Elliptic Curves. HT 2020/21'

SECTION 1. THE GRrROUP LAw ON AN ELLIPTIC CURVE

Definition 1.1. An elliptic curve over a field K is (up to birational equivalence) a nonsin-

gular projective cubic curve, defined over K, with a K-rational point.

Definition 1.2. Let C : F(X,Y,Z) = 0 be an elliptic curve /K [the notation /K means
‘defined over K; that is, all of the coefficients of C are in the field K]. So, C is a nonsingular
projective cubic curve, with a K-rational point, which we shall denote o. For any two
points a, b on C, let {51 denote the line which meets C at a, b [if a, b are distinct then ¢,

is the unique line through a, b; if a = b then (,, is the line tangent to C at a = b).

ga,b ‘ | d

Let £, denote the line which meets C at a, b.

Then £, and C have 3 points of intersection (Bézout).
Let d be the third point of intersection between C and ¢, p,.
Now, let £y q denote the line which meets C at o and d.
2 Let ¢ be the third point of intersection between C and ¢4 4.
Define a+ b = c.

Let ¢4, be the line tangent to C at o.

Let k be the third point of intersection between C and /g .
Now, let £,k be the line which meets C at a and k.

Let a be the third point of intersection between C and /, .

= Define —a to be a.

14

0,0
We shall soon show that a + b is a commutative group law on the points on C, with

identity o and the inverse of a given by —a. First we need the following technical lemma.

Lemma 1.3. Let Py,..., Py be such that no 4 points lie on a line and no 7 points lie on a
conic. Then there exists a unique point Py which is a 9th point of intersection of any two

cubics passing through Py, ..., Ps.

Optional Proof See 0.137.

IThese notes are a slightly edited version of ones written by Victor Flynn. (So far the only edit is this footnote.)
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Theorem 1.4. Let C be an elliptic curve /K, with K-rational point o. Then a + b, as
in Definition 1.2, gives a commutative group law on the points on C, with identity o. The
inverse of a is given by the point —a, constructed in in Definition 1.2. Further, the K-

rational points C(K) form a subgroup, called the Mordell-Weil group.

Proof 1t is easy to show commutativity, the fact that o is the identity, and the fact that —a
is the inverse of a. The only difficult problem is associativity. In order to prove associativity,

consider the following diagram.

w

a v r
£

b C u s

d e o t

14 m n

Here, r, s,t, ¢, m,n are lines. On each line, the labelled points are the points of intersection
between C and that line. From the construction of Definition 1.2:
at+b=e,
and so:
(a+b) 4 ¢ = 3rd point of intersection on l, ¢.
Similarly:
b+c=v,
a+ (b + c¢) = 3rd point of intersection on fg .
To show (a+b) +¢c =a+ (b + c), it is sufficient to show that f = w. Let F; = ¢mn and
F, = rst, both of which are cubic curves.
C and F} have 8 common points: a,b,c,d, e, u,v,o.
C and F; also have these 8 common points: a,b,c,d, e, u,v,o.
From Lemma 1.3, the 9th point of intersection of C and F; must be the same as the 9th

point of intersection of C and Fj; that is, f = w, as required.



Hence, + is a commutative group law.

It remains to show that C(K) is a subgroup. We are given that o € C(K). Let a,b € C(K).
It is sufficient to show that a+b € C(K) and that —a € C(K).

Let a = (x1,y1) and b = (x2,y2), where x1,y;, x2,y2 € K. Then the line through a, b is
(in affine form) lnp : y = lx + m, where { = 22 € K and m = 22=2% € K. Substitute
y = {x + m into the cubic equation for C to get; ¢(z) = x> + cox® + 12 + ¢o = 0, defined
over K. Let ¢(z) = (r — z1)(x — x2)(z — x3) be the factorisation of ¢(z). Then xq,xs, x3
are the 3 roots of ¢ and so x1 + x9 + ¥3 = —co, giving: x3 = —co — 1 — 29 € K and
ys = lxs +m € K. The line {,} then meets C at a,b,d = (z3,y3) € C(K). The same
argument shows that the line ¢, 4 through o,d has 3rd point of intersection ¢ which is also
in C(K). But ¢ = a+ b and so we have shown that a+ b € C(K). A similar argument
shows that if a € C(K) then —a € C(K). Hence C(K) is a subgroup, as required. O

Aside: It is apparent that, in the above proof, we have dealt with the ‘typical’ case, where
none of our points are repeated (for the proof of associativity), and none are at infinity
(for the proof that C(K) is a subgroup, since the points were written in affine form). It is
straightforward to check these special cases; we shall not bother to do so here.

Comment 1.5. When two nonsingular cubics Cy,Cy are birationally equivalent over K
(under ¢ : C; — Cy), it can be shown that a,b,c on C; are collinear iff ¢(a), ¢(b), ¢(c)

on Cy are collinear, and ¢ is an isomorphism between C;(K) and Co(K).

Comment 1.6. By an elliptic curve, we shall always mean a projective curve, but often write
the equation in affine form. Note that, whichever way it is written, we are always referring
to the projective curve. For example, if we say ‘let C : y?> = 2® 4+ 3 be an elliptic curve’,
it should be understood that this is a shorthand notation for the corresponding projective
curve ZY? = X3 4 373,

Theorem 1.7. Let K be a field satisfying char(K) # 2,3 [recall — this means that 1 +1 # 0
and 1+ 1+ 1 # 0/. Then any elliptic curve over K is birationally equivalent over K to a
curve of the form y?> = 23 + Ax + B.

When K = Q, we can birationally transform any y?> = cubic in x to a curve of the

form y? = 2® + Az + B, with A, B € Z, using only maps of the form (x,y) — (azx + b, cy).

Comment 1.8. Let K be a field satisfying char(K) # 2,3, and let g(z) be a quartic
polynomial over K with nonzero discriminant. It can be shown that any curve D : y? = g(z),
with a K-rational point, is an elliptic curve, and is birationally equivalent over K to a curve
of the form y* = z® + Az + B [see p.35 of Cassels].



Comment 1.9. We shall typically take our elliptic curves to have the form
E:y =134+ Az + B, where A, B € K,
which should be regarded as shorthand for the projective curve ZY? = X3 + AXZ? + BZ3.

Sometimes it will be convenient to include the x? term. Since £ is nonsingular, we must
have A = 443 + 27B? # 0, as was shown in Example 0.110. The notation A = 4A43 + 27B>
is standard.

It is conventional to choose o = (0,1,0), the point at infinity, as the identity [we shall
always take o = (0, 1,0) unless otherwise stated]. Note that the line Z = 0 meets £ at o
three times (such a point is called an inflezion). Given a point a = (X,Y, 7Z), if we take
the line through a and o = (0, 1,0) then the third point of intersection is (X, —Y, Z), which
must then be —a. In affine form: —(z,y) = (z, —y).

This gives an easy rule for finding the inverse of a point, under the group law, namely:
the inverse of a is its reflection in the z-axis.

So, for an elliptic curve £ written in the form y* = cubic in z, the points are o (the point
at infinity) and the affine points (x,y), and the group law has a simpler description:

Let d = (x3,y3) the 3rd point of intersection of £ and £, p.

Then a + b = (x3, —y3), the reflection of d in the z-axis.

We illustrate the group law with the following computation (see also 0.143).

Example 1.10. Let € : 4> = 23 + 1. Let us compute a + b, where a = (x,9;) = (—1,0)
and b = (z2,12) = (0,1).
The line through a,b is fap : ¥ = x + 1. Substituting this into £, we see that the

z-coordinate of any point of intersection satisfies: (x + 1)2 = 2 + 1, and so:
2 —2* — 210 = 0. (%)

We are looking for (z3,ys), the 3rd point of intersection of £ and £, . We first find x3; note
that x1, 9, z3 must be the roots of (x).
Method A (for finding x3). Since the roots of (x) are xy, o, 23, it follows that 23 — 2% —2x =

r —x1)(x —x9)(x — 23); equating coellicients or = gives that:
( ) ) ); equating coeffici f 2% gives th
71 + Ty + 13 = —(coefficient of 22 in (%)) = —(—1) = 1,

so that (—1) + 0+ x5 = 1, giving =3 = 2.
Method B (for finding z3). Factorise () to give: z(x+ 1)(z — 2), whose roots are: 0, —1, 2.
Two of these are the already known x; = —1, 29 = 0, and so x3 must be the remaining root:
T3 = 2.

Having found z3 (by either method), we use the equation of £, 1, to compute y3 = z3+1 = 3.
In summary: £ and £, intersect at: (—1,0),(0,1),(2,3), and so (—1,0)+(0,1)+(2,3) = o.



Finally, this gives: (—1,0) 4+ (0,1) = —(2,3) = (2, —3), using the rule that negation is

given by reflection in the z-axis.
One can also obtain an explicit general formula for the group law.

Lemma 1.11. Let £ : y* = 23 + Ax + B, where A, B € K, with (as usual) o = the point at

infinity. Let (x3,y3) = (z1,41) + (72, ya).
Case 1. When xy # x5 then:

w25+ xtry + Ay + 22) + 2B — 2510,

T3 = 2 ) Ys = —6173 —m,
(z1 — x2)
Y1 — Yo T1Y2 — T2Y1
where: { = —>=, m=—""——"""|
T — T2 T1 — T2

Case 2. When (z1,y1) = (x2,y2) then (x3,y3) = (x1,y1) + (1, 41) [which can be written
as 2(£1>y1)]7 and:
] —2Ax} —8Bxy+ A*  af — 2Axt — 8Bz + A®

= — —fpa —
322 + A 234+ A 2B
where: { = L, m = Ty AT .
2y, 2y,

Optional Proof See 0.144.
The above formulas give an alternative method for computing the group law, although in

practice it often turns out to be easier to compute the group law from first principles, as in
Example 1.10.

Comment 1.12. When A = 443 +27B? # 0, all 3 roots of 23 + Az + B are distinct,
guaranteeing that y? = 23 + Az + B has no singularities and is an elliptic curve.

When A = 0, then this is no longer an elliptic curve and at least two roots of the cubic are
repeated: y? = (z — a)?*(z — B). It is still the case that the set of nonsingular points on &,
denoted &,, forms a group [see pp.39-41 of Cassels]. When [ # « the singularity at (a;,0)
is a node. When = « the singularity is a cusp. In either case, the curve can be written:

(L)Q =z — 3, and so is birationally equivalent to the conic w? =z — .

r—«

Definition 1.13. Let £ be an elliptic curve and let P be a point on £. For any positive
integer m, let mP denote P + ...+ P |m times|. We say that P is an m-torsion point if
mP = o. The m-torsion group of &, denoted £[m], is the set of all m-torsion points. We
also say that P has order m (or that P is a point of order m) if m is the smallest positive
integer for which mP = o. When such m exists, P is a torsion point (P has finite order).
If no such m exists, then P is a non-torsion point (P has infinite order). The group of all

K-rational torsion points on £ is denoted Eio5(K) [or sometimes € (K )iors)-



Examples 1.14.
(a) Let £ : 4> = 23 — x, and let P = (1,0) so that —P = (1,—0) = (1,0) = P, so that
2P=P+P=P—P=0. But1-P = P # o, and so 2 is the smallest m > 0 such
that mP = 0. P has order 2 and P € &,5(Q).
(b) Let £:y*=23+1, and let P = (0,1). First compute P + P. Using 2yy’ = 3z% at (0, 1)
gives 2-1-1y = 3-0? and so the tangent line {pp to € at P has slope 0 and equation of
form y = 0-z+m. But the line goes through (0, 1) and so m = 1 and the tangent lineis y = 1.
Substituting y = 1 into y* = 23 4+ 1 gives 2* = 0, with roots 0,0, 0. So, & meets {p p at (0,1)
with multiplicity 3, and (0,1)+ (0,1) +(0,1) = 0. Hence: (0,1)+(0,1) = —(0,1) = (0, —1).
In summary:

1-(0,1)=(0,1), 2-(0,1)=(0,—1), 3-(0,1) =o.
(0,1) has order 3 and (0,1) € Eors(Q).

