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6 Models for thin structures

6.1 Longitudinal displacement of a bar

As a first illustrative example, let us consider longitudinal waves propagating along a thin
bar with uniform cross-section area A. We consider a short segment of the bar between some
arbitrary point x and x+δx, where x measures longitudinal distance along the bar. The mass
of this segment is ρAδx, where ρ is the volume density of the bar, and the dominant force it
experiences consists of the tensions T exerted on each of its faces by the sections of the bar
on either side, as illustrated in Figure 6.1. Denoting the longitudinal displacement by u(x, t),
we thus obtain Newton’s second law in the form

T (x+ δx, t)− T (x, t) = ρAδx
∂2u

∂t2
(x, t). (6.1)

In the limit δx→ 0, this reduces to the partial differential equation

∂T

∂x
= ρA

∂2u

∂t2
. (6.2)

To close the problem, we now need a constitutive relation between T and u. On physical
grounds, we might expect T to be proportional to the stretch ∂u/∂x, by analogy with Hooke’s
law. Motivated by the exact static solution obtained in Section 2, we postulate the relation

T = EA
∂u

∂x
, (6.3)

where

E =
µ(3λ+ 2µ)

λ+ µ
(6.4)

again denotes Young’s modulus. By substituting (6.3) into (6.2), we find that u(x, t) satisfies
the wave equation

E
∂2u

∂x2
= ρ

∂2u

∂t2
. (6.5)

x

T (x, t) T (x+ δx, t)

δx

Figure 6.1: Schematic of a uniform bar showing the forces acting on a small segment of
length δx.
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Figure 6.2: Schematic of an elastic string showing the forces acting on a small segment of
length δx.

which says that longitudinal waves in the bar travel with speed
√
E/ρ. Since E < λ + 2µ,

these waves travel slower than longitudinal P-waves. Typical boundary conditions are that
u or the axial force EA∂u/∂x should be prescribed at each end of the bar and, of course, u
and ∂u/∂t need to be given at t = 0.

We should point out that various implicit assumptions underly the derivation given above.
We have assumed, for example, that the longitudinal displacement u is uniform in each cross-
section of the bar, and that the constitutive relation (6.3) holds although its derivation in
Section 2 was performed only under static conditions. Neither of these assumptions is exactly
true in practice, reflecting the fact that solutions of (6.5) are not exact solutions of the Navier
equations. Intuitively, we expect (6.5) to be a good approximate model when the bar is thin
and the displacement is small, specifically if u�

√
A� L, where L is the length of the bar.

With considerably more effort, it can be derived systematically by nondimensionalising the
Navier equation and boundary conditions and taking an appropriate asymptotic limit.

6.2 Transverse displacements of a string

Before deriving a model for the transverse displacements of a beam, let us remind ourselves
briefly of the corresponding derivation for an elastic string, which is characterised by the
fact that the only internal force that it can support is a tension T acting in the tangential
direction. Assuming that gravity g acts transversely to the string, as illustrated in Figure 6.2,
the net force experienced by a small segment of undisturbed length δx is[

T

(
cos θ
sin θ

)]x+δx
x

+

(
0
−%g

)
δx,

where % denotes the line density.

Under the assumption that the transverse displacement w(x, t) is small compared to the
length of the string, we can approximate the angle θ between the string and the x-axis by
θ ∼ ∂w/∂x� 1 and hence use the leading-order approximations

sin θ ∼ ∂w

∂x
, cos θ ∼ 1. (6.6)
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Figure 6.3: Schematic showing the forces and moments acting on a small segment of an elastic
beam.

At the same time, we suppose that there is no longitudinal displacement so that the accel-
eration is just ∂2w/∂t2 in the vertical direction. By applying Newton’s second law to the
segment and letting δx→ 0, we thus obtain the equations

∂T

∂x
= 0, T

∂2w

∂x2
− %g = %

∂2w

∂t2
. (6.7)

Hence we find again that the displacement satisfies the wave equation and that the ten-
sion T must be spatially uniform. Usually T is assumed to be a known constant although,
in principle, it may be a function of time, for example while a guitar string is being tuned.
Common experience suggests that a string is unable to withstand a compressive longitudinal
force and hence that T should be positive. We can make the same observation on mathemat-
ical grounds by noting that (6.7b) would change type from hyperbolic to elliptic if T were
negative, and hence cease to be well-posed as an initial-value problem.

