
C5.2 Elasticity & Plasticity Hilary Term 2019

Problem Sheet 0: Solutions

1. The derivation of the wave equation for the string is given in the Prelims course on
Fourier Series & PDEs. In brief, we find the net vertical force on an element of length
δx to be T [∂w/∂x]x+δx

x . Equating this to “ma” for this element, ρ × δx × ∂2w/∂t2,
we find that

ρ
∂2w

∂t2
= T

∂2w

∂x2
,

which is the wave equation with wave speed c = (T/ρ)1/2.

Multiplying by ∂w/∂t and integrating between fixed points a and b, we have

d

dt

[

1

2

∫ b

a

(

∂w

∂t

)2

dx

]

=

∫ b

a

T
∂2w

∂x2

∂w

∂t
dx =

[

T
∂w

∂x

∂w

∂t

]b

a

−

∫ b

a

T
∂w

∂x

∂2w

∂x∂t
dx.

Rearranging we immediately have

d

dt

[

1

2

∫ b

a

(

∂w

∂t

)2

dx+ 1

2

∫ b

a

T

(

∂w

∂x

)2

dx

]

=

[

T
∂w

∂x

∂w

∂t

]b

a

,

which is the desired result.

Physically, this result represents the conservation of energy: the LHS gives the rate
of change of the kinetic energy (first integral) and elastic stretching energy (second
term). The RHS gives the rate of working of the vertical component of the ten-
sion force. Note, in particular, that when w(a, t) = w(b, t) = 0 (for example with
clamping) then we recover the usual conservation of energy.
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2. From the definitions, we have that

δx = δX+ u(X+ δX)− u(X)

or, in component form,

δxi = δXi + ui(Xj + δXj)− ui(Xj) = δXj

(

δij +
∂ui

∂Xj

)

+O(δX2

j )

so that

ℓ2 = |δx|2 = δxkδxk = δXj

(

δkj +
∂uk

∂Xj

)(

δki +
∂uk

∂Xi

)

δXi +O(|δX|)3

(Note that some care is needed to avoid conflicts in use of summation convention.)

Then

ℓ2 − L2 ≈ δXiδXj

[

∂uj

∂Xi

+
∂ui

∂Xj

+
∂uk

∂Xi

∂uk

∂Xj

]

since L2 = |δX|2 = δXkδXk.

For small |∂ui/∂Xj|, we can neglect the nonlinear term so that

ℓ2 − L2 ≈ 2eijδXiδXj

where

eij =
1

2

(

∂ui

∂Xj

+
∂uj

∂Xi

)

Suppose we define new coordinates x′ = Px, where P is an orthogonal matrix. The
displacement components with respect to the new axes clearly also satisfy u′ = Pu.
In component form, we can write

X ′

i = PikXk, u′

j = Pjlul.

By orthogonality, we have PikPjk = PkiPkj = δij so that Xk = PikX
′

i. Using the
chain rule, we therefore have

∂u′

j

∂X ′

i

= Pik
∂

∂Xk

(Pjlul) = PikPjl
∂ul

∂Xk

.

In dyadic notation, we can therefore write

(∇u)′ = P · (∇u) ·PT

so that ∇u is a second rank tensor. [Note that (∇u)ij = ∂uj/∂xi, which is the
displacement gradient.]
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To show that E is a tensor, note that

(∇uT )′ =
[

P · (∇u) ·PT
]T

= P · (∇u)T ·PT

and so ∇uT is also a second rank tensor. Since E = (∇u+∇uT )/2, we conclude that
E is also a tensor.

If u(X) = c+ω ∧X then we can write ui = ci+ΩijXj where Ω is skew-symmetric.
Hence

eij =
1

2

[

∂

∂Xj

(ci + ΩikXk) +
∂

∂Xi

(cj + ΩjlXl)

]

=
1

2
(Ωij + Ωji) = 0

(using the skew-symmetry of Ω).

Conversely, if eij ≡ 0, then from the diagonal elements we have

∂u1

∂X1

=
∂u2

∂X2

=
∂u3

∂X3

= 0

so that
u1 = u1(X2, X3), u2 = u2(X1, X3), u3 = u3(X1, X2)

Examining other components, we have

0 = 2e12 =
∂u1

∂X2

+
∂u2

∂X1

=⇒
∂2u1

∂X2
2

= 0 (1)

0 = 2e13 =
∂u1

∂X3

+
∂u3

∂X1

=⇒
∂2u1

∂X2
3

= 0 (2)

0 = 2e23 =
∂u2

∂X3

+
∂u3

∂X2

=⇒
∂2u2

∂X1∂X3

+
∂2u3

∂X1∂X2

= 0 (3)

The last of these can be used with the first two to show that

0 =
∂

∂X3

(

−
∂u1

∂X2

)

+
∂

∂X2

(

−
∂u1

∂X3

)

− 2
∂2u1

∂X2∂X3

and so u1 must be a linear function of X2 and X3, i.e.

u1 = c1 + a1X2 + b1X3.

Similarly,
u2 = c2 + a2X3 + b2X1

and
u3 = c3 + a3X1 + b3X2.
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Examining the off-diagonal elements of E we find that

0 = 2e12 = a1 + b2 =⇒ b2 = −a1 := ω3 (4)

0 = 2e13 = b1 + a3 =⇒ b1 = −a3 := ω2 (5)

0 = 2e23 = a2 + b3 =⇒ b3 = −a2 := ω1 (6)

from which we can immediately write u(X) = c + ω ∧ X with c = (c1, c2, c3)
T ,

ω = (ω1, ω2, ω3)
T .

We have therefore shown that the strain is zero if and only if u is a rigid-body
displacement, consisting of a translation c and a rotation ω ∧X.
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3. The “proof” of the symmetry of T = (τij) is in the printed lecture notes and does
not need to be repeated here.

Similarly, there is a “proof” in the lecture notes that the traction σ on a surface
element with normal n is given by

σ = T n.

When we rotate the axes using an orthogonal matrix P the vectors σ and n transform
according to

σ
′ = Pσ, n

′ = Pn,

so if we set σ′ = T ′
n

′ we get

Pσ = T ′Pn =⇒ PT n = T ′Pn.

Since this is true for all n, we deduce that

PT = T ′P =⇒ T ′ = PT PT

and so T is a tensor.
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