Newman-Girvan Modularity

Q = fraction of edges within communities - expected fraction of
such edges

Let us attribute each node i to a community ci

Q = i Z [Aij — Pi'] o(ci, cj)

2m “—
2,7

expected number of links between i and |

QC’ = ! Z [Az] — kzk]/Zm] 5(02‘, Cj) QC - [—1/2, ].]

T 2m

2¥,

Allows to compare partitions made of different numbers of
modules

M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks,
Phys. Rev. E, 69, 026113, 2004.



Multi-level modularity

Resolution limit

What about sub (or hyper)-communities in a hierarchical network?

s




Multi-level modularity

Add a resolution parameter!

Reichardt & Bornholdt Arenas et al.
1
Qy = 5 [Aij - ’YPz'j] o(ci, ¢j) Q(Az-j == TI,;J-)
i,J

Tuning parameters allow to uncover communities of different sizes
Reichardt & Bornholdt different of Arenas, except in the case of a regular graph
where

v =1+7/(k)

J. Reichardt and S. Bornholdt, Phys. Rev. E 74, 016110 (2006). Statistical mechanics of
community detection

A Arenas, A Fernandez, S Gomez, New J. Phys. 10, 053039 (2008). Analysis of the structure
of complex networks at different resolution levels



Multi-level modularity

Add a resolution parameter!

Reichardt & Bornholdt Corrected Arenas

1 k;
Qy = o 2- [Az'j —’YPz'j] d(ci, cj) Q(Aij + r—210; )

(k)

Preserves the eigenvectors of
Laplacian (no A) and has a nice
dynamical interpretation

Reichardt & Bornholdt = corrected Arenas for any graph

v=1+r/{k)

R. Lambiotte, Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt),
2010 Proceedings of the 8th International Symposium on, 546-553 (2010)



Dynamics as way to uncover communities




Dynamics as way to uncover communities
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The Map Equation: coding trajectories

Imagine a random walk on a given network. If the network has commu-
nity structure, the random walker would wander within a community for a
long time before crossing a bridge to a different community. A straightfor-
ward way to describe the trajectory of the random walk is to write down
the visited nodes in an ordered list, e.g., v1, v4, v1, V7, V3, .... The amount
of information required to express the trajectory is estimated as follows.
We code each node into a finite binary sequence, i.e., a code word, and

concatenate the code words. For example, if vy, v3, v4, and v; are coded
into 000, 010, 011 and 110, the aforementioned trajectory is coded into
000011000110010 - - -. For unique decoding, the code has to be prefix-free.
In other words, a code word must not be a prefix (i.e., initial segment) of
another code word. For example, if v; and vy are coded into 000 and 0001,
respectively, the code is not prefix-free because 000 is an initial segment of

0001.



The Map Equation

The Huffman code is a prefix-free code that encodes symbols separately
and generally yields short binary sequences to represent trajectories of the
random walk. It assigns a short code word to a frequently visited node
and vice versa. The mean code word length per step of the random walk
is given by Zf;l pfL(i), where p} is the stationary density of the random

walk at node v; and L(%) is the length of the code word for node v;.

When the symbols .(vz- in our case) appear independently, the Huffman
code often yields a code length that is close to the theoretical lower bound
obtained by the Shannon entropy, which is

N
H=-) p;logp; (3.85)
i=1
per step. However, the sequence of nodes is correlated in time because it
is produced by the random walk. Then, an alternative coding scheme may
lessen the mean code length. In particular, we can design a [two-layered
variant of the Huffman code to exploit the community structure of the
network. Because there are less nodes in a community CM; as compared to
the entire network, we can express a trajectory within CM; with a shorter,
different Huffman code, which is local to CM,;. Based on this observation,

we rebuild the Huffman code as follows.



(1)
(2)

The Map Equation

When the walker enters community CM;, a code word to represent this
entry event (is issued.

The walker wanders within CM;. The trajectory of the walker during
this period is encoded by concatenating the code words corresponding
to the sequence of the visited nodes. The sequence of these code words
is simply placed after the code word produced in the previous step (i.e.,
entry to CM;). It should be noted that the intra-community code words
make sense only within CM;. A different community CM;: (i’ # i) may
use the same code word as the one used within CM; to represent a
different node in CM;:.