6.3 Transverse displacements of a beam

6.3.1 Derivation of the beam equation

Now let us consider how to extend the model derived above to describe an elastic beam. In
contrast with a string, a beam can support an appreciable transverse shear force N as well as
the tension T , as illustrated in Figure 6.3; for convenience N is defined to act perpendicular to
the x-axis. Again considering small, purely transverse displacements, we obtain the equations

∂T

∂x
= 0, T

∂2w

∂x2
+
∂N

∂x
− %g = %

∂2w

∂t2
. (6.8)

Now our task is to relate N to w, and we start by performing a moment balance on the
segment shown in Figure 6.3. When doing so, we suppose that each section of the beam
exerts on its neighbours a bending moment M about the y-axis, as well as the tangential and
normal force components T and N . Conservation of angular momentum about the point x
leads to the equation

−M(x+ δx, t) +M(x, t) + δxN(x+ δx, t) = %g
δx2

2
+ Î

∂2θ

∂t2
, (6.9)
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Figure 6.4: Schematic of the end of a beam under (a) clamped, (b) simply supported and (c)
free conditions.

where θ ≈ ∂w/∂x is once again the small slope of the beam and the moment of inertia of the
segment about its end is given by Î = %(δx)3/3. When we let δx→ 0, the right-hand side of
(6.9) is thus negligible and we are left with

−∂M
∂x

+N = 0. (6.10)

Finally, we need a constitutive relation for M . It is a practical experience, for example
when bending a flexible ruler, that applying an increasing moment to a beam results in an
increasing curvature. For small displacements, this suggests a constitutive relation of the
form

M = −B∂
2w

∂x2
, (6.11)

where B is a constant known as the bending stiffness. Again we can use a simple exact
solution of the Navier equations from Section 2 to pose the relation

B = EI, where I =

∫∫
A
z2 dydz (6.12)

is the moment of inertia of the cross section A about the y-axis.
Postulating that the constitutive relation (6.11) still holds under dynamic conditions, we

combine (6.8)–(6.12), to obtain the beam equation

−EI ∂
4w

∂x4
+ T

∂2w

∂x2
− %g = %

∂2w

∂t2
. (6.13)

Evidently, (6.13) reduces to (6.7) as the bending stiffness EI tends to zero.

6.3.2 Boundary conditions

On physical grounds we expect to need to specify w and ∂w/∂t at t = 0, as for a string.
However, since (6.13) has four x-derivatives rather than two, we might anticipate that it
requires two boundary conditions at each end of the beam, in contrast with a string. If, for
example, a beam is clamped as shown in Figure 6.4(a), then both w and ∂w/∂x would be
prescribed at the clamp; in the case illustrated

w =
∂w

∂x
= 0. (6.14)

Alternatively, we could envisage a simply supported beam end, as shown in Figure 6.4(b),
where the displacement is fixed without applying any moment, so that w = M = 0 and thus

w =
∂2w

∂x2
= 0. (6.15)
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Figure 6.5: The first three buckling modes of a clamped elastic beam (with a = 1 and L = 1).

In the final example shown in Figure 6.4(c), the end of the beam is free. It therefore experi-
ences no shear force or bending moment, and from (6.10) and (6.11) we deduce the boundary
conditions

∂2w

∂x2
=
∂3w

∂x3
= 0, (6.16)

and in this case we must also have T ≡ 0.

6.3.3 Compression of a beam

One of the most dramatic new features of (6.16) compared with (6.7) is that we can now
consider situations in which T < 0. We illustrate an unexpected new possibility that arises
in such cases by considering steady displacements of a beam of length L subject to negligible
gravity. We suppose that the ends are clamped and subject to a compressive force P = −T
and zero transverse force. In this case (6.13) reduces to the ordinary differential equation

EI
d4w

dx4
+ P

d2w

dx2
= 0, (6.17a)

subject to the boundary conditions

dw

dx
=

d3w

dx3
= 0 at x = 0, L. (6.17b)

We can consider (6.17) as an eigenvalue problem. One possibility is always that the beam
remains straight with w ≡ const. but, if the applied force takes one of the discrete values

P

EI
=
n2π2

L2
, (6.18)

where n is an integer, then (6.17) admits the eigenfunction solution

w = A cos
(nπx
L

)
, (6.19)

where A is a constant.