When K = F,, a finite field with p elements, there are of course only finitely many
members of E(F,).

Aside: Each of the p possible x-coordinates 0, ...,p—1 has about a 50% chance of making
23+ Ax+ B a square modulo p. When x®+ Ax+ B is not a square, there are no corresponding
y-coordinates. When x3 + Ax + B is a square, there are at most two corresponding vy-
coordinates. So, one might expect ‘on average’ about p affine points, that is, about p + 1
points, including the point at infinity.

The following result gives a bound within which the number of points must lie.

Theorem 1.15. (Hasse). Let € be an elliptic curve over F,. Let N, = #&(F,) where, as
usual, E(F,) should be taken to including o [so that N, is the number of affine points (z,y)
on & with x,y € Fy, plus 1, to include the point at infinity o]. Then:

IN, — (p+1)| < 2/p, thatis, N, € [(p+1) —2/p,(p+1) +2/D].
Similarly, any curve y* = Q(x), where Q(z) = fix* + ...+ fo has nonzero discriminant, has
at least p — 1 — 2,/p affine points.
Proof See p.118 of Cassels or p.131 of Silverman. O

Example 1.16. Let & : y? = 23 4 42 + 1, defined over F;3. Then:
2

#E(F13) <13+1+2V13 <13+ 1+2-4 = 22, so that #&(Fy3) < 21.
Note that at most 4 of the points on £(Fi3) can be o and points of the form (x,0), so there
must exist at least 3 affine points (x,y) € E(F;3) with y # 0.




SECTION 2. THE p-ADIC NUMBERS Q,

For Q, let | |« denote the standard absolute value [e.g. | — 5| = |5]oc = 5]. Consider the
sequence: 1 = 1.4, 29 = 1.41, 23 = 1.414, ..., where x,, is the largest decimal to n decimal
places satisfying 22 < 2. Then |z, — Zn|oo — 0 as m,n — o0, so that the sequence is Cauchy
in Q,| |o- The sequence z,, cannot be convergent, since if x,, — « then clearly o? = 2 and
no such a exists in Q. We say that Q,| |« is incomplete (since not every Cauchy sequence
is convergent) and the real numbers R give the completion of Q,| |». The absolute value

| | is a special case of the following.

Definition 2.1. Let K be a field. A valuation on K is a function | | : K — R satisfying:
(1) |z| > 0 for all x € K, with equality if and only if z = 0.
(2) |zy| = |z| - |y| for all z,y € K.
(3) |z 4+ y| < |x| + |y| for all z,y € K [the triangle inequality).
If a valuation also satisfies the stronger property:
(3) |z + y| < max(|z],|y|), for all z,y € K,

then we say that it is a non-Archimedean valuation; otherwise it is an Archimedean valuation.

For example, Q,| |~ (or R,| |) is a valuation. It is Archimedean since, for example,
11+ 1|oo € max(|1]s,|1]oo). We shall now introduce another valuation on Q, which gives a

different notion of size and distance.

Definition 2.2. Fix a prime p. Let z = ™ € Q. Write ™ = p"{, where p f a,p [ b. Then
the p-adic valuation (or p-adic absolute value or p-adic size) is defined to be:

2], = ||, = p~" [s0, x is ‘smaller’ the higher the power of p dividing x].
We also define 0], = 0. For any z,y € Q, the p-adic distance between x and y is defined to
be: dy(z,y) = |z —y|,. (Note that d, is a metric)

Example 2.3. In Q, | |5, we have: [3]3 = [37'1[s = (377V) =3, (93 =[321[z =372 =3,
and [7]3 = [3°7]; =370 =1
Also, d3(=5,3) =|—=5—-3|3=|—-8|3 =1, d3(=5,19)=|—5—19]3 =|—24[3 =37 and
ds(3,5) = lqpls = 37"
For integers m,n, m # n (mod 3) <= ds(m,n) =1, m =n (mod 3) < ds(m,n) < %,
1

m =n (mod 3*) <= ds(m,n) < 3z, and so on. The integers m,n are 3-adically closer

when they are congruent modulo a higher power of 3.

Lemma 2.4. The function | |, of Definition 2.2 is a non-Archimedean valuation on Q.



Proof (1),(2),(3)" are trivially true when = or y = 0. Let xz,y € Q, x,y # 0, and write
r=p"¢,y=0p°5 wherep [ a,b,c,d.

(1) |zl =p™ > 0.

s ac

(2) |zyl, = [p"% p*Slp = [P 2|, = p~ ) [since p [ ac,bd] =p~"p~* = |z[,|yl,.

(3) Wlog r < s, giving: |z + yl, = [p"% + p*<], = [p (& +p*"8) |, = [pr 2"ty

= |p”%|p for some k > 0 and ¢ € Z with p } ¢ [since ad + p*"be € Z]

r+k)

_ p_( < p—r — |x|p = maqu’pa ‘y|P) .

Comment 2.5. By induction, |a; + ... + a,|, < max(|aip,...,|an],). It is also easy to
show that |z|, # |y|, = |z + y|, = max(|z|,, |y|,). Furthermore, if |ax|, > |a;|, for all i,

1 <i<n,i#k, then |a; + ...+ a,|, = max(|aip, . - -, [anlp) = |akp-

Definition 2.6. Let K| | be a field with valuation. For a,, ¢ € K, we say that the sequence
a, converges to ¢ [denoted a,, — ¢] in K| | when |a, —¢| — 0in R,| |, as n — oco. That
is: for any € > 0 there exists N € N such that, |a, — ¢| < € for all n > N. Given a
sequence a, € K, if there exists ¢ € K such that a, — ¢ in K| | then we say that a,
converges in K| |, or that it is convergent in K, | |. It is Cauchy if |a;, —an| — 0in R, | |
as m,n — oo. That is: for any ¢ > 0 there exists N € N such that, |a, — a,| < € for
all m,n > N.

We say that K, | | is complete if every Cauchy sequence is convergent.

Examples 2.7.
(a) Let a, = 6". Then |a, —0[3 = |6"]3 =3" = 0asn — oc0. Soa, = 0in Q,| [5.
(b) Let a; =1, ay = 11, az = 111,... so that 9a,, = 999...9 [n times] and 9a,, + 1 = 10™.
Then [9a, — (—1)|5 = [10"]5 = 57" — 0, giving 9a,, — —1in Q,| [;. It follows that a,, — —
in Q.| [5.
(c) Let zg = ap = 3. Then af =9 = 2(mod 7), and |23 —2|; = |ad — 2], = |7 =7"! < 1.
We want to find a; € {0,...,6} such that (ag + a17)? = 2 (mod 7°).

This is satisfied <= a3 + 2a¢9a;7 + a?7* = 2 (mod 7%)

< 617=2-9=—7 (mod 7°) < 6a; = —1 (mod 7) <= a; =1 (mod 7),

so we can take a; = 1. Let ; = ag + a17 =3+ 1 x 7 = 10. Then z? = 100 = 2 (mod 7?)
and |23 — 2|, = 772
Aside: note how the solvability of the last congruence is affected by |2ag|7 = | f'(ao)|7, where
flx) =2 —2.



When we similarly solve for ay € {0,...,6} such that (ag + a;7 + a27%)* = 2 (mod 73) we
find that ay = 2, giving 2o = ag + a17 + a7 = 3 + 7 + 98 = 108. Check: 22 = 2 (mod 73)
and |23 — 2|, < 773

We can inductively find z,, = ag + a17 + ... + a,7" such that 22 = 2 (mod 7"*1), that is,
22 — 2|7 < 77"V, Hence 22 — 2in Q, | |..

Intuitively, (3+1-7+2-7*+...)> =21n | |,. The sequence z,, is easily seen to be Cauchy
in Q,| |;. The sequence is not convergent since if z,, — o in Q,| |, then o? = 2, which is
impossible for a € Q.

(d) Again, let ag = 3, but now define a, .1 = a,, — Jf,((‘;’;)), for n > 0, where f(z) = 2% — 2 [the

Newton-Raphson formula]. Then:

1\2
_ _ 9 322 _ 11 1 ()2 _ 193
ap =3, a1 =3 - 535" =%, a2 =3 — S = 135, and so on.

Check that: [af — 2|7 = (3% — 2|7 < 77, |af — 27 = |(§)* — 2|z = |3]7 < 772, and that a,
satisfies the same properties as x,, of Example (c), namely: |a2 —2|; < 77"V so that a? — 2

in Q,| |,, again forcing a,, to be Cauchy but not convergent.

The last two examples show that Q is incomplete with respect to the valuation | |., and
indeed Q is incomplete with respect to any | |,. We now define an extension of Q which

performs the same role with respect to | |, that R performs with respect to | |o.

Definition 2.8. The set of p-adic numbers Q, is the completion of Q with respect to the
valuation | |,, and is the smallest field containing @Q which is complete with respect to | |,.
For any a, 5 € Q,, we say that a = § (mod p") <= |a— (|, < p™" [‘« is congruent to /3
modulo p™’]. A member of Q, (a p-adic number) = can be written in following form (the

p-adic expansion of x):

xr = Zanp", where N € Z,ay # 0 and each a,, € {0,...,p— 1},
n=N

in which case |z|, = p™, and the a, are the digits of x. We normally use the shorthand
notation ay ...ag, aias ... to represent the above sum. Note that z € QQ exactly when the

digits are eventually periodic.

Examples 2.9.
() w=4-5241-5"1+4-5°+1-5'+4.52+ ... € Q5 and |w|5 = 5. This can be denoted
414,74,
b)a=3-7+1-7T"+2-7+ ... € Q; from Example 2.7(c) satisfies a® = 2.

On the other hand, there is no 3 € Q; such that 32 = 3 since any such 3 would satisfy
|82 = |8%|7 = |3]7 = 1 and so would have 7-adic expansion 3 = by+b;7+by7*+. .. and would
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satisfy (bg + b17 + by7% + ...)% = 3. This would give: b = 3 (mod 7), which is impossible,
since 3 is not a quadratic residue mod 7 [none of 02,12, 22,32 42 52, 6% are = 3 (mod 7)].
(c)In Q5: 27=2+45>=2-5°4+0-5'4+1-5% =2,01 [the 5-adic expansion of 27].
(d) Let us find the 5-adic expansion of —1/4. We have | — 1/4|; = 1 so that the 5-adic
expansion of —1/4 must be of the form a = ag + a;5 + a»5* + ..., each a; € {0,1,2,3,4}
and ag # 0. This satisfies —1 = 4(ag + a;5 + a25* + ...) which gives —1 = 4aq (mod 5)
and so ag = 1. Then —1 = 4(1 4+ a;5 + asb* + ...) gives —5 = 4a;5 (mod 5?), giving
—1 =4a; (mod 5), and so a; = 1. Similarly, we find that a; = 1,a3 = 1, ... and we suspect
that —1/4 =1, 1.

Let « = 1,1. Then o — 1 = 0,1 = 5q, so that 4a = —1, giving o = —1/4, proving that

we have the correct 5-adic expansion.

