continuous-time
consensus dynamics Ûx = Fx = −Lx. Applying an initial impulse on node i,
x(0) = ei , it is mapped onto the corresponding column of exp(tF) giving the
response of the system at time t, i.e. i 7→ xi(t). Following the same arguments
as before, the corresponding similarity matrix Ψ(t) is defined as

Ψ(t) = exp(tF)>W exp(tF). (7.6)

We can exploit this general vector space representation for various purposes.
In the next section, we will illustrate how low-dimensional embeddings of the
system can be constructed from the n-dimensional dynamical embedding, and
discuss how to uncover dynamical modules in the system, i.e., groups of nodes
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that act approximately equivalent from a dynamical perspective.

7.3 Dimensionality reduction and detection of generalblock structures via dynamical similarities
The framework introduced in the previous section embeds nodes in a high-

dimensional space, which can be of the same dimension as the number of nodes
in the original graph. In this section, we outline how the above dynamical
similarity measures may also be employed for dimensionality reduction. We start
from the spectral decomposition of Ψ(t) into its eigenvectors v1, v2, . . . , vn 15

with associated eigenvalues µ1(t) ≥ µ2(t) ≥ · · · ≥ µn(t). We then define the
mapping i 7→ φi(t)

φi(t) = [
√
µ1 [v1]i,

√
µ2 [v2]i, . . . ,

√
µn [vn]i]

> (7.7)

which defines a signal in the spectral domain. Using simple algebraic manipula-
tions, it can be verified that the squared dynamical distance measure (7.5) can
be written as

D(2)i j (t) = ‖φi(t) − φ j(t)‖2, (7.8)

which shows that the distance in the two mappings are indeed the same. The
advantage of adopting the spectral coordinates of Ψ is that this enables us
to provide a principled approximation to the distance matrix. Specifically, a
lower-dimensional embedding of the system minimising the error in the distance
matrix D(2)(t) can be obtained by keeping only the first c coordinates in each
mapping φi(t). Importantly, proximity in this low-dimensional embedding
encodes the dynamical similarity between the nodes. Note that this procedure
can be performed for any system matrix F, and that it reduces to the so-called
diffusion map embedding (Coifman et al., 2005; Lafon & Lee, 2006), when
performed on the coordinates associated to the heat kernel in Equation (2.28).

The similarity matrix Ψ(t), or equivalently the distance matrix D(2)(t), can
also help uncover general (dynamical) block structure in a network (cf. the
example of Figure 9). For instance, this can be done by performing k-means
clustering in the associated embedding. Alternatively, we may design quality
functions based of Ψ(t), similar to Modularity and Markov stability, and define
the quality of a partition in terms of the dynamical similarity of nodes inside
clusters. Interestingly, similar results may also be achieved by changing the
weighting matrixW to correspond to a projection matrix, instead of a diagonal
matrix. Since this has the effect of first projecting out a certain subspace from

15Note that these are not the eigenvectors of F, in general, and the eigenvectors v may not be
constant in time, see Schaub et al. (2018) for further discussion.
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Figure 10 Dynamical similarity and embeddings signed networks. A We
consider a network of 16 highland tribes with positive and negative interactions
(see text). B The time-dependent dynamical similarity measure and associated
embeddings enable us to identify the three main groups within this network.
Figure adapted and reproduced from Schaub et al. (2018) with permission.

the state trajectories before computing a similarity score via an inner product,
such an adjustment of the weighting matrix has a similar effect to choosing a
certain null model, e.g., within e context of Modularity. We refer to Schaub et
al. (2018) for a more extended discussion.

To showcase some of the facets of dynamical similarity, let us examine
another illustrative example. Specifically, we consider the signed network
of relationships between 16 tribal groups in New Guinea (Hage, Harary, &
Harary, 1983; Read, 1954), as depicted in Figure 10A. The relationships between
different tribes are either sympathetic (red edges) or antagonistic (blue edges).
A simple model for consensus dynamics in such a signed network can be built
on the principles that "the friend of a friend is a friend" and "the enemy of an
enemy is a friend" (Altafini, 2012):

Ûx = −Lsx, (7.9)

where the state vector of the nodes is given by x and the signed Laplacian is
defined as Ls = Ks − As . Here As is the signed adjacency matrix of the network
with positive and negative entries, and Ks is the diagonal matrix containing the
weighted absolute node degrees, i.e., [Ks]ii =

∑
j |[As]i j | and zero otherwise. It

can be shown that the signedLaplacian is positive semi-definite and that it reduces
to the standard Laplacian for a network with non-negative weights (Altafini,
2013; Kunegis et al., 2010).