The first three such eigenfunctions are shown in Figure 6.5; these are the shapes that a
beam can adopt as it buckles under a sufficiently large compressive force. The amplitude A
appears to be indeterminate, although we might expect it to to be a smoothly increasing
function of the applied force. This is a deficiency of the model that will be addressed in §6.4.
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Figure 6.6: (a) Schematic of the forces and moments acting on a small segment of a beam.
(b) Definition sketch showing the sign convention for the forces at the ends of the beam.

6.3.4 Waves on a beam

For the dynamic beam equation (6.13) with g = 0, we can seek travelling-wave solutions of
the form

u = A exp
(
i(kx− ωt)

)
, (6.20)

where the real part is assumed as usual, and hence obtain the dispersion relation

%ω2 = EIk4 + Tk2. (6.21)

Elastic waves on a beam are therefore dispersive, unlike P -waves, S -waves or waves on a
string. This should not come as too much of a surprise, since we have already discovered that
elastic waves are usually dispersive when boundaries are present.

For a beam under positive tension T > 0, waves with frequency ω can thus propagate
with wavelength 2π/k provided

ω

k
=

√
T

%

(
1 +

EIk2

T

)1/2

. (6.22)

Evidently this reduces to the dispersion relation for a string if the waves are long, with
k �

√
T/EI. For a beam under compression, with P = −T > 0, wave-like solutions of

(6.13) exist only if k2 > P/EI. For smaller values of k, (6.21) leads to complex values of
ω, corresponding to solutions that grow exponentially in time. It follows that the beam is
unstable to waves with wavelength larger than 2π

√
EI/P , and we will investigate this further

in §6.4.5.

6.4 Nonlinear beam theory

6.4.1 Derivation of the model

In equilibrium, it is surprisingly easy to generalise our derivation of linear beam theory in
§6.3 to model large two-dimensional transverse displacements. We describe the deformation
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of the beam using arc-length s along the centre-line and the angle θ(s) between the centre-
line and the x-axis. As discussed above, we assume the centre-line to be inextensible to
leading order, so that arc-length is conserved by the deformation and we can thus view s as
a Lagrangian coordinate that is fixed in the deforming beam. The transverse displacement is
given parametrically by x = x(s), w = w(s), where

dx

ds
= cos θ,

dw

ds
= sin θ. (6.23)

Now we balance forces and moments on a small segment of the beam as shown in Fig-
ure 6.6(a). We neglect inertia and body forces for the moment and note that N is now defined
to be the normal, rather than transverse, force; since θ is no longer assumed to be small this
is a significant distinction. We thus obtain the equations

d

ds
(T cos θ −N sin θ) = 0,

d

ds
(N cos θ + T sin θ) = 0,

dM

ds
−N = 0, (6.24)

the first two of which simply show that the internal forces in the x- and z-directions are
conserved. If a force (T0, N0) is applied at the right-hand end, with an equal and opposite
force at the left-hand end, as in Figure 6.6(b), it follows that

T = T0 cos θ +N0 sin θ, N = N0 cos θ − T0 sin θ. (6.25)

As a constitutive relation we expect, as in §6.3, the bending moment to be proportional
to the curvature which, for a nonlinear deflection, is given by dθ/ds. Since we are considering
small strains, we assume that the constant of proportionality is the same as in the linear case,
that is

M = −EI dθ

ds
. (6.26)

By collecting (6.24c), (6.25) and (6.26), we obtain the celebrated Euler strut equation

EI
d2θ

ds2
+N0 cos θ − T0 sin θ = 0. (6.27)

6.4.2 Boundary conditions

If we are given the applied force components T0 and N0, then we expect to impose two
further boundary conditions (one at each end) on the second-order differential equation (6.27).
Typical examples are clamped conditions, where we specify the angle θ, or simple support,
where there is zero bending moment and hence dθ/ds = 0. Suppose, instead, that we are told
the positions of the ends of the beam. Without loss of generality, we suppose the end s = 0
is fixed at the origin, and denote by (X,Z) the position of the other end s = L, where L is
the length of the beam. We then deduce from (6.23) the conditions

X =

∫ L

0
cos θ(s) ds, Z =

∫ L

0
sin θ(s) ds, (6.28)

from which we can in principle recover T0 and N0.
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6.4.3 Linearisation

It is reassuring to confirm that the Euler strut model reduces to the linear beam theory derived
in §6.3 for cases where the deflection is small. For small θ, we can simplify the geometric
relations (6.23) to lowest order to give

x = s,
dw

dx
= θ, (6.29)

and (6.27) thus becomes

EI
d3w

dx3
+N0 − T0

dw

dx
= 0. (6.30)

One further x-derivative reproduces the linear beam equation (6.13) in the absence of inertia
and gravity.