Comment 2.10. The field Q is often referred to as a global field and its completions with
respect to valuations, namely R and Q,, for any prime p, are its local fields (or localisations).
An equation defined over Q which has points in R and every Q,, but not in Q, is said to

violate the Hasse Principle.

Definition 2.11. Let K be a field with a non-Archimedean valuation | |. We say that 2 € K
is an integer (with respect to the valuation) when |z| < 1, and R = {x € K : |z| < 1} is the
ring of integers (or valuation ring) of K. The set M = {z € K : |z| < 1} is the mazimal
ideal, and k = R/M is the residue field [also called the field of digits]. The valuation group
is the set Gx = {|z| : * € K*} under multiplication. We say that the valuation is discrete if
there exists § > 0 such that 1 -6 < |z| < 14+ = |z| = 1. When the valuation is discrete,
there exists an element p € M such that M = pR; we say that such an element is a prime

element for the valuation.

The ring of integers for Q, is often denoted Z, = {z € Q, : |z|, < 1}. The valuation
group Go, ={p" :r e Z} ={...,p %, p 1, p% p',p? ...}, so that Q, is discrete, and we can
take p as a prime element (or indeed any element with valuation p~!). The maximal ideal
is M =pZ, ={x € Q,: |z|, <p '} and the residue field Z,/pZ, is isomorphic to F,, the
finite field with p elements.

The following result show how, in some respects, analysis is simpler for non-Archimedean

valuations.

Theorem 2.12. Let K be a field, complete with respect to a non-Archimedean valuation | |,

and let x,, be a sequence in K. Then: x, — 0 in K <= Y x, is convergent in K.
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Proof Let Sy =N

n=1Tn-

= : Assume that x,, — 0 in K. Then:
|Sn = Sul = |zaga + ..+ 2y| < max(|zarsal, ..., Jzn]) — 0 as M, N — oco.
Sy is Cauchy and so convergent (since K is complete), giving that ) x,, is convergent.
< : Assume that >z, is convergent, that is, Sy — ¢ for some ¢ € K. Then:
|z, —0| = |zn| =[S — Snet| = |Sn — 0+ € —Sp—1| < |50 — 4|+ |Sn-1—¥| — 0 as n — oo,
so that z,, — 0 in K| |. O
For example, Y n! converges in any Q,, since |n!|, — 0 [it is unknown whether ) n! € QJ.
The above result applies to Q, (since it is non-Archimedean), but not to R (where, for

example, z,, = % is a standard counterexample).

Comment 2.13. It is easy to see that, the rules for finite sums in Comment 2.5 and apply
to infinite series, namely, when > a, converges, | a,| < max|a,|. Furthermore, if there
exists ay such that |ag| > |a;| for all ¢ # k, then | > a,| = |ax|; in particular, it is then

impossible for " a, = 0.

Aside: Recall Example 2.7(d), where xo = 3, and x,41 = x, — Jf,(é’;)), where f(x) = x? — 2,
defined a sequence, which is Cauchy (but not convergent) in Q,| |,, and which is convergent
in Q7 to a root of f(x). The following describes when an initial approximation ay gives a

solution to f(z).

Theorem 2.14. (Hensel’s Lemma). Let K be a field, complete with respect to a non-
Archimedean valuation | |, with valuation ring R = {z € K : |z| < 1}.

Let f(z) € R[] and let ag € R satisfy: | f(ao)| < |f'(ao)|* (%)
Then there ezists a unique a € R such that f(a) =0 and |a — ao| < |f(ao)|/]f (ao)]-

Proof Define f;(z) by:  f(z +y) = fo(z) + fi(x)y + fo(@)y? + ...,
so that fo(z) = f(z), fi(z) = f'(z). Define by = —f(ao)/ f'(ao). By (*), [bo| < 1.
Define a, = ag + by = ao — f(ao)/f'(ap). Then:
|f'(a1) — f'(ao)] = | f'(ao + bo) — f'(ao)] = |(poly in ag)bo + (poly in ag)b + ... |
< bol < |f'(ao)|  (by (%)),
so that | f'(a1)| = | f'(ao)]-
Also, | f(a1)| = |f(ao + bo)| = | fo(ao) + fi(ao)bo + falao)bg + ... |

= | fo(ag)b? + ... | [since fo(ag) + fi(ao)bo = 0]
. a 2 a
< max;a £ (ao)l[bol’ < [bol* = {7 = plf(a0)] < |f(ao)l, where p= 75 < 1.
Summarising: |f'(a1)| = | f'(a0)| and | f(a1)] < plf (ao)| < |f(ap)], where p = FEef < 1.
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For all n, given a,, € R, define b,, = —f(a,)/f'(a,) and a1 = ay, + b, = @y — f(an)/ f'(an).
Assume, as induction hypothesis, that:
P = . = 1/ (an)] = |£/(ao)] and [f(@n)] < plf(an )| < .. < PUf@) (1)
Then, as above: |f'(an1)| = ... = [f'(a1)| = |f'(a0)|-
Then |f(ans1)| < |bn|*  [justified as for the case n = 0 above]
= |‘;{'((6;2))||22 = ‘ljjf ((‘Z ’;))”22 [by (1), the induction hypothesis]
|]‘3,c(sg E |f(a,)| [since |f(an)| < |f(ag)| by (1), the induction hypothesis]
= p|f(an)| < p"" Y f(ag)| [by (1), the induction hypothesis]|.
By induction, Vn, |f'(a,)| = |f'(ao)| and |f(a,)| < p"|f(ag)| which — 0 as n — co. (2)
Now, [bal = |£(@n)l/1/(an)| = £ (@)]/|f'(ao)] = 0, 50 by Theorem 2.12,
an, = ag + by + by + ... + b, converges to a, say.

By continuity of polynomials, f(a) = lim f(a,) =0 [by (2)]. Furthermore:

la — aol = | b,| < max|b,| = max ”J{c/((‘;’;))" = max l'}c,(&z))h ||}{c,(‘;% [by (2)], as required.

For uniqueness, imagine a # a also satisfied f(a) = 0 and |a — ao| < |f(ao)|/|f'(ao)|- Let
b=a—a # 0.
Then 0 = £(3) — f(a) = fla+b) - f(a) = b(@) + Pala) +...  (3)
But [b] = |d — ao +ap — a| < max(|a — aol, la — ao]) < |f(a0)|/|/"(ao)
<|f"(ao)| [by ()] = [fi(ao)| = [fr(a)] [by (2) and continuity of [f*(z)[].
This gives |/ f;(a)| < V| < || < [bfi(a)| (since [b] # 0 & |b] < |fi(a)]) for j = 2, so that
the leading term of the sum in (3) has valuation strictly greater than the valuations of the

other terms, which is inconsistent with the sum being 0. Hence a is unique. 0

Example 2.15. Let f(z) = 2> — 7 and ag = 3. Then |f(ag)ls = |3> — 7|5 = 57! and
|f/(a0)|s = 13- 3%|5 = 1. So |f(ao)|s < |f'(ao)|? and by Hensel’s Lemma there exists a € Zj;
such that f(a) =0, that is: a®> = 7.

Corollary 2.16. Let a € Q, with |a|, = 1. When p # 2, « is a square in Q, iff it is a
square modulo p. When p =2, « is a square in Q, iff « =1 (mod 8).

Example 2.17. 23 € ((@;)2 since |23|; = 1 and 23 = 2 = 3% (mod 7). However, 24 ¢ (Q’;)2
since |24|; =1 and 24 = 3 (mod 7), which is not a quadratic residue mod 7.

The corollary does not apply to decide the status of 14, but in fact we can see that
14 ¢ (Q;)Q, since if 14 = 4?2 for some v € Q7 then |vy|2 = |v*|; = |14]; = 7!, contradicting
the fact that |y|; = 7" for some r € Z.
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SEcTION 3. THE REDUCTION MAP ON AN ELLIPTIC CURVE

Throughout this section, K denotes a complete non-Archimedean field, with valuation

ring R = {z : |z| < 1}, maximal ideal M = {x : |z| < 1} and residue field k = R/ M.

Definition 3.1. Then natural mod M map R — k = R/M : r — r + M, is a surjection
and is denoted a — @ (or sometimes a). For example in Zs, if a = 3+2-5' +... then a = 3;
also 17/3=2/3 =22 =4.

Let a = (ag, .. .,a,) € P*"(K). We define the reduction map to P"(k) as follows.
Step 1. There exists ip such that |a;,| = |a;| for i = 0,...,n. We replace each a; by a;/a;,
(which leaves a unchanged) so that now the largest valuation is 1 (normalised form).

Step 2. Define a = (ay, ..., a,) [easy to check that this is well defined].

In affine space, if a = (a4, ...,a,) then a = (a4, ...,a,) , provided that all |a;| < 1.

When K = Q,, this is just the ‘mod p’ map, where the coordinates are reduced modulo p.

Example 3.2. In P?(Qs), let a = (1/5,2/15,2). Dividing through by ay = 1/5 gives
a = (1,2/3,10) so that @ = (1,2/3,10) = (1,4,0) € P*(Fs). For b = (2/3,25) in affine
space A2(Qs) [an affine point with no denominators of 5], then b = (4,0) € A2(F5).

For the point P = (1/4,7/8) € £(Q) C £(Q2) on the elliptic curve £ : y? = z* —x + 1, we
should first write P in projective form: (1/4,7/8,1) = (2/7,1,8/7) [after dividing through
by 7/8], which reduces modulo 2 to (0,1,0), the point at infinity on £(Fs). Clearly any
(z,y) € £(Q,) will reduce mod p to the point at infinity iff |z|, > 1 and |y|, > 1.

Definition 3.3. Let C: F(X,Y,Z) = 0 be a projective curve, defined over K. Let {f;} be
the set of all coefficients of C. The curve is unchanged if we multiply all the f; by a nonzero
constant, so after dividing through by f;, such that |fi;,| = |fi| for all i, we can say that
max(|f;|) = 1 [normalised form]. The reduction of C mod M is C : F(X,Y, Z) = 0, defined
over k = R/M, where every coefficient has been reduced mod M. When K = Q,, this is

again just a matter of reducing the coefficients mod p.

Clearly, a lies on C = a lies on C. , when we say that a reduces to a.

Definition 3.4. Let b € C(k). If there exists a € C(K) such that a = b, we say that b lifts
to C [or that b lifts to a point on C].
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Example 3.5. Let £ : ZY? = X34pZ3, defined over Q,, and € : ZY? = X? defined over F,.
Consider (0,0,1) € E(F,). Does it lift to a point in £(Q,)? Imagine (XY, Z) € £(Q,)
reduces mod p to (0,0,1) € g(]Fp). Then p| X, p|Y,p [ Z, that is, | X|, < 1,|Y|, < 1,|Z|, = 1.
But all p-adic values are of the form: ...,p~2,p~!,p° p',... so that | X|, < p~',|Y], <p !,
and | X?|, < p~®. Furthermore, [pZ®|, = |p|,|Z[> = p~".

Since |X?|, # [pZ?|, we must have |X?® + pZ3|, = max(|X?|,, [pZ®|,) = p~'. But then
V2|, = |ZY2|, = | X3 + pZ3|, = p~', a contradiction. We conclude that (0,0,1) € £(F,)
does not lift to a point in £(Q,). In fact: need not do proof; just refer to Problem Sheet 3.

If we had represented the above curves with the affine shorthand: £ : y?> = 2% + p and
£ :y? = #*, then the above would be expressed by saying that (0,0) € &(F,) does not lift.