Based on the signed Laplacian dynamics discussed above, we can now define
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Figure 11 Node equivalence classes from linear dynamics. A A network of
three weakly connected weighted triangles. B The corresponding dynamical
similarity matrix Ψ(t), here shown for t = 0.1 shows that the graph has some
clear dynamical community structure, in line with the colour coding displayed
in (B). C An alternative partition of the network according to dynamical node
roles, i.e., sets of nodes that have the same dynamical impact on the graph

modulo node relabelling, as demonstrated in D. Figure adapted and reproduced
from Schaub et al. (2018) with permission.

the following node similarity kernel:

Ψ(t) = exp(−Lst)> exp(−Lst), (7.10)

with associated dynamical (spectral) embeddings φi . If we consider only the
first two components of this embedding for each node i over time t, we obtain a
trajectory for each node, that describes how this (truncated) embedding evolves
with time. This is depicted in Figure 10B. Based on this embedding, we can now
partition the graph into groups by applying k-means clustering to the computed
embeddings and obtain a split of the network into three dominant groups (as
encoded in colour in Figure 10). As this example illustrates, the dynamical
framework developed here can also be applied without modification to signed
networks. For a more detailed discussion on this and other signed network
examples, see Schaub et al. (2018).

7.4 Node equivalence classes from linear dynamics
As discussed in Section 5, symmetries in the system matrix F of a dynamics
Ûx = Fx can lead to a dynamically equivalent behaviour of certain subsets
of nodes within a network. Here we briefly sketch how we can recover such
dynamical node roles by inspecting the impulse response dynamics of a linear
system, in a way extending the method of the previous sections. To illustrate
this idea, consider the graph shown in Figure 11A with an associated consensus
dynamics Ûx = −Lx. Analysing the dynamical similarity measure Ψ(t) (see
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Figure 11B for the case t = 0.1) as discussed above reveals that there are three
sets of nodes, as indicated by colour in Figure 11A, that have approximately the
same dynamical effect on the system over a range of time-scales.

Instead of taking the inner-product between the impulse responses of each
node as similarity measure Ψ, let us now consider possible node permutations
before taking the inner product, e.g., we can define the similarity score θi j(t) =
maxΓ xi(t)>Γx j(t), where xi(t), corresponds to the impulse response of node i
and we recall that Γ is a permutation matrix. When using this similarity score,
we can find the grouping shown in Figure 11C. As can indeed be verified, the
graph partition found in such a way groups nodes that have exactly the same
influence on other nodes in the graph up to a permutation of the node labels
(see Figure 11D). Importantly, such nodes may have a very different position in
the graph and may not be in close proximity to each other.

Following our discussions in Section 5, we remark upon another interesting
duality between these two type of partitions. Namely, when finding dynamical
graph partitions via an inspection of Ψ(t), we aim to group nodes that have the
same effect on the (same nodes in the) network, over a particular time-scale t.
In contrast, we would expect nodes that serve the same role in the network, in
the sense of the measure θi j(t), to have consistent influence over all time-scales
due to the symmetry properties of the system, which will effect the behaviour
irrespective of the considered time-scales (cf. Section 5). This may be exploited
by computing a measure such as θi j(t) for multiple times of t and then finding
the best possible permutation maximising all these scores jointly (Cason, 2014).

In order to avoid the (computationally expensive) search over the space of all
permutation matrices, one can further adopt the following strategy: Instead of
using the measurements xi(t) directly, we may for each time extract a feature
from xi(t) that is permutation invariant, i.e., some measurement function f
for which f (xi(t)) = f (Γxi(t)) for any partition Γ. An example for such
a function f would be the mean, sum, max, min or some kind of entropy
function. Interestingly, it can be shown that this strategy effectively underpins a
number of node role extraction (or node similarity measures) proposed in the
literature (Blondel, Gajardo, Heymans, Senellart, & Van Dooren, 2004; Cason,
2014; Cooper &Barahona, 2010; Rossi et al., 2020). Moreover, similar strategies
are also employed in the context of so-called graph neural networks (Wu et al.,
2020), which have recently gained prominence for studying learning problems
associated to graphs.
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7.5 Further discussions and references
In this chapter, we have exclusively considered Euclidian embeddings. In

recent years, several works have shown the potential benefits of adopting
a non-Euclidian perspective to embed networks. In particular, hyperbolic
embeddings have the advantage to naturally represent networks with a broad
degree distribution, as observed empirically (Serrano & Boguná, 2021). Recent
methods for community detection based on hyperbolic embeddings include
(Faqeeh, Osat, & Radicchi, 2018). This whole section has focused on linear
dynamics, building on tools from linear response theory, but the possibility to
define the similarity between nodes from the response to an impulse could in
principle be defined for non-linear dynamics16, and be a promising venue for
future research.

16Note that in the case of non-linear dynamics, extra attention must be paid as the amplitude of
the impulse may in general lead to different responses.
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8 Perspectives
In this book, we have tried to provide an overview of the inter-related aspects

of community structure and linear dynamics on networks. In Chapters 4 and 5,
we have identified how assortative communities or more general block structures
affect dynamical processes. As we discussed, such structures translate into
specific properties for the eigenvalues (time-scale separation) and eigenvectors
(symmetries) of the system matrix governing the dynamics. In Chapters 6 and
7, we considered the complementary viewpoint, and considered how dynamics
can enable the extraction of important information from a network and, more
specifically, uncover block structures hidden in large networks. To this end, we
have discussed several quality functions to uncover communities at different
resolutions, depending on the time scale of the associated dynamics, and shown
important connections with a range of network-theoretical concepts, including
the Newman-Girvan modularity and embeddings techniques. We hope that
this manuscript offers a coherent journey through the topic of dynamics and
modularity on networks. However, it is important to emphasise that our account
is but one specific path through a network of interrelated research topics.
Although we tried to provide additional pointers to the literature in the sections
“Further discussions and references" at the end of each chapter, we unfortunately
had to leave out a wide range of interesting material to limit the scope of this
book. While we won’t be able to provide an exhaustive overview here as well,
in closing we would like to add some selected broader perspectives on what we
believe are important themes for future research.