6.4.4 Example: deflection of a diving board

Let us first consider the example, alluded to previously, of the steady deformation of a diving
board. If the board is clamped horizontally at s = 0 and a downward load F is applied to
the other end, which is otherwise free, then we have T0 = 0, N0 = −F and (6.27) becomes

EI
d2θ

ds2
= F cos θ, (6.31)

subject to

θ(0) = 0,
dθ

ds
(L) = 0. (6.32)

Multiplying (6.31) through by dθ/ds and integrating once with respect to s, we obtain(
dθ

ds

)2

=
2F

EI
(sin θ + sinα) , (6.33)

where α is shorthand for −θ(L). When taking the square root, we note that we expect dθ/ds
to be negative and thus obtain the solution in parametric form as∫ −θ

0

dφ√
sinα− sinφ

= s

√
2F

EI
. (6.34)

It just remains to determine the angle α from the transcendental equation∫ α

0

dφ√
sinα− sinφ

= L

√
2F

EI
, (6.35)

which can be written in terms of so-called elliptic integrals. Given the applied force F , we
have to solve (6.35) for α (numerically), and the deflection may then be reconstructed using
(6.34) and (6.23).

In Figure 6.7(a), we plot the final angle −α as a function of the force parameter L
√

2F/EI.
As the applied force increases, the angle decreases, tending towards −π/2. In Figure 6.7(b),
we show the diving board profile corresponding to different applied forces, and we can see
clearly how the force causes the deflection to increase.
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Figure 6.7: (a) Final angle −α of a diving board versus applied force parameter L
√

2F/EI.
(b) Deflection of a diving board for various values of the force parameter; the dashed lines
show the linearised solution.

For small applied forces, we would expect the linear equation (6.30) to be applicable. The
linear model that describes our diving board is

EI
d3w

dx3
= F, w(0) =

dw

dx
(0) = 0,

d2w

dx2
(L) = 0, (6.36)

and the solution is readily found to be

w = − F

6EI
x2(3L− x). (6.37)

In Figure 6.7(b), (6.37) is plotted as dashed curves, and we see that there is excellent agree-
ment with the full nonlinear model provided the deflections are reasonably small.

6.4.5 Weakly nonlinear theory and buckling

Now let us return to the buckling of an elastic beam, which we discussed previously in the
linear case in §6.3. We focus on the model problem of a beam of length L, clamped at both
ends, subject to a compressive force P = −T0 and zero transverse force. We therefore have
to solve

d2θ

ds2
+

P

EI
sin θ = 0, (6.38a)

subject to the boundary conditions

θ (0) = θ (L) = 0. (6.38b)

This is a nonlinear eigenvalue problem: θ ≡ 0 is always a possibility, and we are seeking
values of the applied force P for which (6.38) admits nonzero solutions. Such solutions, if
they exist, correspond to buckling of the beam.

If θ is small, it is easy to show that (6.38) reduces to the linear eigenvalue problem (6.17)
studied previously, and we can read off from (6.19) the solution

θ =

A sin
(nπs
L

) L2P

π2EI
= n2,

0 otherwise,
(6.39)
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Figure 6.8: (a) Response diagram of the amplitude ‖θ‖ of the linearised solution (6.39) for
a buckling beam versus the force parameter λ. (b) Corresponding response of the weakly
nonlinear solution; the exact nonlinear solution is shown using dashed lines.

where n is any integer. Thus the amplitude A of the solution is zero, unless P takes one of
a discrete set of critical values, in which case it is arbitrary. Hence buckling can only occur
when

P = π2
EI

L2
(6.40)

We can try to visualise this behaviour by plotting a response diagram of the magnitude
of the solution

‖θ‖ = max
0<s<1

|θ| = |A| (6.41)

versus the control parameter

λ =
L2P

π2EI
. (6.42)

The response diagram corresponding to (6.39) is shown in Figure 6.8(a); exactly the same
diagram would have resulted had we used any other sensible norm ‖θ‖ instead of (6.41).

There are several problems with the solution (6.39). When λ = n2, where n is an integer,
the solution is not unique, since its amplitude is indeterminate. Also, if the applied force
slightly exceeds one of the critical values, we would expect on physical grounds that the
buckling would continue, while Figure 6.8(a) indicates that the solution instantly reverts to
θ ≡ 0. These criticisms can be answered by noting that, if we follow one of the branches
λ = n2, then θ will eventually increase to the point where the linearisation of (6.38) is no
longer valid.