The walker exits CM;. This event is represented by a special code word,
which is concatenated after the sequence of code words produced so far.

The exit from CM; implies that the walker immediately enters a differ-
ent community, CM;. Therefore, a code word to notify that the walker
has entered CM; is issued. Then, the code words local to CM; are used
until the walker exits CM;. We repeat this procedure.



The Map Equation

Fig. 3.6 Optimal partitioning according to Infomap and the resulting code words.
This example is based on a demo applet available at Martin Rosvall’s website
http://www.mapequation.org/apps/MapDemo.html.

the trajectory shown
by the arrows in the figure is encoded into/0111011110001001110111. The
first 01 indicates that the walk starts in the left-bottom community, and
the 110 that follows indicates that the walk starts at the 110 node in this
community. 0010 in the middle indicates that the walk exits this community
(by the code word 00) and immediately enters the community to the right
(by the code word 10).



The Map Equation

In contrast to the original Huffman code, we have to invest 2Ncwm code
words to mark the entry to and exit from a community. However, we can
save the code length when the walker wanders in a community, which oc-
cupies a majority of steps. Overall, the mean code length is expected to be

smaller with the two-layer code in the presence of community structure. In
order to detect communities in practice, there is no need for devising the
optimal code of a given partition. Infomap instead proceeds by optimising
a quality function, called the map equation, which generalises Eq. (3.85).
The resulting quality function provides a theoretical limit of how concisely
we can specify a walk in the network using a given partition. The optimi-
sation is then performed by a greedy algorithm similar to the one used for
maximising modularity (Section 3.10.1), with additional fine- and coarse-
graining steps carried out for improving the partitioning.

L(M) =q~H(2)+) poH(E")
C

Minimizing the Map Equation provides the partition giving the best (most efficient)
coding scheme



Markov stability

The quality of a partition is determined by the patterns of a flow within the
network: a flow should be trapped for long time periods within a community
before escaping it.

The stability of a partition is defined by the statistical properties of a random

walker moving on the graph
J.-C. Delvenne, S. Yaliraki & M. Barahona, Stability of graph communities across time scales.

arXiv:0812.1811.

time




Markov stability

The quality of a partition is determined by the patterns of a flow within the
network: a flow should be trapped for long time periods within a community

before escaping it.
The stability of a partition is defined by the statistical properties of a random

walker moving on the graph

R(t) = Y P(C,to,to +t) — P(C, to,0)
ceP

probability for a walker to be in
the same community at times

P(C, to, to + t) t0 and t0 +t when the system is
at equilibrium

probability for two independent
P(Ca th OO) walkers to be in C (ergodicity)

J.-C. Delvenne, S. Yaliraki & M. Barahona, Stability of graph communities across time scales.
arXiv:0812.1811.



Markov stability versus Modularity

Let us consider a random walk on an undirected network:

Pin+1 = E
J

R(1)

Az" *
: Pjmn — p; = kz/zm
kj equilibrium
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_ S5(c;, e
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Markov stability versus Modularity

Let us consider a random walk on an directed network:

Ay
Pin+1 — Z kofjtpj;n — p;k — T0;
j 7 equilibrium
_ Az-j .
R(]_) p— Z kqutﬂ'j — 7Tz°7Tj 5(0,;, Cj) 7£ Q
i,j - J .




Counting versus flows

Tdir,l = (.42

I'dir,1 = 0.33

Fig. 4. Directed Markov Stability versus extensions of
modularity. In this toy network [16], the weight of the bold
links is twice the weight of the other links. The partition on
the left (indicated by different colors) optimizes directed Markov
Stability (34), which intrinsically contains the pagerank as a null
model. The partition on the right instead optimizes an extension

of modularity based on in- and out-degrees

64,

65].

Hence

directed Markov Stability produces flow communltles whereas
the extension of modularity ignores the effect of flows.