On the other hand, the following result shows that we can guarantee lifting a nonsingular
point on E.
Theorem 3.6. Let C be defined over K, written so that the coefficients lie in R. Let 5,

defined over k, be the reduction of C modulo M. Let b € C(k) be a nonsingular point.
Then b lifts to C; that is, there exists a € C(K) such that a = b.

Proof Write C : F(Xy, X1, X5) = 0 (normalised), so that C : F(Xg, X1, X,) = 0. Let
b = (bo, b1, bs) € C(k) be a nonsingular point. Then at least one of the g—i(b) # 0; wlog say
that 8‘9—50(17) # 0. Let ag, a1, as € R be such that each a; = b; under the natural surjection
from R to k = R/M. Then a = (ay, oy, re) satisfies @ = b; however, we have no guarantee
that « lies on C. We shall construct an adjustment of  which lies on C, and which has the
same reduction as o. Let f(t) = F(t, a1, as). Then f(ag) = F(b) = 0 so that |f(ao)| < 1.

Furthermore, m = g—)i(d) = ;—)i(b) # 0, so that | f'(cw)| = 1. By Hensel’s Lemma, there

exists ag € R such that f(ag) = 0 and |ag — ag| < 1, so that a = (ag, a1, az) is a point on C
and a = a = b, as required. [l
We wish to see under what circumstances the reduction map is a homomorphism on an

elliptic curve.

Theorem 3.7. Let C : F(Xo, X1, X2) = 0 be a cubic curve defined over K, written so that
coefficients of F' have mazimum valuation 1. Suppose the line L : L(Xy, X1, X2) = 0 meets C
at a,b,c. Then either:



15

(1) L CC, that is, ﬁ(Xo,Xl,Xg) = ZM, for some M.
or:

(2) L meets 5precisely at a,b,¢.

Proof Let L : £yXo + (1 X1 + (32X, written so that max(|l|, |¢1], |¢2]) = 1, wlog |ls] = 1;
after dividing through by ¢y (and relabelling ¢, /¢y, ¢5/ly as 1,05), we can take £ : Xy =
—01 Xy — U3 Xy, where 1,0y € R. Write a = (ag,a1,a2),b = (by, b1,bs),c = (co, 1, ¢2) with
max|a;| = max|b;|] = max|¢;] = 1. Note that, since a,b,c lie on £, we must then have
max(|as|, |az|) = max([ba], [ba]) = max([ea], [ca]) = 1.

Now, substitute L into F to get: G(Xy,X2) = F(—6,X7 — €:X5, X1, X2) € R[X;, X3l
Since the points a,b,c lie on both £ and C, the roots of the projective polynomial G
are (ay,az), (b, ba), (c1,c2) € PH(K), so that:

G(X1, X)) = F(—01 X1 — l5X5, X1, Xa) = Maa X7 — a1 X3) (2 X1 — 01 X3) (2 X7 — 1. X),
for some A € R*. Now consider f(—ngl —ZQXQ, Xi, X3). If this is 0 then L is a factor of ﬁ,
giving case (1). Otherwise, this is a nonzero projective polynomial, defined over k, equal to
Mo X, — 1 X0) (0 X1 — b1 X5) (6, X, — &1 X5), with (ay, as), (by, by), (é1, &) € PH(k) as roots,
so that @, b, ¢ lie on £ and C. Since L and F have no common factor, these must be precisely
the points of intersection of £ and C. 0

When we have an elliptic curve written, not as a general cubic, but birationally transformed
to the form & : y*> = 23+ Ar+ B (A, B € R) [which, as usual, is shorthand for the projective
curve ZY? = X3+ AX Z?+ BZ3|, the reduction & will still be of the form y*> =23+.... This
cannot contain a line, since any (y+rz +...)(y —z%/r+...) would have an 2y term and so
would not give y* — cubic in x. For such a curve, only option (2) can apply in the previous
theorem. Even though £ is an elliptic curve (and therefore nonsingular), the reduction £
might be singular [for example, when p|A € Z so that A=0in [F,], but even in that case we
still have the group &,,(k) of nonsingular points [see Comment 1.12]. Since the group law is
constructed by finding intersections between the curve and lines, and since only option (2)
applies, the construction of the group law respects the reduction map, giving the following

result.

Corollary 3.8. Let & : y? = 23+ Ax+B be an elliptic curve, with A, B € R, with reduction E.
Let £,4(k) denote the group of nonsingular points in E(k), and let £ (K) denote the set of
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points in E(K) which reduce to members of E,s(k), that is, define: E(K) = {P € E(K) :
P € E,.(k)}Y. Then the reduction map P — P is a homomorphism from Ey(K) to E,s(k).

Definition 3.9. Let &(K) and gns(k) be as in Corollary 3.8. The kernel of reduction,
denoted & (K), is the kernel of the reduction map from & (K) to Ens(k). That is:

E(K)={P c £(K): P =0},

where, as usual, o is the identity element, usually taken to be the point at infinity, in which

E(K) = {P = (2,y) € E(K) : 2] > 1, |y] > 1},

since these are the points that map to the point at infinity under the reduction map.

We can summarise what we know so far by the following exact sequence:

0 —— &(K) SELN Eo(K) —— &us(k) —— 0,

where ¢ is the inclusion map.
We now wish to look more closely at how we can describe the group law inside & (K), the

kernel of reduction, for an elliptic curve:
E:y* =2+ Ax + B, where A, B € R.

We adopt the usual convention that the identity is o, the point at infinity so that, as
already observed, & (K) = {(z,y) € E(K) : |z| > 1, |y| > 1}. The members of & (K)
are in a neighbourhood of o, and it is natural to try to describe the group law as a power
series. This will be more transparent if we write our equation in a form where the points in
the neighbourhood have coordinates with small, rather than large, valuation. We therefore

perform the following birational transformation:
z=—z/y, w=—1/y, withinverse z = z/w, y=—1/w.

This transforms & to:

giving the equation

Ew=f(z,w) = 2"+ Aw*z + Buw®.
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Note that the point at infinity o on £ maps to the point (0,0) on &', which we take as our
group identity on &’. The condition |z| > 1,|y| > 1 corresponds to |z| < 1,|w| < 1, so that

the kernel of reduction for &’ is:
EN(K)={(z,w) € &'"(K):|z| <1, |w| < 1}.
We now recursively substitute w = f(z,w) into itself. For the first step:
w= f(z,w) = f(z, f(z,w)) = 2> + A(Z* + Aw’z + Bw®)*z + B(z* + Aw*z + Buw?*)?
=2+ AT+
Inductively define f,(z,w) by: fi(z,w) = f(z,w) and f,11(z,w) = fu(z, f(z,w)). Define

w(z) = lim f,(z,0) € Z[A, B][[#]].

n—oo

The following is then easy to show.

Lemma 3.10. The power series w(z) = 2*(1+...) € Z[A, B[[z]] defined above is the unique

power series satisfying w(z) = f(z,w(z)).

This means that (z,w(z)) satisfies £’. Since we are working in a non-Archimedean field K,
we can appeal to the fact (see Theorem 2.12) that a series converges iff its terms converge
to 0. When we are in the kernel of reduction |z| < 1,|w| < 1, this applies to the above
series w(z) [since A, B € R and so |Al,|B| < 1]. Any (z,w) in the kernel of reduction must

satisfy w = w(z), and so is uniquely determined by z, which is called a local parameter.

Comment 3.11. We can recover x,y on £ as formal Laurent series:

z z 1
m(Z):w(z):,z3(l+...):;Jr
()= ==t
ye= w(z)  B(14+..) BT

which gives a formal solution to &£.

Let us now perform the addition (z1,w;) + (22, ws). As usual, we first write the line w =
Az + u through the points, given by A = (wy —ws) /(21 — 22) and p = (z1wy — 29w1) /(21 — 22).
As long as we are in the kernel of reduction, wy = w(z;) and we = w(zs), and so:

A= A(z1,29) = w(z1) — w(z) _ 2(1+..)—25(1+...) c

Z1 — %9 21 — Z9

Z[A7 B][[Zl, Z2]]>
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with all terms being of degree > 2, and:

2w(za) — zow(21) c

21 — 22

Z[A, Bl[z1, 2]]-

o= pi(21, 22) =
Substituting w = Az + p into &’ gives Az + p = 2° + A(Az + p)*z + B(Az + p)?, and so:
(14 AN 4+ BX*)2® + (2AMp + 3BN )22 + ... = 0.

Let (z3,w(z3)) be the third point of intersection of £ and the line w = A\z+p, so that z1, 29, 23

are the roots of the above cubic, giving that 2, + 29 + 23 = —(coeff of 2?)/(coeff of 2%), so:
2AN1 + 3BN?
R ffw - BA’; e Z|A, B)[[z1, )],

since the denominator is of the form 1+ ¢(zy, 2z2), where ¢(21, 22) has no constant term [and

so is an invertible power series, with 1/(1 + ¢(z1,29)) = 1 — @(21, 22) + d(21, 22)* + .. ..
The sum (z1,w) + (22, ws) + (23, w3) = the identity, and so (21, w1) + (22, we) = — (23, w3).

Negation (z,y) — (x,—y) induces (z,w) — (—z,—w) [since z = —z/y,w = —1/y], so that

the z-coordinate of (zq,w;) + (22, ws) is given by Fe(z1, 23), where:
Fe(z1,22) = 21 + 22 + (terms of degree > 2) € Z[A, B][[z1, 22]].

We summarise this as follows.

Lemma 3.12. Any point (z,y) on € [ (z,w) on E'] in the kernel of reduction [namely:
lz| > 1, |y| > 1 ¢ |2] < 1, |w| < 1] is uniquely determined by z, with w = w(z) € Z[A, B][[z]].
The group law is completely described by the above Fe(z1,z2) € Z[A, Bl|[z1, 22]], which con-

verges to the z-coordinate of the sum of (z1,w(z1)) and (z2,w(z2)).

We have already observed that Fg(z1, 22) = 21 + 29+ terms of higher degree. The associa-

tivity and commutativity properties of the group law on £ also induce the properties:
Fe(X, Fe(Y, Z)) = Fe(Fe(X,Y), Z), Fe(X,Y)=Fe(Y, X).

Of course, the power series Fe(z1, 20) € Z[A, B][[21, 22]] can be derived for any &£ defined over
any ring, regardless of convergence considerations. In the next section, we shall consider
power series F'(X,Y) which satisfy the above properties, and then apply the results to the
special case of Fg(X,Y).



19

SECTION 4. FORMAL GROUPS

Let R be any ring (by ring I shall alway mean a commutative ring with 1).

Definition 4.1. A (one-parameter, commutative) formal group defined over R is a power
series F'(X,Y) € R[[X,Y]] satisfying:

(1) F(X,Y) =X +Y + terms of degree > 2.

(2) F(X,F(Y, 2)) = F(F(X,Y), Z).

(3) F(X,Y) = F(Y, X).

Example 4.2. The following are all formal groups.
The formal group Fe(X,Y) of an elliptic curve defined over R, as described in Section 3.
The formal additive group F(X,Y) = G,(X,Y) =X +Y.
The formal multiplicative group F(X,Y) = Gpn(X,Y) = X +Y + XY
Note: the last of these is just XY, but translated one unit to the left: (1 + X)(1+Y)—1
so that the identity is changed from 1 to 0.

Aside: A formal group does not necessarily induce an actual nontrivial commutative group,
since there is no guarantee that the power series will converge for any nonzero X,Y ; indeed,
our arbitrary ring R may not even come together with any structure (such as a valuation
or metric) that provides a definition of convergence. It is merely a power series satisfying
properties analogous to associativity and commutativity. The definition appears to be miss-
ing properties analogous to the existence of an identity element and inverses. In fact, the

following result shows these can be deduced from the given axioms.

