C3.11 Riemannian Geometry

Problem Sheet 3

Hilary Term 2020–2021

This problem sheet is based on Lectures 8b–12b.

1. Let E_1, E_2, E_3 be vector fields on \mathcal{S}^3 such that $[E_i, E_j] = -2\epsilon_{ijk}E_k$. For $\lambda > 0$, let

$$X_1 = \lambda E_1, \quad X_2 = E_2, \quad X_3 = E_3$$

and define a Riemannian metric g on S^3 by the condition that

$$g(X_i, X_j) = \delta_{ij}$$

- (a) Show that (S^3, g) is Einstein if and only if $\lambda = 1$.
- (b) Find a necessary and sufficient condition on λ so that the scalar curvature of (\mathcal{S}^3, g) is zero.
- 2. Let (S^n, g) be the round *n*-sphere and let *h* be the product metric on $S^n \times S^n$. Show that $(S^n \times S^n, h)$ is Einstein with non-negative sectional curvature.
- 3. Let M be SO(n), O(n), SU(m) or U(m) and let g be the bi-invariant metric on M given by

$$g_A(B,C) = -\operatorname{tr}(A^{-1}BA^{-1}C)$$

for all $A \in M$ and $B, C \in T_A M$. Let $L_A : M \to M$ denote left-multiplication by A and let

 $\mathcal{X} = \{ \text{vector fields } X \text{ on } M : (L_A)_* X = X \, \forall A \in M \}.$

(a) Show that, for all $X, Y \in \mathcal{X}$,

$$\nabla_X Y = \frac{1}{2} [X, Y].$$

[You may assume that [X, Y](I) is the matrix commutator of X(I) and Y(I), where I is the identity matrix.]

- (b) Show that the sectional curvatures of (M, g) are non-negative and that (M, g) is flat if and only if n = 2 or m = 1.
- 4. (a) Show that an oriented minimal hypersurface in (\mathbb{R}^{n+1}, g_0) is flat if and only if it is totally geodesic.
 - (b) Let

$$M = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| = |z_2| = \frac{1}{\sqrt{2}}\} \subseteq S^3$$

and let g be the induced metric on M from the round metric on S^3 .

Show that (M,g) is flat and that M is a minimal hypersurface in S^3 which is not totally geodesic.

- 5. (a) Let $\gamma : [0, L] \to (M, g)$ be a geodesic and let $f : (-\epsilon, \epsilon) \times [0, L] \to M$ be a variation of γ so that the curve $\gamma_s : [0, L] \to (M, g)$ given by $\gamma_s(t) = f(s, t)$ is a geodesic for all $s \in (-\epsilon, \epsilon)$. Show that the variation field V_f of f is a Jacobi field along γ .
 - (b) Let

$$\mathcal{H}^{n} = \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} x_{i}^{2} - x_{n+1}^{2} = -1, x_{n+1} > 0 \}$$

and let g be the restriction of $h = \sum_{i=1}^{n} dx_i^2 - dx_{n+1}^2$ on \mathbb{R}^{n+1} to \mathcal{H}^n . Given that the normalized geodesics γ in (\mathcal{H}^n, g) with $\gamma(0) = x$ and $\gamma'(0) = X$ are given by

$$\gamma(t) = x \cosh s + X \sinh s,$$

show that (\mathcal{H}^n, g) has constant sectional curvature -1.

6. (Optional.) Let (S^{2n+1}, g) be the round (2n+1)-sphere, view $S^{2n+1} \subseteq \mathbb{C}^{n+1}$ and let $\pi : S^{2n+1} \to \mathbb{CP}^n$ be the projection map. For $z \in S^{2n+1}$ we have E(z) = iz (identifying tangent vectors in \mathbb{C}^n with \mathbb{C}^n), ker $d\pi_z = \text{Span}\{E(z)\}$ and we let

$$H_z = \{ X \in T_z \mathcal{S}^{2n+1} : g(X, E(z)) = 0 \} \text{ and } \Phi_z = \mathrm{d}\pi_z : H_z \to T_{\pi(z)} \mathbb{CP}^n.$$

The Fubini–Study metric h on \mathbb{CP}^n is then given by

$$h_{\pi(z)}(X,Y) = g_z(\Phi_z^{-1}(X),\Phi_z^{-1}(Y)).$$

(a) For any vector field X on \mathbb{CP}^n we define a vector field \widehat{X} on \mathcal{S}^{2n+1} by

$$\widehat{X}(z) = \Phi_z^{-1} \big(X(\pi(z)) \big).$$

If $\widehat{\nabla}$ is the Levi-Civita connection of g and ∇ is the Levi-Civita connection of h, show that, for all vector fields X, Y on \mathbb{CP}^n

$$\widehat{\nabla}_{\widehat{X}}\widehat{Y} = \widehat{\nabla_X Y} + \frac{1}{2}g([\widehat{X}, \widehat{Y}], E)E.$$

[Hint: Show that $[\widehat{X}, \widehat{Y}] - \widehat{[X,Y]}$ and $[\widehat{X}, E]$ are multiples of E.]

- (b) Show that $\gamma : (-\epsilon, \epsilon) \to (\mathbb{CP}^n, h)$ is a geodesic with $\gamma(0) = \pi(z)$ if and only if $\gamma = \pi \circ \hat{\gamma}$ where $\hat{\gamma} : (-\epsilon, \epsilon) \to (\mathcal{S}^{2n+1}, g)$ is a geodesic with $\hat{\gamma}(0) = z$ and $\hat{\gamma}'(0) \in H_z$.
- (c) Since $X \in H_z$ if and only if $iX \in H_z$, we can define $J = J_{\pi(z)} : T_{\pi(z)} \mathbb{CP}^n \to T_{\pi(z)} \mathbb{CP}^n$ by

$$J(X) = \mathrm{d}\pi_z(i\Phi_z^{-1}(X)),$$

which then extends to a map J from vector fields to vector fields on \mathbb{CP}^n . Let $X, Y \in T_{\pi(z)}\mathbb{CP}^n$ be orthogonal unit vectors and write $Y = \cos \alpha Z + \sin \alpha J X$ where Z is orthogonal to J X and unit length. Show that the sectional curvature K of (\mathbb{CP}^n, h) satisfies

$$K(X,Y) = 1 + 3\sin^2\alpha.$$

[Hint: Let γ be a geodesic in (\mathbb{CP}^n, h) with $\gamma(0) = \pi(z)$ and $\gamma'(0) = X$, and consider a variation f(s,t) of γ so that $\gamma_s(t) = f(s,t)$ is geodesic for all s such that $\gamma_s(0) = \pi(z)$ and $\gamma'_s(0) = \cos sX + \sin sY$. You may want to consider the cases $\sin \alpha = 0$ and $\cos \alpha = 0$ first.]