Problem Sheet 3

Question 1. Let $f \in C^{0}(\mathbb{R}, \mathbb{R})$ be so that so that there exists some C such that $|f(u)| \leq C\left(1+|u|^{1 / 2}\right)$. Modifying the proof of application 1 from the lecture, prove that

$$
\Delta u=f(u) \text { in } \Omega, \text { with } u=0 \text { on } \partial \Omega,
$$

has a weak solution.

Question 2. Proof of the weak Maximum Principle Let $b \in L^{\infty}\left(\Omega, \mathbb{R}^{n}\right)$. Give a weak formulation of the condition

$$
(\star) \quad \Delta u+b \cdot \nabla u \leq 0
$$

that is well defined for functions $u \in H^{1}(\Omega)$.
Then show that there exists a number $c_{1}>0$ so that if $u \in H^{1}(\Omega)$ satisfies the weak form of (\star) for some b with $\|b\|_{L^{\infty}} \leq c_{1}$ and $u \geq 0$ on $\partial \Omega$, then $u \geq 0$.

Hint: You may use that $u^{-}=-\min (u, 0) \in H_{0}^{1}(\Omega)$ with $\nabla u^{-}=-\nabla u \cdot \chi_{\{u<0\}}$ a.e.

Question 3. A non-linear PDE with a parameter

Consider the PDE

$$
-\Delta u=\exp \left(-\frac{\lambda}{u+1}\right) \text { in } \Omega \quad u=0 \text { on } \partial \Omega
$$

Show that this problem can be formulated in an equivalent form so that it makes sense in $H_{0}^{1}(\Omega)$, i.e. making a modification to the right-hand-side that would not omit any solution, but would allow the equation to be well-posed. Prove that there exists at least one weak solution, for any λ and that this solution is unique if $\lambda<0$.

Question 4. Sub and Super solutions.

Given a smooth, bounded domain $\Omega \subset R^{3}$, we consider the following reaction-diffusion problem

$$
-\Delta u+u(1-u)=-1 \text { in } \Omega, \text { and } u=0 \text { on } \partial \Omega
$$

- Show that this problem makes sense, and in particular that it can be written (for any $\lambda>0$) as a fixed point problem for $T:=u \rightarrow(-\Delta+(\lambda+1))^{-1}(f(u)+\lambda u)$, where T is a continuous map on $H_{0}^{1}(\Omega)$.
- Find a sub-solution and a super-solution.
- Show that there exists a $\lambda>0$ such that $u^{2}-1+2 \lambda u$ is an increasing function of u when $u \geq \underline{\mathbf{u}}$.
- Show that there exists at least one solution in $H_{0}^{1}(\Omega)$ by adapting the super/sub solution method given in the lecture notes.

Question 5. Frechet Derivative

(a) For a smooth bounded domain Ω, consider the map $F: C^{2}(\bar{\Omega}) \rightarrow C(\bar{\Omega})$ given by

$$
F(u)=\Delta u+f(u),
$$

where $f \in C^{1}(R)$. Compute the directional derivatives of F, and show that F is Fréchet differentiable.
(b) Let $\Omega \subset \mathbb{R}^{n}, 1 \leq n \leq 4$, be bounded and consider the function $F(u):=(-\Delta)^{-1}\left(u^{2}\right)$. Prove that F is a C^{1} function from $H_{0}^{1}(\Omega)$ to $H_{0}^{1}(\Omega)$.