Lemma 4.3. Let F(X,Y) be a formal group over a ring R, and let Ry denote R[[T]].
(1) There is a unique power series i(T') € TRy such that F(T,i(T)) = 0.
(2) F(X,0) = X and F(0,Y) =Y.

Proof (1) Let Z; = =T € T Ry; then the terms of F(T, Z;) all have degree > 2. Suppose
we have Z, € TRy such that F(T,Z,) = a,.1T"" + ... has terms all of degree > n + 1.
Define Z, 11 = Z,, — a1 T then:

F(T, Zn+1) = F(T, ZTL - an+1Tn+1) =T + (Z Cln+1Tn+1) + ...
=F(T,Z,) — ap 1 T" + (terms of degree > n + 2)
= a1 T — a, T + (terms of degree > n + 2),

which has terms all of degree > n + 2. This inductively defines a power series i(7"), whose
first n terms agree with Z,, for all n, such that F (T, z(T)) = 0. Furthermore, each choice of
term of Z,, was forced, so that i(7") is unique.

(2) By a similar argument to (1), there exists a unique j(7T') € T' Ry such that F'(j(7T),i(T))
0. By (1) we can take j(T') = T. By associativity F(F(0,7),i(T)) = F(0, F(T,i(T)))
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F(0,0) = 0, so that we can also take j(T) = F(0,T"). Since j(T') is unique, it follows that
F(0,T) = T. Similatly for F(T,0) = T. O

Definition 4.4. Let F,G define formal groups over R. A power series f(T) € TRy is a
homomorphism from F to G if it satisfies f(F(X,Y)) = G(f(X), f(Y))). When there also
exists an inverse g(T') € TRy [that is: f(g(T)) = g(f(T')) = T| then f(T) is an isomorphism.

Example 4.5. If char(R) =0 and * € R for all n, then f(T) =T —T?/2+T3/3— ... isa

homomorphism from @m to @a.

Definition 4.6. Let F' define a formal group over R. Define the multiplication by m map
m|(T) € Ry, for m € Z, inductively by: [0](T) = 0, [m + 1)(T") = F([m|(T),T) and
m — 1(T) = F([m)(T),i(T)). This is clearly a homomorphism from F to F’, and is of the
form: [m](T") = mT + terms of degree > 2.

Lemma 4.7. Let a € R* [that is: a € R and a™' € R], and let f(T) € TRy be of the
form f(T) = aT + ... Then there exists a unique g(T) € TRy such that f(g(T)) = T.
Furthermore, g satisfies g(f(T)) =T.

Proof We shall construct g(T) = biT + bT? + ..., the limit of ¢1(T) = b,T, go(T) =
biT + byT?, ..., first defining ¢,(T) = a™'T, so that the terms of f(g;(T)) — T all have
degree > 2. Suppose we have g,(T) of degree n such that f(g,(T)) —T = bT™ + ... and
define g,41(T) = go(T) — a~*bT™ . Then

f(gnin(T)) =T = f(gn(T)) — aa”"'vT™ + (terms of degree > n +2) — T,

whose terms are all of degree > n + 2. The resulting g(7) then satisfies f(g(7)) = T and is
unique, since each choice of coefficient was forced.

There similarly exists h(T)) € Ry such that g(h(T)) = T, and so f(g(h(T))) = f(T),
giving h(T) = f(T). Substituting this into g(h(T)) = T gives g(f(T')) = T, as required. [

Aside: When R is an integral domain, this type of argument can also be interpreted as an
application of an adapted version of Hensel’s Lemma, applied to the ring Ry, with valuation
|f(T)| = p", where p is a fized real number satisfying 0 < p < 1 and n is the degree of
the smallest nonzero degree term [for example, |2T% + 5T* + ... | = p*]. Here T takes on a
similar role for Ry to that performed by p for Z,.

Lemma 4.8. The homomorphism [m] : F' — F of Definition 4.6 is an isomorphism when-

ever m € R*.

Proof Since [m](T) = mT + terms of degree > 2, we have from the previous lemma that

the homomorphism [m] has an inverse, and so is an isomorphism. O
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Aside: You might have wondered in school about the connection between the two properties
of log, that it is the integral of 1/x, and that log(ab) = log(a)+1log(b) [a homomorphism from
multiplication to addition]. One way of seeing the connection is to define log(T) = [v(T)
[with log(1) = 0/, where v(T) = +dT', and note that [regarding T as a variable and S as a
constant] v(T'S) = 7z d(TS) = v(T), that is, v remains invariant under replacing T by T'S.
Therefore log(T'S) = log(T') + f(S), where f(S) is a constant; setting T = 1 gives f(S) =
log(S). If we were to adjust the multiplicative group, translating by —1, so that the identity
is0: F(X,Y)=(1+X)(14Y)—-1=X+Y+ XY, thenw(T) = HLTdT = (1-T+T?-...)dI'
would have the property that w o F(T,S) = w(T) [and [w(T) would give a homomorphism
from @m to @a/ It is natural to ask whether w is unique (up to constants), and how we

would construct w for a general choice of F(X,Y).

Definition 4.9. We can represent a differential form on Rr as an expression of the form
S P(T)dQi(T), where each Py(T),Q;(T) € Ry, and these satisfy the natural rules:

d(P(T)) = P'(T)dT, where P'(T) = >, a,nT™*, for any P(T) = Z a,T",
n=0

d(P(T) +Q(T)) =dP(T) +dQ(T), d(P(T)Q(T)) = P(T)dQ(T) + Q(T)dP(T).
[Formally, the space of (formal) differential forms on Ry is the Rp-module spanned by the
symbols {df : f € Ry} modulo the submodule spanned by {f'dT —df : f € Ry}

An invariant differential on a formal group F', defined over R, is a differential form:
w(T) = P(T)dT € RpdT, satistying wo F(T,5) = w(T).
Note that w o F(T,S) is the same as P(F(T,S))d(F(T,S)) = P(F(T,S))Fx(T,S)dT,
where Fix(X,Y) denotes the partial derivative of F'(X,Y") with respect to X. So, the above
condition on w is equivalent to:
w(T) = P(T)dT € RydT, satisfying P(F(T,S))Fx(T,S) = P(T).
An invariant differential w(7") = P(T)dT is said to be normalised if P(0) = 1.

Example 4.10. On G,, the formal group defined by F(X,)Y) = X +Y, we can take
w(T) = dT as a normalised invariant differential. On @m, the multiplicative formal group
defined by F(X,Y) = X+Y + XY, we can take w(T) = (1+7T) 'dT = (1-T+T?—...)dT.

Theorem 4.11. Let F' be a formal group over R. There exists a unique normalised invariant
differential given by w(T) = Fx(0,T)"YdT" € RpdT. Every invariant differential is of the
form aw for some a € R.

Proof Let P(T) = Fx(0,T)~*. Note that Fx(0,T) =1+ ... is invertible, so that P(T) is

indeed a member of Ry. Furthermore, P(0) = 1, so that it is normalised.
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We need to show that w is an invariant differential. Recall from Definition 4.9 that this is
equivalent to: P(F(T,S))Fx(T,S) = P(T) so, in our case, it is sufficient to show:

Fx (0, F(T,8)) " Fx(T,S) = Fx(0,T)"",

which is true iff:
Fx(0,F(T,S)) = Fx(T,S)Fx(0,T).

But this last statement is immediate from differentiating F/(U, F(T,S)) = F(F(U,T),S)
[associativity] with respect to U to get: Fy (U, F(T,S)) = Fx(F(U,T),S)Fx(U,T) and
setting U = 0. Hence w is an invariant differential.

Suppose that @(T) = Q(T)dT € RydT is also an invariant differential, so that Q(7T)
satisfies Q(F(T,S))Fx(T,S) = Q(T). Substituting 7' = 0 gives Q(S)Fx(0,5) = Q(0), so
that Q(S) = Q(0)Fx(0,S)~!. It follows that @ = aw, where a = Q(0). O

Corollary 4.12. Let f be a homomorphism over R from the formal group F to the formal

group G. Let wp,wq be the normalised invariant differentials on F, G, respectively. Then

wgo f=f'(0) wp.

Proof First, note that wg o f(F(T,S)) = wa(G(f(T), f(S))) = wg o f(T), so that wg o f
is an invariant differential on F. From the previous result, it follows that wg o f = a wp,
for some a € R. Since wp,wq are normalised, (1 + ...)df(7) = a(1 4 ...)dT, and so
(14..)f(T)dT = a(1 + ...)dT; equating constant terms gives a = f’(0), as required. [

Corollary 4.13. Let F' be a formal group over R and let, as usual, [m)(T) € Rr denote
the multiplication by m map on F, as in Definition 4.6. Let p be prime. Then there exist
f,9€ Ry [f(T)=T+...], such that [p|(T) = pf(T) + g(T?).

Proof Let w be the normalised invariant differential on F'. Since [p](T') = pT'+.. ., it satisfies
[p)'(0) = p. Applying the previous result to [p], a homomorphism from F' to itself, gives:
w o [p] = [p]'(0)w = pw, and so

pu(T) = wo [p)(T) = (1+...)d(p(T)) = (1 +...)[pl (T)dT.

Hence [p/'(T) € p Rr. Each term a,7™ in [p|(T) must then satisfy p|na, in R, and so p|n

in Z or p|a, in R, as required. U

Definition 4.14. Let w(T) = P(T)dT = (14+¢T+c;T?+...)dT be the normalised invariant
differential for the formal group F' over R. For the special case when our ring R is a field of
characteristic 0, we can define the formal logarithm by: log,(T) = [w(T) = [ P(T)dT =
T+ %TQ + %“’T?’ + ... and the formal exponential function expp(T) as the unique member

of Ry satisfying log(expp (7)) = expp(logp(T")) = T, which exists by Lemma 4.7.
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Theorem 4.15. Let R be a field of characteristic 0; then logy [as in the previous definition/
s an isomorphism from F to (A;a, the additive group X +Y .

Proof Differentiating logy (F(T,S)) — logy(T) with respect to T' gives:

P(F(T,S))Fx(T,S)—P(T) [and this = 0, since w(T') = P(T)dT is an invariant differential],
and so log (F(T,S)) — log(T) is a power series purely in S, which we denote f(S); that
is: logp (F(T,5)) =logp(T) + f(S). Putting T = 0 forces f(S) = logp(S). Hence logy is a

homomorphism; the inverse is expy, and so log is an isomorphism. O

Comment 4.16. Note that our proof of the existence of the invariant differential required no
appeal to the commutativity axiom F(X,Y) = F(Y, X). If our formal group F is defined over
any integral domain R of characteristic 0 (such as Z or any Z,), we can define logp, expp
over K, the field of fractions of R, and see that F(X,Y) = expp(logp(X) + logp(Y)),
which forces F' to be commutative. So, at least when F' is defined over an integral domain
of characteristic 0, we have the somewhat surprising fact that the commutativity axiom
is redundant; it can be deduced from: F(X,Y) = X + Y + terms of degree > 2 and
associativity. It is possible to construct non-commutative formal groups, but only when

defined over unusual rings.

Definition 4.17. Let K be field, complete with respect to a discrete non-Archimedean
valuation, R = {x € K : |z| < 1} be the valuation ring, M = {x € K : |z| < 1} be
the maximal ideal, and assume that & = R/M [the residue field] is of characteristic p [for
example, K = Q,, R =Z,, M = pZ,, k =F,|. Let F' be a formal group defined over R. The
group on M associated to F(X,Y'), denoted F'(M), is the set M together with the group
operation: = @y = F(x,y) [which converges for any x,y € M]. The identity element is 0,
and the inverse of x is given by i(x) of Lemma 4.3. Similarly, for any n > 1, define F'(M™")

to be the set M"™ with the same group operation.

