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. Suppose ® : (¢,x) — ®;(x) is a map such that it is C! in t € (0,T) and C° in ¢ € [0,T].
Moreover, suppose for each ¢, the map x — @, (x) is a diffeomorphism from R¢ to itself with
linear growth at infinity for @, (x) and its time derivative: there exists C(7T') > 0 such that

ifb, (x)

max (\CD,(X)], ”

>§C(T)(1+\x\) forallxe R, 0<r<T.

Show that when p € 22, (RY), the push-forward measure p () := ®,#u € C([0,T], 2,(RY)).
More precisely, show that
0,T] >+ DH#u € 2,(RY)

is a continuous mapping.

. Complete the Gronwall inequality argument of Lemma 3.2; given p; € C([0,T], 2, (RY)
with associated velocity fields u' = u(p;) and flow maps ®! = &, (p;) fori = 1,2, we showed

IANY) Ll 2 !
/() = ®2() | <L | [0}(x) = @2(ldx+L | di(pr(s).pals)ds.

From this, deduce
I
9}(x) =~ B} x)| <L [ X0 (pi(5),pa(s)ds:
0
. Consider two solutions x; (), x(¢) to the following ODE

d
—x(t) =—-VV(x(t t>0
(1) = =V (x(0)),
where V : R? — R is a C? function with bounded second derivatives such that D*V > A,
for some A > 0. Show the following inequality

d2(5x1 (t)> 6xz(t)) < e_MdZ(le 0)» sz(O))'

. Recall the setting of Theorem 3.2; Consider u € 22;(R?), and W € C*(R?) with bounded
second derivative. Define F : X — X where X is the complete metric space C([0,T], 21 (RY)
with the metric 2, r and F maps p — ®;(p)#u where @, (p) is the associated flow map to
the velocity field u(p) = —VW xp. Show that p = F(p) is the unique weak solution in X

to the linear problem
9p
—4+V-[p =0.
5, TV pu(p)]=0

. Fill in the remaining details of Theorem 3.2. That is, taking the strict contraction property
of the map F in Problem 4 for granted, extend the unique local solution for all times.




6. Assume that W € C?(R9) is a symmetric function with bounded second derivative. Show
that the empirical measure defined by u” =y Lyl 6X," where N € N is fixed and for i =
1,...,N each X/ solves

dx;

:——ZVW

l#]
with initial data X, is the unique weak solution in C([0,), 2 (R%)) to

P 5. [p(vWp)].

with initial data u™ (0).

7. Using the contraction estimate of Theorem 3.4 (and also similar to Theorem 3.5) and as-
suming the restitution coefficient e € [0, 1), show existence and uniqueness of solutions in
C([O,OO)”@z(R%)) to

9f _
S =0l S,

subject to initial data fy € 92,(R3). Hint: As in Theorem 3.2, think of this equation as a

fixed point problem.

8. Consider the Boltzmann equation in one dimension introduced in Chapter 1, Section 1.1,
given by

af_

where 0 < 7 < 1/2, the dissipative collision between particles reads
V= (1—=F)v+iw; w =+ (1-Fw,

and the collision operator is defined by duality as

<0.0:f.1) > //f o)~ ()] dvaw.

Show a contraction type estimate in d, for the gain part of the collision operator for probabil-
ity measures with equal mean. Show stability of solutions in C([0,e0), 2,(R%)) for initial
data in Z2,(R?) assuming the existence and uniqueness of weak solutions. Hint: Follow
similar strategy as in Section 3.3.



