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1. Fill in the rest of the details in the proof of Theorem 4.1. Suppose µ Î L and ν are
probability measures on Rd with T : Rd → Rd an optimal transport map leading to the
optimal cost for d2

2(µ,ν) so that ν = T #µ . For 0 ≤ s < 1 and x ∈ Rd , define Ts(x) =
(1− s)x+ sT (x). Show that the velocity field u(s,x) defined by

dTs(x)
ds

= u(s,Ts(x))

is well-defined by proving Ts(x) is invertible and Lipschitz for 0≤ s < 1 since T = ∇ϕ for
some convex ϕ .

2. Finish the details of Lemma 4.2 for the strictly convex claims. That is, given V : Rd → R
and W : Rd → R both strictly convex, show that

V [µ] =
∫
Rd

V (x)dµ(x) and W [µ] =
1
2

∫
Rd×Rd

W (x− y)dµ(x)dµ(y)

are strictly d2-convex (for W you need to show this is true unless the geodesic joining the
measures is a translation of a given measure).

3. Prove Lemma 4.3 which states; Given Λ a nonnegative symmetric matrix, define

v(t) = det((1− t)Id + tΛ)
1
d , t ∈ [0,1].

Show that v is concave in [0,1] and strictly concave unless Λ = λ Id for some λ ≥ 0.

4. This question follows up the previous exercise and proves Theorem 4.2. Suppose U :
[0,∞)→ R is a C([0,∞),R)∩C2((0,∞),R) function with U(0) = 0 such that (0,∞) 3 s 7→
sdU(s−d) is convex and non-increasing. Show that

t 7→ v(t)dU(v(t)−d), t ∈ [0,1]

is a convex function. Moreover, for µ,ν ÎL (so that they can be connected by a geodesic
µt = Tt#µ with Tt(x) = (1− t)x+ t∇ϕ(x)), recall that the internal energy of µt = ρtL can
be written as

U [µt ] =
∫
Rd

U(ρt(x))dx =
∫
Rd

U
(

ρ0(x)
D(x, t)d

)
D(x, t)ddx,

where D(x, t) = det((1− t)Id + tD2ϕ(x))
1
d . By considering the map

t 7→ D(x, t)dU(ρ0(x)D(x, t)−d)

and using the first part of this question, show that the internal energy U is d2-convex.



5. Repeat the procedure in the notes of using the dynamic interpretation of d2 to formally
compute the convexity properties of interaction energies W of probability measures. More
precisely, suppose µs = ρsL is a geodesic curve with the following optimality conditions∂sρ +∇ · (ρ∇ψ) = 0

∂sψ +
1
2
|∇ψ|2 = 0

, ψ ∈C∞
0 ([0,1]×Rd).

Use these equations and compute formally

d2

ds2 W (ρs) =
d2

ds2

{
1
2

∫
Rd×Rd

W (x− y)ρs(x)ρs(y)dxdy
}
.

Following this computation, what conditions on W guarantee the d2-convexity of W ?

6. Remind yourself of the general family of PDEs in the first chapter of the course. Show that
they can be formally written as gradient flows in the following way

∂tρ +∇ · (ρu) = 0 in (0,∞)×Rd

u =−∇
δF
δρ

,

where the free energy functional, F [ρ] is given as a sum of internal, potential, and inter-
action energies F = U +V +W . In particular, for the internal energy, find the suitable U
related to P. Show that McCann’s condition (Theorem 4.2) for the function U is satisfied if
and only if P satisfies the following conditions defined through U for every s > 0

P(s)≥ 0,
(

1− 1
d

)
P(s)≤ sP′(s), sU ′′(s) = P′(s), P(0) = 0.

7. Show the variational characterization of the implicit Euler scheme for a convex and lower
semicontinuous energy function E : Rd → R∪{∞}

−xk+1− xk

∆t
∈ ∂E(xk+1) ⇐⇒ xk+1 = argminx∈Rd

{
1

2∆t
|x− xk|2 +E(x)

}
.

8. Given the energy functional,

E [u] :=
{ 1

2
∫
Rd |∇u|2dx u ∈ H1(Rd)

+∞ otherwise
,

show that ∂E(u) 6= /0 if and only if ∆u ∈ L2(Rd).