Lemma 4.18. Let F, K, R, M,k [with char(k) = p] be as in Definition 4.17.
(a) The identity map: F(M™)/F(M" ), & — M"/M" + is an isomorphism.
(b) Every torsion element of F(M) has order a power of p.

Proof

(a) Forany z,y € M", 2Py = x+y+... = z+y (mod M?*), and so is = x+y (mod M"*1).
(b) It is sufficient to show there does not exist a point of finite order m for any m > 1 with
p [/ m [since any w of order mp" gives p"w of order m|. But, since char(k) = p, and p f m,
we have |m| = 1 and so m € R*. By Lemma 4.8, [m] is an isomorphism from M to M,

which must then have trivial kernel: [m]z =0 = z = 0, as required. O
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Theorem 4.19. Let F, K, R, M,k [with char(k) = p] be as in Defn 4.17. Suppose that z €
F(M) has exact order p", for some n > 1, so that [p"](z) = 0, but [p"'](z) # 0. Then:

2] > [pl7T.

Proof If char(R) # 0 then |p| = 0, so assume that char(R) = 0. We have from Corollary 4.13
that [p|(T') = pf(T)+g(TP) for some f(T') =T+... € Ry and g(T') € Ry. We shall proceed
by induction on n.

Suppose z # 0, z € M and [p](z) = 0. Then 0 = pf(z) + g(z?) = p(z +...) + g(2*). We
cannot have |pz| > |2?|, since then the term pz would have valuation strictly greater than the
valuations all other terms. Hence |pz| < |2P| = |z|P, and so |p| < |z[P71, giving |z| > |p|ﬁ,
proving the result for n = 1.

Now, assume the result is true for n, and let z € F(M) have order p"™'. Then [p](z) has

1
»"—p"~1  Hence:

order n, and by the induction hypothesis, |[p](z)| =

Pl < [pl(2)] = Ipf(2) + 9(z")| < max([pz], |2"]).

R 1

But |z| < 1,|p| < 1, so that |p|»"=»""T > |p| > |pz|, giving |p|1f)"—z’"‘1 < |2P|, and so
1

|z| = |p|?"FT-+", as required. O

This has immediate consequences for elliptic curves.

Corollary 4.20. Let € : y? = 2° + Ax + B, be an elliptic curve, where A,B € Z,. The
kernel £1(Q,) of the reduction map ~ : Ey(Q,) — Ens(F,) has no torsion (apart from o).
Any (z,y) € &ors(Qp) satisfies |z|, < 1,|yl, < 1. When £ is non-singular, Erors(Qp) s

isomorphic to a subgroup of g(Fp).

Proof Let o0 # (x,y) € £(Q,) be in the kernel of reduction, that is, |z|,, |y|, > 1. Then, from
b < 1wl = = 1/yl, < 1. T (2,y)
were torsion, then z would be a torsion point in Fg¢(M) = Fe(pZ,). By Lemma 4.18(b) it

the equation for &, |y, = |$|g and |z| = |~z /yl, = |z

must be of order p”, and so by Theorem 4.19 must satisfy 1 > |z|, > |p|;" " . Note that

since |p|, = p~', any p" apart from 2' [so that p” — p"~! > 1] would force 1 > |z|, > p~!
contradicting the fact that |z|, is p” for some integer . The only remaining possibility is that
(x,y) is of order 2; but then y = 0 and z is a root of #* + Ax + B; this is incompatible with
|z|, > 1 [which makes 2® have strictly larger valuation than Az and B]. We conclude that
x,y cannot be torsion, and that there is no torsion (apart from o) in the kernel of reduction.
When & is non-singular, &(Qy) = £(Q,) and gns(]Fp) =& (F,) and the reduction map
£(Q,) — ~(Iﬁ‘p) contains no nontrivial torsion, and so is injective when restricted

to Stors((@p) hence Eiors(Q,) is isomorphic to a subgroup of 5( ) O
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SECTION 5. GLOBAL TORSION

Aside: We now turn to elliptic curves defined over Q, initially concentrating on the group
Eiors(Q) of points of finite order. Any elliptic curve € : y* = 23+ Ax + B, defined over Q can
be transformed with a map of the form (x,y) — (k*z, k3y) so that A, B € Z. The following

result is a consequence over Q of the p-adic results of the last section.

Lemma 5.1. Let £ : y?> = 23 + Az + B, where A, B € Z, be an elliptic curve [so that
A =4A3 4 27B? # 0/]. Let p be a prime satisfying: p # 2 and p J A (such a prime is said
to be of good reduction, since & mod p is still an elliptic curve over Fy). Then Eos(Q) is

isomorphic to a subgroup of E(F,), and so #Ews(Q) | #E(F,).

Proof Since Q C Q,, for any p, £(Q) < £(Q,) and Eiors(Q) < Eiors(Qp). Since p f A we
have A # 0 in F,; since char(F,) # 2, this is enough to guarantee that & is non-singular,
and so gm(IFp) =£ (F,). By the last result of the previous section (Corollary 4.20), &os(Q,)
is isomorphic to a subgroup of & (F,), as must also be os(Q) [since Eiors(Q) < Erors(Qp)]-
Lagrange’s Theorem then tells us that #E&os(Q) | #E (Fp). O

Note that, in particular, the above result tells us that &.,5(Q) is always finite. In practice,

we can use reductions modulo finite fields to try to determine E;o(Q).

Example 5.2. Let £ : y?> = 23+3, defined over Q. Then A = 4A434+27B? = 4.03427-3% = 3°.
We can choose any prime p # 2,p f A, that is, p # 2, 3.

p=5. &:y*=a®+3, defined over F5. Then &(F;) consists of: o, (1,42), (2,£1), (3,0),
giving 6 points. So #Eos(Q) | #g(Fg,), that is: #&0s(Q) | 6.

p="7. E:y* =2+ 3, defined over F;. Then &(F;) consists of:

0, (1,£2), (2,£2), (3,£3), (4, £2), (5,£3), (6, £3), giving 13 points. So #&ers(Q) | 13.

The only possibility is: #&0s(Q) = 1, and so Eos(Q) = {0}. Note that (1,2) € £(Q),
but we know that (1,2) is not of finite order, so that (1,2),2(1,2),3(1,2),... are all distinct,
and can conclude that £(Q) is infinite.

Note that, if we are given (for example) F : y? = 2® + 3, we can apply (z,y) — (5°z,5%))

[with inverse (z,y) = (57, & )] to transform F to £ and so deduce that Fi.s(Q) = {o} also.
Aside: Another consequence of the p-adic results of the last section is the integrality of the

coordinates of any torsion point.
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Lemma 5.3. Let (x1,41) # 0 be a Q-rational torsion point on & : y* = 3 + Az + B, where
A, B €Z. Then xy,y; € Z.

Proof For any prime p, we have A, B € Z C Z,. Furthermore, (z1,y1) € Eiors(Q) C Erors(Qp)-
By the last result of the previous section (Corollary 4.20) we know that |z1|, < 1, |y1|, < 1.
In summary: z1,y; € Q and z1,y; € Z, for all primes p.

Imagine that z, ¢ Z, that is, z; = ™, where m,n € Z, ged(m,n) = 1, n # £1. Then

some prime p must divide n (and not divide m), giving |z;|, = |2|, = p" (for some r > 0),

oy
which is > 1. This contradicts € Z,, and so we conclude that z; € Z. Similarly y; € Z. O

For example, this tells us immediately that the point Gp g) is of infinite order on the
elliptic curve € : > = 2® — x + 1,

Aside: Reduction to finite fields usually works well enough in practice, but there is the
potential problem that it might leave us with Eos(Q) undetermined. For example, suppose
that, after trying several primes, we repeatedly find that 3 | #g(Fp), but a search has not
found a point of order 3. In that case, the group Eos(Q) would be unresolved. It would

be nice to have a finite search area within which the members of Eiows(Q) must lie. This is

provided by the following result.

Theorem 5.4. (Nagell-Lutz). Let 0 # (z1,y1) € Eors(Q), where € = y* = 23 + Ax + B, and
A, B €Z. Then xy,y1 € Z and either y; =0 or y? | A, where A = 4A3 + 27B%.

Proof From the last lemma, x1,y; € Z. If y; = 0 then the result is satisfied; otherwise,
(x1,y1) is not 2-torsion and we can consider (za,y2) = 2(21,y1), with (x2,y2) # 0, and so
T2, Y2 € Q. But (z9,ys) is also a torsion point, so xq, yo € Z. The line tangent to £ at (x1,y;)

has slope A = (322 + A)/(2y1); as usual, substituting y = Az + u into & gives (A\z + p)* =

23+ Az+ B and so x® —\2x?+. .. = 0, giving 71 + 2, + 23 = —(coeff of 22)/(coeff of 23) = A2,
that is:
322 4+ A\2
To = <L) — 2£L'1 € 7.
21
2
Now, we know z1,z5 € Z and so (33621%4)2 € Z. Tt follows that 4y? | (322 + A)? and so

vl | (322 + A)2. Also, y? = 23 + Axy + B and so trivially y? | (z} + Az; + B). Applying
Euclid’s Algorithm to (322 + A)? and 2® + Az + B gives the identity

O (x)1(x) + go(w)1a(x) = 4A° + 278,
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where ¢ (x) = 3x24+4A, 1 (x) = (322 +A)?, ¢o(x) = —27(x3+Ax—B), 1y(z) = 23+ Ax+B.
Since y7 | ¢1 (1) and y7 | ¥a(21) we must have yi | (¢1(z1)d1(21) + da(21)va(71)) = A, as

required. 0]

Example 5.5. Let £ : 4> = 22 + 32+ 1. Then A = 4-3%+27-12 = 135 = 5 3%
If (x,y) € Eows(Q), (z,y) # 0, then z,y € Z and either y = 0 or y* | 5 - 33, giving only
y = 0,£1,£3 as possibilities.
Case y = +1. From &, (+1)? = 2° + 3z + 1 and so z(2? + 3) = 0. The only solution in Z
is x = 0, giving (0,+1) as the only possibilities.
Case y = +3. In this case, x € Z satisfies (£3)? = 23 + 3z + 1 and so 2® + 3z — 8 = 0.
Let f(z) = 2® + 3x — 8. Any integer root x of f(x) must satisfy z|(constant term) = (—8),
giving = £1,+2, +4, +8 as the only possibilities. When we substitute these, we find that
f(1), f(=1),..., f(—8) are all nonzero, so there are no points on € with x € Z and y = +3.
Case y = 0. In this case, x € Z satisfies 0 = 23 + 3z + 1, and we only need to check z = +1.
neither of which are roots of 2® 4+ 3z + 1. So, there are no points on £ with € Z and y = 0.
In summary, o, (0,1), (0, —1) are the only possible torsion points. Is (0,1) € Eos(Q)? If
it were then so would be 2(0,1). But 2(0,1) = (0,1) + (0,1) = (§, —%); the coordinates are
not in Z and so this is not a torsion point. Hence (0, 1) must have infinite order. The same

must be true for (0, —1), since it is the inverse of (0, 1). Conclusion: &s(Q) = {o}.

The previous method of reductions modulo finite fields is usually quicker in practice, but

the Nagell-Lutz method is an effective procedure.

