Statistical mechanics
PROBLEM SHEET 0.

1. A number of particles with positions r; are subjected to internal forces F;;,
where F;; is the force exerted by particle j on particle <.

What is meant by a virtual displacement? And what does it mean to say that
a virtual displacement does no virtual work?

Show that if the forces have the form
Fij = f(ﬂ‘j)ﬁp

where r;; = r; —r;, and if the particles are connected as a rigid body, the virtual
work is zero.

2. Use the chain rule to show that for a change of variable r = r(q, ),
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where v; = r;, and deduce that Newton’s equations can be written in the form
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where you should define the generalised forces ); and the kinetic energy 7'.

Hence deduce the form of Lagrange’s and Hamilton’s equations.

Show that Lagrange’s equations also follow from a variational principle for the
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where t; and t, are fixed, as are the values of ¢; at these times. Why do ¢; not
have to be specified at the endpoints of the interval?

3. Find the characteristic functions ¢(t) for the following distributions:
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Cauchy, f(f,lf) = m

What are the mean and variance of each distribution?

. Let {X;} be a series of independent trials from a distribution of mean p and
variance o2, and let S,, = >"] X;. By consideration of appropriate characteristic
functions, show that

S, ~ N(un,o’n) as n — oo,

and deduce the law of large numbers,
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Explain how this result can be used to provide a practical tool for the estimation
of probability of an event a € F.

. Show from first principles that if dV = dx dxy dxs is a material volume element,

then
d(dV)

dt

where u is the velocity field. Show this in two ways: using Eulerian coordinates,
and using Lagrangian coordinates.

=(V.u)dV,

By consideration of Newton’s second law applied to an infinitesimal tetrahedron,
explain why Newton’s third law applies, and deduce that the surface force on a
volume element can be written in the form o .n.

Hence derive the Navier-Stokes equation in the form
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. In cartesian coordinates, and using the summation convention, the term V?u is

defined by
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where e; is an orthonormal basis for R®. Use the definitions of
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where €5, is the alternating tensor:

1, {ijk} = {123}, {231}, {312},
gie =< —1, {ijk} = {132}, {213}, {321},
0  otherwise,

to show that
VZu=V(V.u) -V xV xu,

which thus provides a coordinate-free definition of this term.

Hint: the alternating tensor satisfies the relation

EijkEipg = OjpOkg — 0jgOkp-



