Problem Sheet 2

Question 1. Leray-Schauder/Schaefer Theorem.

- Prove the following result Let X be a Banach space and $T: X \rightarrow X$ be a compact map with the following property: there exists $R>0$ such that the statement ($x=\tau T x$ with $\tau \in[0,1$) implies $\|x\|_{X}<R$. Then T has a fixed point x^{*} such that $\left\|x^{*}\right\|_{X} \leq R$.

Hint: Consider the operators

$$
T_{n}(x):= \begin{cases}T x & \text { if }\|T x\|_{X} \leq R+\frac{1}{n} \\ \frac{R+1 / n}{\|T x\|_{X}} T x & \text { else }\end{cases}
$$

on a suitable domain and prove that they are compact.

- Let $T: X \rightarrow X$ a compact map such that there exists $R>0$ such that $\|T x-x\|_{X}^{2} \geq\|T x\|_{X}^{2}-$ $\|x\|_{X}^{2}$ when $\|x\|_{X} \geq R$. Show that T admits a fixed point.

QUESTION 2. Leray's eigenvalue problem. Let $K:[a, b] \times[a, b] \rightarrow(0, \infty)$ be a continuous and positive function and consider the integral operator $T: C^{0}([a, b]) \rightarrow C^{0}([a, b])$ defined by

$$
(T u)(x)=\int_{a}^{b} K(x, t) u(t) d t
$$

Prove that T has at least one non-negative eigenvalue λ whose eigenvector is a continuous non-negative function u, i.e. there exist $\lambda \geq 0$ and a non-negative u so that

$$
\int_{a}^{b} K(x, t) u(t) d t=\lambda u(x) .
$$

Hint: consider, on an appropriate closed convex set M, the function

$$
F(u)=\frac{1}{\int_{a}^{b} T u(t) d t} \cdot T u
$$

and apply one of the versions of Schauder's Fixed Point Theorem with the help of Arzéla-Ascoli Theorem. To find a suitable set M think about what property all functions $F(u)$ have in common.

QUESTION 3. Integral operators on $L^{2}(\Omega)$ vs. $C(\bar{\Omega})$ As always, $\Omega \subset \mathbb{R}^{n}$ is a smooth bounded domain.

- Let $a: \bar{\Omega} \times \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous map, and let

$$
A(u)(x)=\int_{\Omega} a(x, y, u(y)) d y
$$

show that $A: C(\bar{\Omega}) \rightarrow C(\bar{\Omega})$ is well defined and compact. (Hint: use Arzela-Ascoli Theorem).

- Let $k \in L^{2}(\Omega \times \Omega)$ and define

$$
(K u)(x)=\int_{\Omega} k(x, y) u(y) d y
$$

Show that $K: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is well defined and compact. You can use for example that $C_{0}^{\infty}(\Omega \times \Omega)$ is dense in $L^{2}(\Omega \times \Omega)$, and therefore there is a sequence $k_{m} \in C_{0}^{\infty}(\Omega \times \Omega)$ such that $k_{m} \rightarrow k$ in $L^{2}(\Omega)$.

- Give an example of continuous a such that A (defined as above) is not well defined as an operator from $L^{2}(\Omega) \rightarrow L^{2}(\Omega)$.

Question 4. Continuous maps. Let $g \in C\left(\mathbb{R} \times \mathbb{R}^{n}\right)$ be such that $g(z, p) \leq a+b|z|^{\alpha}+c|p|$, where a, b and c are non negative constants, and $2 \alpha<2^{*}$, where $2^{*}=2 n /(n-2)$ if $n \geq 3$, and $2^{*}=\infty$ if $n=1,2$. Then the map $u \mapsto g(u, \nabla u)$ is continuous from $H_{0}^{1}(\Omega)$ to $L^{2}(\Omega)$ and maps bounded subsets of $H_{0}^{1}(\Omega)$ to bounded subsets of $L^{2}(\Omega)$.

Hint: rewrite $g(u, \nabla u)=\tilde{g}\left(u, \frac{\nabla u}{|\nabla u|^{\nu}}\right)$ for a suitable function \tilde{f} and a suitable exponent $0<\nu<1$ and apply Lemma 2.7 from the lecture