Comment 5.6. It was merely to ease the algebra in previous sections that we used only the
form 3% = 23 + Ax + B, and all of the previous arguments apply equally well to any elliptic
curve & : y? = 23 + azx?® + bz + ¢, where a,b, ¢ € Z, with A now taken to be the discriminant

of 3 + ax? + bx + ¢, which has the formula:
A =4ac+ 27¢ + 4° — a*b* — 18abe.

So, it remains true that, for any prime p J 2A, Eo(Q) is isomorphic to a subgroup of £ (F,),
that #&ors(Q) | #g(IFp), and that any (z,y) € &as(Q) [(z,y) # o] satisfies z,y € Z,
with y = 0 or 3% | A.
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SECTION 6. A 2-ISOGENY ON AN ELLIPTIC CURVE

[In the following, we shall use upper case letters XY, ... for variables, and lower case
letters z, vy, ... for a point (x,y).]

Suppose that £ is an elliptic curve over QQ, together with a Q-rational point of order 2:
(x0,0). After a birational transformation (z,y) — (x —zo,y) [inverse (z,y) — (x+xq,y)] we
can assume that (0,0) € £(Q), so that Y2 = cubic in X, with no constant term. As usual,
after mappings of the form (x,y) — (k*z, k3y), we can assume that the coefficients are in Z.

So, our elliptic curve can be taken to have the form
C:Y?=X(X?>+aX +b), a,bcZ, bla®—4b) # 0,

the last condition ensuring that the curve is non-singular. The point (0, 0) is of order 2 on C.

Let P = (x,y) be a point on C, and let P, = (x,y) + (0,0) = (21,41). Define T ) by:
T0) : C = C: (z,y) = (2,9) +(0,0) = (z1,31).

That is, P — P+ (0,0). What are x,y; in terms of z,y?
When (z,y) = (0,0), then T(g0) : (0,0) — o, since (0,0) is of order 2. When = # 0, we

first find the line through (0,0) and (z,y), which is: ¥ = X Substituting this into C gives:

2

(9) X2 = X(X%+aX +b)

T
v’ X? =2’ X 4+ ar’ X + b’ X

z(2® 4+ azx + b) X? = 22 X? + ax?X? + ba* X [since (z,y) is on C]

0=a2X?— (22 + b)X? + bxX, [since z # 0]

and so X (X —z)(xX —b) = 0. The roots of this cubic are: X = 0,X =z, X = b/z. The
line Y = £X and C intersect at:

b b
(0,0), (z,y) and (;, :1%) [since X = % gives Y = %% = %]
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z)  x?

and so (z,y) + (0,0) = <é —b—y> = (z1,y1), where x1 = %, p=—%.

We want to construct a 2-to-1 map ¢ from C to another curve D such that ¢(P + (0, O)) =
¢(P) for any P. We want expressions in x, y, call them A(z,y), u(z,y), such that P = (z,y)
and P+ (0,0) = (21,y1) map to the same (X, y1). Natural attempts are: z +z; =z + £ and

Y+ =y — i—g. It turns out to be more convenient to choose x + x1 + a instead of x + x;.

b 2 b 2 2
Deﬁne:)\:x+x1+a:x+—+a:x(m +62m+ ):y_2:(y>
x T T

Define: p =y 4+ :y—i—z.
Both A,y are invariant under (o). We have a map from C, given by (z,y) — (A, ) =
((%)2, Yy — i—g), which we shall call . We want to find the new curve D which this map is
to, that is, we want the equation satisfied by A and u. Try:
() )
—A(a®+ 20+ i—z — ) = A((z+ 2)2 —4b) = A(A = @)? = 4b) = A(A? = 20) + a? — 4b).
So (A, u) is a point on the curve D : V2 = U(U?+a,U +by), where a; = —2a and by = a? —4b.
Our map ¢ is a rational map (but not a birational transformation, since it is 2-to-1). It is
easy to check that it is a homomorphism, with kernel {o, (0,0)}; such a map ¢ is a 2-isogeny
on C.
We can apply the same process to D, taking (u,v) — ((%)2, v— 12—2”) from D to the curve

Y? = X(X? — 201X + a? — 4by), which is the same as Y? = X(X? + 4aX + 16b) [since

—2(—2a) = 4a and a? — 4b; = (—2a)? — 4(a® — 4b) = 16|, that is:

64 4

and so <%>2 = %((%)2 —i—a(%) + b). So, the map & : (u,v) — (%(%)Qé(v — l’;—;’)) is a

Y?2 X(X2 4a X 16b) X(X2 aX b)
= - ,

616 "6/ " a\1g T "

~

map from D back to C (the dual isogeny). The properties are the same as for ¢, namely: ¢

is a homomorphism with kernel {o, (0,0)}.
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Note also that, if we let oy = =a+ve—2b ”2“2_413, (ry = —a=vat—db V2“2_4b denote the roots of X%+ aX +0,
then gb((al,O)) = (b((ag,O)) = (0,0), and so the kernel of ¢ o ¢ consists precisely of the
2-torsion of C, namely: {0, (0,0), (a1,0), (as,0)}. Indeed, it is easy to show that ¢ o ¢ is the

multiplication by 2 map on C. We summarise as follows.

Lemma 6.1. Let C : Y? = X (X% + aX + ), where a,b € Z,b # 0,a> — 4b # 0, and let

D:V2=U(U?+ a1U + by), where a; = —2a and by = a® — 4b.

Define ¢ :C — D by ¢(x,y) = ((Q)Q,y by>‘

Define ¢:D —C by ¢(u,v) = (1<E>2 1(1}—[)1—”))

4\u/) '8 u?

Then the 2-isogenies ¢, ¢ are 2-to-1 homomorphisms, each with kernel {0,(0,0)}. Since b, &
are defined over Q, we also have ¢ : C(Q) — D(Q) and ¢ : D(Q) — C(Q). The compositions

ggo ¢ and ¢ ongS are the multiplication by 2 maps [2] on C and D, respectively.

We shall concentrate for the moment on ¢ : C — D. Note that we can formally invert

(u,v) = ¢(z,y) = ((%)Q,y — 2—%), as follows. Since u = (%)2, we have £ = +u!/2. For the

1/2

moment, say ¥ = u'/*. We also have

y x? x

2 2
yv2  y?  z(z®+axr+0b) b
e B A

and so: u~Y?v + u = 2z + a. Solving for z,y then gives the following preimages.

Lemma 6.2. Let C,D, ¢ be as in Lemma 6.1, and let (u,v) be a point on D with u # 0. Let
T = (u +u V2 — a)/2, = ur, = ul/Q(u +u 2y — @)/2,

Ty = (u —u 2y — a)/?, Yo = —u'?xy = —ul/Q(u —u 2y — a)/?.
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Then ¢(z1,y1) = ¢(x2,y2) = (u,v).

We shall shortly make use of these to define helpful maps on C(Q) and D(Q). First, we
recall the notation Q* and Q*/(Q*)? [see also Example 0.30(b)]. As usual, let Q* denote
the group of nonzero members of Q under multiplication, so that Q*/(Q*)? is Q* modulo
squares. For example, i—g = 3 in Q*/(Q*)? since % = 3% = 3(%)2 = 3 in Q*/(Q*)2. Note
that any member of Q*/(Q*)? can be written uniquely as a square free integer (that is, as
an integer not divisible by any square except 1).

Aside: Our main aim here is to show the Weak Mordell-Weil Theorem, that C(Q)/2C(Q)
is finite, which we shall achieve by showing that D(Q)/$(C(Q)) and C(Q)/d(D(Q)) are finite,
and then using the fact that ¢ o ¢ = [2].

From now on, we denote C(Q) by G and D(Q) by H [both groups under addition + given

by the group law on elliptic curves, with identity o].

Lemma 6.3. Let (u,v) € H. Then:

(u,v) € #(G) <= u € (Q*)? or [u=0 and a® — 4b € (Q*)?].

Proof

Case 1 u # 0. From the expressions in Lemma 6.2 for (x1, 1), (x1,y1) such that ¢(xy,y:) =

1/2

¢(2,y2) = (u,v), which are in terms of u, v, u'’*, we see that:

(u,v) € ¢(G) <= u? € Q = uc (Q*)%

Case 2 u = 0. The expressions in Lemma 6.2 do not apply here, since they include u~'/2.
But we know that ¢(ay,0) = ¢(aq,0) = (0,0), where ; = =%tve==2 V;L‘lb, y = =A== V2“2_4b
denote the roots of X? + aX + b. Hence:

(0,0) € p(G) <= ajor as € Q <= a® — 4b € (Q*)?, as required. O

This suggests the following map on .
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Definition 6.4. Define the map ¢ : H — Q*/(Q*)? by:
U when u # 0
q(u,v) = { ’

by =a®> —4b when u = 0.

Also define ¢(o) = 1.

Note that we can equivalently define ¢(u,v) to be d such that the preimages of (u,v)

under ¢ are defined over Q(v/d).

Lemma 6.5. The map q : H — Q*/(Q*)? of Definition 6.4 is a homomorphism with ker-

nel ¢(G) (so that the induced map q : H/p(G) — Q*/(Q*)? is an injective homomorphism,).

Proof We only show that ¢(P+ Q) = ¢(P)q(Q) in the typical case when none of P,Q, P+ Q
are (0,0) or 0. Let (uq,v1), (u2,v2), (us,vs3) be 3 points on H = D(Q) which sum to o, [so
that (uy,v1) + (ug2,v2) = (uz, —v3)]. Then these are the 3 points of intersection between D
and some line defined over Q: V = (U + m, say. Substituting V' = (U + m into D gives:
U(U?+a1U +by) — (U +m)?, whose 3 roots must be uy, ug, uz. That is: U(U?+a,U+b;) —
(U +m)? = (U — u1)(U — ug)(U — u3). Equating constant terms gives: ujusuz = m? =1 in
Q*/(Q*)?, and so ujuy = 1/u3z = uz in Q*/(Q*)?. Therefore, by the definition of ¢ we have:
q((ul, Ul))q((m, vg)) = q((u3, —'U3)) = q((ul, v1) + (U27U2))7 so that ¢ is a homomorphism.

The fact that ker ¢ = ¢(G) is an immediate consequence of Lemma 6.3. O

Lemma 6.6. The map q : H — Q*/(Q*)? of Definition 6.4 has finite image. Indeed, if
r € Q*/(Q*)? is written as a square free integer, then r € im ¢ = r|by. Under q, H/$(G)

is isomorphic to the subgroup of Q*/(Q*)? consisting of all square free integers r|by such that
W, rl* + a1 *m? + (b /r)m* = n?,  for some £, m,n € Z,not all 0, with ged(¢, m) = 1.

When this is satisfied, there is a point (u,v) € H such that q(u,v) = r, satisfying u = T(L)z.

m



33

Proof Let r € Q*/(Q*)?,r € imq,r € Z,r square free. We want to prove that r|b;. Suppose
r = q(u,v), where (u,v) € D(Q), which must exist since r € img. Then: r = q(u,v) = u =
u? + aju + by in Q*/(Q*)? [since u(u? + aju + by) = v?]. So, r,u,u* + aju + by are all the

same modulo squares, which means we can write:
2 2 2
u*+ au+ by =rs*, u=rt*, forsome s,t € Q.

Hence: (rt?)? + ay(rt?) + by = rs®. Let t = {/m, where {,m € Z and ged({,m) = 1.