We therefore need to reintroduce the nonlinearity to resolve the behaviour when λ is close
to n2. To do this systematically requires the use of asymptotic analysis, and we must first
nondimensionalise the model. The angle θ is already dimensionless, but it is convenient to
define

θ = δΘ, (6.43)

where Θ is order unity and δ is a small positive parameter that characterises the smallness of
θ. We also set s = Lξ and thus obtain the dimensionless model

d2Θ

dξ2
+ π2λ

sin(δΘ)

δ
= 0, θ (0) = θ (1) = 0, (6.44)
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where λ is again the dimensionless parameter defined by (6.42). We focus on a neighbourhood
of λ = n2 by writing

λ = n2 + ελ1, (6.45)

where ε is a fixed small positive number and λ1 is a control parameter which parametrises
the difference between λ and n2.

We thus have two small parameters in the problem: the amplitude δ of the solution and
the deviation ε of λ from its critical value. The vital step is to find a relation between these
two parameters that yields a balance between the compressive loading, characterised by ε,
and the nonlinearity, characterised by δ, and the correct choice leads to a so-called weakly
nonlinear theory. If we use the assumed smallness of δ to expand the sine in (6.44), we obtain
the Duffing equation

d2Θ

dξ2
+ π2

(
n2 + ελ1

)(
Θ− δ2Θ3

6
+ · · ·

)
= 0, (6.46)

and we clearly see that the required balance is obtained by choosing

δ =
√
ε. (6.47)

Before doing any further calculation, we can already infer from this that the amplitude of the
solution will vary as the square root of the excess loading.

After making the choice (6.47), we write Θ as an asymptotic expansion of the form

Θ ∼ Θ0 (ξ) + εΘ1 (ξ) + · · · . (6.48)

By substituting (6.48) into (6.46) and equating successive powers of ε, we find that

d2Θ0

dξ2
+ n2π2Θ0 = 0, Θ0 (0) = Θ0 (1) = 0, (6.49a)

d2Θ1

dξ2
+ n2π2Θ1 = −π2λ1Θ0 + n2π2

Θ3
0

6
, Θ1 (0) = Θ1 (1) = 0. (6.49b)

The general solution of (6.49a) is

Θ0 = A0 sin (nπξ) , (6.50)

and we seem to have made very little progress from (6.39). However, when we examine the
problem for Θ1, we find that (6.49b) has no solutions unless the right-hand side satisfies a
solvability condition, namely∫ 1

0

(
λ1Θ0 − n2

Θ3
0

6

)
sin (nπξ) dξ = 0. (6.51)

By substituting for Θ0 from (6.50), we obtain the following equation for the leading-order
amplitude.

A0

(
A2

0 −
8λ1
n2

)
= 0. (6.52)

When λ1 is negative, the only real solution of (6.52) is A0 = 0 but, for positive values of λ1,
there are three such solutions: A0 = 0,±(2/n)

√
2λ1. This behaviour of A0 as a function of

λ1, depicted in Figure 6.9(a), is characteristic of a so-called pitchfork bifurcation.
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Figure 6.9: (a) Pitchfork bifurcation diagram of leading-order amplitude A0 versus forcing
parameter λ1. (b) The corresponding diagram when asymmetry is introduced.

Working backwards, we can easily turn (6.52) into an equation for the amplitude of θ,
that is

|A|
[
|A|2 − 8

(
λ

n2
− 1

)]
= 0, (6.53)

and this weakly nonlinear response is plotted in Figure 6.8(b). This gives the physically
expected result that the amplitude of each buckled solution increases with the excess applied
force. We can also see how Figure 6.8(a) approximates this response for very small |A|. For
comparison, we also show the response of the full nonlinear solution of (6.38).

We can use the argument after (6.22) to show that the solution θ = 0 is stable for λ1 < 0
but loses stability to the nonzero solution as λ1 crosses zero, which justifies the labelling in
Figure 6.9(a). Another key ingredient of bifurcation pictures like Figure 6.9(a) is the symmetry
that we have assumed in our strut model. Any imperfection or asymmetry in the model, for
example gravity acting in the transverse direction, would deform the response diagram into
something like Figure 6.9(b), in which there is a smooth dependence of the solution on the
control parameter.


