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Question 1 covers aspects of Boltzmann’s equation. Question 2 is a revision of calculus
of variations to help you with Question 3 (which only needs a very basic form). Question
3 and 4 are intended to help you revise material and methods from the first half of the
course. Questions 5-8 will get you thinking about the Ising model, Monte Carlo and
Markov chains and encourage you to do play with (and possibly code up) an Ising model.

1. The Maxwellian distribution f0(v) = eΦ0 is given by the dimensionless relation

Φ0 = A− 1
2Cu

′2,

where

A = ln

[
n∗

(2πT ∗)3/2

]
, C =

1

T ∗
, u′ = v − u,

and A, C and u are functions of r and t but not v.

(a) Use the definition

Φ̇0 =
∂Φ0

∂t
+ v.∇Φ0 +

g.∇vΦ0

F 2

to show that

Φ̇0 =
dA

dt
+ u′.

[
∇A− Cg

F 2
+ C

du

dt
− 5

2T
∗∇C

]
+ 1

2u
′2
[

2
3C∇.u− dC

dt

]
−W.∇C + CUij

∂ui
∂xj

,

where
d

dt
=

∂

∂t
+ u .∇, and

W =
(

1
2u
′2 − 5

2T
∗)u′, Uij = u′iu

′
j − 1

3u
′2δij .

(b) The inner product is defined by

〈φ, ψ〉 =

∫
U
f0(v)φ(v)ψ(v) dv;

Calculate the inner products of pairs of {1,u′, 1
2u
′2}.
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(c) Show that if N is the space spanned by {1,u′, 1
2u
′2}, then W ⊥ N and

U ⊥ N .

(d) Deduce three equations which must be satisfied by A, C and u, if the con-
straint 〈Φ̇0, χ〉 = 0 is satisfied for each χ ∈ N .

2. A short review of the calculus of variations: Finding extremals. (You may also want
to consult the lecture notes for the Part A short option on calculus of variations.)

(a) A particle is released from (x, y) = (0, 0) at t = 0 and then follows a curve
y = y(x) which ends at (x, y) = (a, h), where h < 0 is the height lost, and
a the horizontal distance traversed. Both values are specified. If g is the
gravitational acceleration, the total time it takes for the particle to get from
the starting to the end point is

T [y] =
1√
2g

∫ a

0

√
1 + y′2
√
y

dx.

To find the y(x) that minimises T , state the Euler-Lagrange equation (ELE);
you do not need to solve it. Explain briefly how the ELE is derived.

(b) (Extremals under integral constraints.) Consider a hanging chain of constant
density that falls on a curve y = y(x) with fixed endpoints y = b at x = ±a.
It is subject to the constraint that its total length is fixed:

J [y] =

∫ a

−a

√
1 + y′2dx = L,

and minimizes its gravitational potential energy, which is

I[y] = gρ

∫ a

−a
y
√

1 + y′2dx.

State necessary conditions for y(x) and give a complete boundary value prob-
lem (with constraints and boundary conditions) for y(x). [You do not have
to solve the problem.]

3. Evolution of entropy. The normalised ensemble density is a probability in the phase
space Γ. This probability has an associated entropy S(t) = −

∫
dΓρ(Γ, t) ln ρ(Γ, t).

(The notation Γ = (q1, . . . , q3N , p1, . . . p3N ) is used a shorthand for vectors in 6N -
dimensional phase space.)

(a) Show that if ρ(Γ, t) satisfies Liouville’s equation for a Hamiltonian H, then
∂S/∂t = 0.

(b) Using the method of Lagrange multipliers, find the function ρmax(Γ) that
maximizes the functional S[ρ], subject to the constraint of fixed average en-
ergy, 〈H〉 =

∫
dΓρH = E.

(c) Show that the solution to part (b) is stationary, that is ∂ρmax/∂t = 0.

(d) How can one reconcile the result in (a) with the observed increase in entropy
as the system approaches the equilibrium density in (b)?
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4. Equations of state. The equation of state constrains the form of internal energy as
in the following examples.

(a) Starting from dE = T dS − P dV , show that the equation of state PV =
NkBT in fact implies that E can only depend on T .

(b) What is the most general equation of state consistent with an internal energy
that depends only on temperature?

(c) Show that for a van der Waals gas, the heat capacity (or specific heat) at
constant volume CV is a function of temperature only. The equation of state
for a van der Waals gas is given by[

P − a
(
N

V

)2
]

(V −Nb) = NkBT,

where in additional to the usual variables P , V , T , the constant number of
particles N and the Boltzmann constant kB we have two additional parame-
ters a and b.

5. Problem 8.1 in Sethna (not to be handed in).

6. Problem 8.6 in Sethna: Metropolis
[You will need to look at problem 8.5 to help with this problem.]

7. Read chapters 8.2 and 8.3 in Sethna

8. Problem 8.12 in Sethna: Entropy increases! Markov Chains

9. Problem 6.11 in Sethna: Barrier Crossing (Chemistry).
[This was marked as option on PS 2 because that sheet was too full.]
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