Counting versus flows
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Markov stability versus Modularity

Let us consider a random walk on an directed network:

A;;
Pin+1 — Z kozftpjm - p;k — 70,
j J equilibrium
R() = | = mimy| d(cise;) # Q
1,] J

R(1) # Q(A)  but R(1) =Q(Y)

X+ X7
Y = _|_2 ij — kqutﬂj
J




Time as a resolution parameter

Let us consider a continuous-time random walk with Poisson waiting times

. Ay
pizz “pj — i — p;i = ki/2m

i k; equilibrium
. t(B—1) kj kik,
R(t) = (e )i — > |0(ci, ¢)
2 i2m ~ 2m)
(2]
Bij = Aij/k; J \
Probabjlity that a Same probability
walker is in the for independent
same community walkers
initially and at

timet



time

Time as a resolution parameter

Let us consider a continuous-time random walk with Poisson waiting times

R(0)=1— Z (/26;-7]325(@’ c;) Communities = Single nodes

12¥}

R(t) ~ (1 —t)R(0) + tQAC = Q(t) Zzgelaact))rlshrglc()ﬁularity of Reichart

Asymptotically, two-way partition given by the Fiedler vector



Time as a resolution parameter

Time is a “resolution parameter”: larger and larger communities when time is
Increased
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Time as a resolution parameter

Time is a “resolution parameter”: larger and larger communities when time is
increased
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Time as a resolution parameter

Time is a “resolution parameter”: larger and larger communities when time is
increased
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Time as a resolution parameter

Time is a “resolution parameter”: larger and larger communities when time is
Increased
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Time as a resolution parameter

Time is a “resolution parameter”: larger and larger communities when time is
increased
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In practice: optimization?

The stability R(t) of the partition of a graph with adjacency matrix A is equivalent
to the modularity Q of a time-dependent graph with adjacency matrix X(t)

X,y = (50),

which is the flux of probability between 2 nodes at equilibrium and whose
generalised degree is

Z Xij(t,) = k;
J

R(t) =) Xy(t)/2m — kik;/(2m)* §(c;, ¢;) = Q(X (1))

t,J

For very large networks: R(t) ~ (1 — t)R(O) —+ tQC’ = Q(t)



In practice: selection of the significant scales?

The optimization of R(t) over a period of time leads to a sequence of partitions
that are optimal at different time scales.

How to select the most relevant scales of description?

The significance of a particular scale is usually associated to a certain notion of
robustness of the optimal partition. Here, robustness indicates that a small
modification of the optimization algorithm, of the network, or of the quality
function does not alter this partition.

We look for regions of time where the optimal partitions are very similar. The
similarity between two partition is measured by the normalised variation of
information.

Intuition: at a bad scale, several competing maxima make the lanscape more
rugged, leading to a sensitivity in the outcome of the algorithm




In practice: selection of the significant scales?
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Time as resolution parameter
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Time as resolution parameter
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Fig. 8. Flow communities at multiple scales in an airport network. The airport network contains N = 2905 nodes
(airports) and 30442 weighted directed edges. The weights record the number of flights between airports (i.e., the network does not
take into account passenger numbers, just the number of connections). Representative partitions at different levels of resolution
with (b) 44, (c) 18 and (d) 5 communities are presented. The partitions correspond to dips in the normalized variation of information
in (a) and show persistence across time (see Suppl. Info.).



Similarity measures and kernels

When working with networks, many tasks can be simplified by defining a proper
measure of distance, or similarity, between pairs of nodes

-> Node classification
-> Link prediction
-> Node clustering

Similarity matrix is N times N and encodes the similarity between nodes
according to some principle.

Basic example: adjacency matrix (but very coarse-grained, 0 or 1)

-> Longer paths allow to define more refined measures allowing to rank pairs of
nodes.



Walktrap

N n n
(Tz'e o Tje)2

R 211)

=1

where n is the number of steps in a DTRW. The dis-
tance r;; is small when a pair of random walkers — one
starting from v; and the other starting from v; — visit
each node with similar probabilities after n steps. The
denominator k, discounts the fact that a walker visits
vy with a probability proportional to k;, at equilibrium.