An important and active field of research focuses on how to incorporate
uncertainties in network analysis. Indeed, as in any empirical dataset, networks
that are collected from real-world data are incomplete and subject tomeasurement
errors, and the statistical properties of these errors are often unknown. While the
problem of measurement errors is well documented, especially for the analysis of
social networks (Almquist, 2012; Borgatti, Carley, & Krackhardt, 2006; Holland
& Leinhardt, 1973; Kossinets, 2006), it has regained interest in recent years
in the context of network analysis (Martin, Ball, & Newman, 2016; Newman,
2018b; Ruggeri & De Bacco, 2019; Young, Cantwell, & Newman, 2020),
motivated by the observation that most current techniques for network analysis
implicitly assume, and are thus limited to, networks that are perfectly known. In
Section 4.3.2, we have touched this point when estimating the impact of noise
on the spectral properties of the system matrix, and thus on linear dynamics, but
all our results on community and block structure detection, except for our short
discussion on robustness in Section 6.2, did not consider noisy observations. In
our view, future research is needed to properly capture the uncertainty in the
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measurement of networks, and to clarify how uncertainty about the existence of
edges translates into uncertainty in topological descriptors, including degree
distribution (Stumpf, Wiuf, & May, 2005), centrality measures (Avella-Medina,
Parise, Schaub, & Segarra, 2020; Stamm, Neuhäuser, Lemmerich, Schaub, &
Strohmaier, 2020; Wagner, Singer, & Karimi, 2017), or community structure
(Peixoto, 2018; Smiljanić, Edler, & Rosvall, 2020).

We have exclusively focused on linear dynamics in this book, which enabled
us to exploit the correspondence between the time scale of a process and the
eigenvalues of the corresponding system matrix. However, in many situations,
linear dynamics is only an approximation of the non-linear dynamics in a
system. The field of non-linear dynamics on networks is more fragmented, as
many results depend on the details of the dynamical model. Different types of
models are prevalent in different domains, e.g. synchronisation (Arenas et al.,
2008) versus epidemic spreading (Pastor-Satorras, Castellano, Van Mieghem,
& Vespignani, 2015). For this reason, it is more difficult to provide a general
overview such as the one we provided here for linear processes, even if some
of the tools and phenomena that we discussed here for linear dynamics can be
translated to a non-linear context, e.g., externally equitable partitions (Schaub
et al., 2016) and time-scale separation (Arenas, Diaz-Guilera, & Pérez-Vicente,
2006) for non-linear models of synchronisation. Research has shown that
non-linear dynamics on modular networks may lead to a rich set of dynamical
phenomena. This includes the emergence of “chimera states” in networks
of oscillators, where the system splits into synchronised and desynchronised
sub-populations (Abrams, Mirollo, Strogatz, & Wiley, 2008), or the stable
co-existence of different opinions in social dynamics (Lambiotte, Ausloos, &
Hołyst, 2007). In order to build a more general framework for non-linear
dynamics on modular networks, some potential avenues for research are the
study of network symmetries (Golubitsky & Stewart, 2006, 2015), or the use
of Koopman operator theory (Mauroy, Susuki, & Mezić, 2020), in which the
non-linear dynamics are lifted to a linear, but infinite-dimensional space.

We started the introduction of this book by emphasising the power of the
network paradigm to model complex systems. Despite its many successes, the
abstraction of a system in terms of nodes and edges has also some fundamental
modelling limitations, that have become more apparent with the increasing
availability of richer relational data recently. Within the emerging field of
higher-order networks, researchers have tested the limits of the network
paradigm, and proposed extensions with generalised interactions, including
multiplex networks (De Domenico et al., 2013), higher-order Markov models
for networks (Lambiotte et al., 2019), and multiway networks (Barbarossa &
Sardellitti, 2020; Battiston et al., 2020; Schaub et al., 2021). Multiplex networks



80 Cambridge Elements

aim at modelling systems where nodes can be connected by different types of
interactions. Higher-order Markov models do not take edges as fundamental
units of connectivity, but walks of length generally greater than one. Multiway
networks also question the role of edges as fundamental units, and focus instead
on interactions involving more than two nodes, as in hypergraphs for instance.
In each type of higher-order model, the notion of connectivity is altered, hence
leading to different types of diffusion and community structure. Despite its
dynamism (see, e.g., Chodrow, Veldt, and Benson (2021); Eriksson, Edler,
Rojas, and Rosvall (2021); Schaub, Benson, Horn, Lippner, and Jadbabaie
(2020)), there are still many open questions in this field of research, calling for
future investigations to properly comprehend the relations between modularity
and dynamics on higher-order networks.
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