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Problem Sheet 4

Let X be a separable reflexive Banach space and M ⊂ X be non-empty, closed and convex.

Question 1. Monotone Operators Let A : M → X∗ be a monotone operator.

(1) Using monotonicity first, and then Minty’s Lemma, show that A satisfies condition (H3).

(2) Show that if A is strictly monotone, i.e. so that 〈A(u) − A(v), u − v〉 > 0 for all u 6= v, then

there exists at most one solution u ∈ M of the variational inequality 〈A(u), u − v〉 ≤ 0 for all

v ∈M .

(3) Show that if A is strongly monotone, i.e. so that there exists c > 0 such that

〈A(u)−A(v), u− v〉 > c ‖u− v‖2 ,

and A maps bounded sets to bounded sets, then the variational inequality has a unique solution.

(4) Using the above show that the equation

−∆u = f in Ω, u = 0 on ∂Ω

has a unique solution for every f ∈ L2(Ω), Ω ⊂ Rn a bounded open subset with smooth

boundary.

Question 2. Monotonicity, Convexity

Let X be a Banach space and F : X → R Gâteaux differentiable in every point u ∈ X with Gâteaux

derivative F ′(u). Show that

F is convex ⇔ F ′ : X → X∗ is monotone.

Remark:

• A map G : X → X∗ is monotone if 〈G(u)−G(v), u−v〉 ≥ 0 for all u, v ∈ X (i.e. hemicontinuity,

as in the definition of a monotone operator, is not required).

• A function F : X → R is convex on X, if F (tu+ (1− t)v) ≤ tF (u) + (1− t)F (v) for all t ∈ [0, 1]

and u, v ∈ X.

• Recall that a differentiable function g : I ⊂ R → R is convex on I if g′ is monotonically

increasing on I. Consider g(t) := F (tu+ (1− t)v).

Question 3. Strongly monotone operator Let Ω = (−1, 1) and X = H2(Ω) ∩H1
0 (Ω) endowed

with the H2-norm.

(a) Let A : X → X∗ be defined via

〈A(u), v〉 :=

∫
Ω

u′′v′′dx.

Show that A is a strongly monotone operator, i.e. hemicontinuous and so that there exists some

c0 > 0 with

〈A(u)−A(v), u− v〉 ≥ c0‖u− v‖2 for all u, v ∈M.

Hint: Use Poincaré’s inequality, as well as Poincaré’s inequality for functions with mean

value zero.

(b) Let now Fµ(u) := A(u) + µB(u) where B(u)(v) := u(0) · v(0) +
∫

Ω
x · v(x)dx.

Show that Fµ : X → X∗ is well defined for any µ ∈ R and that there exists a number µ0 > 0

so that for each µ with |µ| ≤ µ0 there exists a unique solution of the equation

Fµ(u) = 0.

(c) Let now µ ≥ 0. Determine a functional Iµ : X → R so that the following holds: u ∈ X is a

solution of Fµ(u) = 0 if and only if u is a minimiser of Iµ on X
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Question 4. Consider a domain Ω ⊂ Rn which is smooth and bounded, and g ∈ C2(Rn) such that

g ≤ 0 on ∂Ω. Consider the energy I given by

I(v) =

∫
Ω

|∆v|2 + fvdx,

for some f ∈ L2(Ω).

(1) Find the Euler-Lagrange equation satisfied by the critical points of I(v) and prove that every

critical point of I is a minimiser.

(2) Consider the set M given by

M :=
{
v ∈ H2(Ω) ∩H1

0 (Ω) | v ≥ g a.e. on Ω
}
.

Show that there exists a unique minimizer of I on M —check carefully that the assumptions of

the Theorem(s) you use are satisfied. You may use without proof that for all u ∈ H1
0 (Ω)∩H2(Ω)

‖u‖H1
0 (Ω) ≤ C‖∆u‖L2(Ω),

where the constant C is independent of u.

Question 5. Three approaches to the same problem. Consider a domain Ω = {(x, y) ∈
R2 s.t.x2 + y2 ≤ 1} and the equation

−∆u+ u5 = 1 in Ω, u = 0 on ∂Ω.

• Show that this equation makes sense in H1
0 (Ω), that is, it has a legitimate weak variational

formulation.

• Using the first part of the course, show that you can formulate it as a fixed point problem of

the form u = T (u) where T is a continuous compact map.

• Find a simple subsolution u and a simple supersolution ū. Show that the problem can be

transformed into

−∆u+ λu = fλ(u)

for a constant λ > 0 chosen so that fλ(u) is increasing when u ≤ u ≤ ū, and use the method

of sub and super solutions to show that a solution u can be found by a constructive (iterative)

method.

• Using Schauder’s FPT and the above show that there exists a solution.

• Use the variational inequality approach to find a solution in H1
0 (Ω).

• What can you say about uniqueness?