Then: r20*/m* + ayré?/m? + by = rs®, and so: 7?0 + ayrf?>m? + bym* = r(m?s)?. Now,

ai,by,r, €,m € 7Z, so the LHS of this last equation is in Z, and so the RHS is also in Z;
2

that is: r(m?s)?> € Z. Since r is square free, we must therefore have m*s € Z. Define:

n =m?s € Z. Then our equation becomes:
294 2,2 4 2 _
0 + arl*m” 4+ bym® = rn®, for some ¢, m,n € Z, ged({,m) = 1, (%)

(from which we have W, in the statement of the lemma, after dividing both side by r). We
want to show that r|b;, and we know that r is square free. It is sufficient to show, for any

prime p, that p|r = plb;.

Imagine p|r and p f by, for some prime p. Then p|r?¢*, a;r¢?>m?, rn? and so by (*),
p|lbym*, which in turn gives: p|m [since p [ b;]. Hence, since now p|r and p|m, we
have: p?|r20* a;rf?>m? bym*, and so by (), p*|rn?, which in turn gives: p|n [since r
is square free]. Hence, since now p|r,m,n, we have: p*|a;rf?>m? bym?*,rn?, and so by
(%), p?|r?¢*, which in turn gives: p|¢ [since r is square free]. This is a contradiction,
since p|¢ and p|m but ged(¢,m) = 1.

The above assumption that p|r and p f by let to a contradiction, and so it is impossible for

any prime p to satisfy p|r and p f b;. This is the same as saying that p|r = p|b; for any

prime p. Since r is square free, we conclude that r|b;, as required.
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We finally note that, if r satisfies W, then (r(f/m)2)2 + ayr(f/m)* + by = r(n/m?)?, so
that: r(€/m)2((r(€/m)2)2+a17’(€/m)2—|—b1) = (rfn/m?3)? and so (u,v) = (r(¢/m)* rén/m?)

is in ‘H and satisfies ¢(u,v) = r, which gives r € im gq. O

Comment 6.7. If we similarly define ¢ : G — Q*/(Q*)? by:
. x when z # 0
q(z,y) = { ’

b=a} —4b; when z =0,

and ¢(0) = 1, then, by the same argument, ¢ has finite image. If » € Q*/(Q*)? is written
as a square free integer, then r € im ¢§ = r|b. Under ¢, Q/(ZS(H) is isomorphic to the

subgroup of Q*/(Q*)? consisting of all square free integers r|b such that

WT crlt 4 alPm? + (b/r)m* = n?, for some £,m,n € Z,not all 0, with ged(¢, m) = 1.

BN

When /VI?T is satisfied, there is a point (x,y) € G such that ¢(x,y) = r, satisfying = = r(m)Z.

Since H/$(G) and G/p(H) have been shown to be isomorphic to finite groups, we can

immediately deduce one of our main goals.

Theorem 6.8. Both G/¢(H) and H/$(G) are finite.

Corollary 6.9. (The Weak Mordell-Weil Theorem, for an elliptic curve C which has a

rational point of order 2). G/2G = C(Q)/2C(Q) is finite.
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Proof We know from Theorem 6.8 that G/¢(H) and H/¢(G) are finite, so let G/d(H) =

{91,-..,9x} and H/d(G) = {h1,...,he}. Let g € G. We can write g as:

9= 9i +¢E(h>7 for some g; € {g1,...,9x}, h€H

=g+ (;S(hj + ¢(¢)), for some hj € {hi,..., e}, d €G

~

=g, + q@(hj) + ¢(p(g")) [since b is a homomorphism]
= gi + d(h;) + 24" [since po ¢ = [2]]

= gi+ o(h;) in G/2G.

Hence G/2G is a subset of {g; + ¢f(hj) :1<i <k, 1<j</{}, which is finite, and so G/2G
is finite. O

The above proves the Weak Mordell-Weil Theorem, that C(Q)/2C(Q) is finite, for the case
when C : Y2 = X (X% + aX + b) has a Q-rational point of order 2. In fact, the same result
can be proved for any elliptic curve £ : Y2 = F(X), regardless of whether it has a Q-rational

point of order 2 (see Chapter VIII of Silverman), giving:

Theorem 6.10. (The Weak Mordell-Weil Theorem). Let £ be any elliptic curve over Q.

Then £(Q)/2E(Q) is finite.

The proof of the more general version is in a similar spirit, but requires some algebraic

number theory, working in the number field Q(«), where « is a root of F/(X).

Comment 6.11. A Boolean group is defined to be a group such that g* g is the identity, for
any element g. A finite Boolean group, generated by the independent elements g1, ..., gy,
has 2" elements. Given any Abelian group G, the quotient group G/2G is always Boolean.

When G/2G is finite, #G/2G is always a power of 2 and is isomorphic to Cy X ... x Cj.
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Suppose we are give an elliptic curve of the form C : Y? = X (X% + aX + b), and we
derive the associated objects already described, namely D : V? = U(U? + a,U + by), where
a1 = —2a,b; = a? — 4b, with G = C(Q),H =D(Q), ¢ : G = H, ¢ : H = G, q: H/d(G) —
Q*/(Q*)2, G : G/d(H) — Q*/(Q*)2 Then the above results and their proofs give a method
for trying to compute G/2G.

Step 1. Try to find H/¢(G) by finding all square free integers r|b; satisfying W.,.
Step 2. Try to find G/ QB(IH) by finding all square free integers r|b satisfying /WT.

Step 3. Combine G/¢(H) and qg(’}—l/qﬁ(g)) to generate G/2G.
Example 6.12. Let C: Y? = X(X? — X 4+ 6). Then G/2G = C(Q)/2C(Q) = Cy x Cs.

Proof Here, a = —1,b = 6 and so a; = —2a = 2, by = a®> — 4b = —23, giving D : V? =
U(U?+42U —23). The isogeny ¢ : C — D is given by ¢(z,y) = <(%)2, —Z—Z) = ((%)Q,y—g—g)
The isogeny ¢ : D — C is given by é(u, v) = (%(5)2, %(v - I’J—;’)) = (;11(5)2, s(v+ f’—f))
Step 1. Find H/¢(G). We need to consider r|by = —23,r € Z, r square free, that is,
r = £1,423, and ¢g(o) = 1, ¢(0,0) = by = —23, so that: {1,—-23} < im ¢ < {£1,+23}.
Note that —1 € im ¢ <= 23 € im ¢, and so it is only necessary to check one member of
the coset {—1,23}.

Choose r = —1. Then equation W,, r¢* + a10*m? + (by/r)m* = n* becomes:
W_y: —0*4+20°m? + 23m* = n?, for some £, m,n € Z, not all 0, with ged(¢,m) = 1.
On completing the square, we obtain:
—(2 —mH? +24m* =n% (1)

This gives — (¢ — m?)? = n? (mod 3).
Imagine 3 [ (/2 — m?); then > — m? would have an inverse a mod 3, and so —1 =

(an)? (mod 3), contradicting the fact that —1 is not a quadratic residue mod 3.
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Hence, by reductio, 3|(¢* — m?) and so 3|n [since 3|n?], giving that 3%|(¢(* — m?)? and
3?|n?, so that, from (1), 3%|24m*, and so 3|m* [since 3'||24], giving 3|m. But combining
3|m with 3|¢* — m? gives 3|¢?, so that 3|¢. We have shown that 3|¢ and 3|m, contradicting
ged(¢,m) = 1. Hence there are no solutions to W_y, giving that —1 ¢ im ¢ [indeed, we have
shown that there are no solutions (¢, m,n) # (0,0,0) in Qs].
This gives im ¢ = {1,—23} and H/$(G) = {0, (0,0)} = ((0,0)) = Cs.

Step 2. Find Q/QAS(H) We need to consider r|b = 6,7 € Z, r square free, that is, r =
41,42, 43,46, Also, 4(o) = 1, §(2,4) = 2, §(3,—6) = 3, §(0,0) = b = 6, so that
{1,2,3,6} < im § < {£1,42,43 +6}. Note that -1 € im § <= -2 € im{ <=
—3 €im§ <= —6 € im ¢, and so it is only necessary to check one member of the coset
{~1,-2,-3,—6}.

Choose = —1. Then W_y, 70* + al*m?2 + (b/r)m* = n? becomes:

—~

W_y: —0* —*m? — 6m* = n? for some £, m,n € Z, not all 0, with gcd(¢,m) = 1.
For any ¢, m,n € Z, {* >m?,6m* > 0, so —¢* — >m? — 6m* < 0, and
LHS = ' —Pm? —6m' =0 < M =rFm’=6m'=0 < (=m =0.

Also, RHS = n? > 0 and n2 = 0 <= n = 0. Both sides are equal <= both sides
are 0 <= (¢ =m = n = 0, but we require £, m,n to be not all 0. Hence there are no
solutions to /W_l, giving that —1 ¢ im ¢ [indeed, we have shown that there are no solutions
(¢,m,n) # (0,0,0) in R].

We conclude that im ¢ = {1,2,3,6} and G/d(H) = {o, (0,0), (2,4), (3,—6)} = ((0,0), (2, 4)).
Step 3. Find G/2G. This is generated by G/¢(H) = {o, (0,0), (2,4), (3, —6)} = ((0,0), (2,4)),
together with é(%/¢(g)) = {¢(0),$(0,0)} = {o}, which gives nothing new that wasn’t al-

ready in G/¢(H). Therefore, G/2G = {0, (0,0), (2,4), (3,—6)} = ((0,0), (2,4)) = Cy x C, as
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required. Note that (0,0), (2,4) are independent in G/¢(#) and so are independent in G/2G

[since 2G = ¢(¢(G)) < o(H)]. O

Comment 6.13. The equations

W, 7l + a,*m? + (b /r)m* = n?,

W, : 10" + al®m? + (b/r)m* = n?,

[which can also be expressed as: rX* 4+ a; X%+ by/r = Y? and rX* + aX? + b/r = Y?,
for X, Y € Q] are called homogeneous spaces. Finding C(Q)/2C(Q), as in the last example,
comes down to deciding, for each r|b;, whether W, has a solution ¢, m,n € Z, not all 0, with
ged(¢,m) = 1, and for each r|b, whether Wr has such a solution.

In the last example, it turned out that each WT,/WT either had a solution ¢, m,n, or we
were able to show such a solution was impossible with a modulo-power-of-p argument (a
p-adic argument) or that it was impossible in R. That is, each W, /Wr either had a point or
it was impossible in R or some Q,.

This doesn’t always happen. It is possible in some examples for W, or /V[Z to have solutions
in R and every Q,, but not in Q [that is, for there to be a violation of the Hasse Principle].
For example, consider C : Y2 = X3 + 17X. Here, a = 0,b = 17, so that a; = 0,b; = —68,
giving D : Y2 = X3 — 68X. When computing H/¢(G), we consider r|b; = —68 and so r =
+1,42, 417, +34. For the case r = 2, the homogeneous space r¢* + a,?m? + (b /r)m?* = n?
becomes 2/* — 34m* = n?. Note that the equation forces n to be even; setting n = 2k and
dividing both sides by 2 gives the slightly simpler form: ¢* — 17m* = 2k?. As shown on
Problem Sheet 3, this has no solutions k,¢,m € Z (not all 0, gcd(¢,m) = 1) [as shown on
Problem Sheet 3], and so 2 ¢ im ¢, even though there exist solutions in R and every Q, [and

so proving 2 ¢ im ¢ requires an argument different to those in the last example]. Instances
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of such W, (or ﬁ/\r) correspond to members of a structure known as the Shafarevich-Tate

group.

Comment 6.14. There is another approach to the Weak Mordell-Weil Theorem, using
Galois cohomology. Recall that the slick definition of ¢ : D(Q)/#(C(Q)) — Q*/(Q*)? is that
¢(Q) = d, where Q(v/d) is the field over which P, P’ are defined, where ¢(P) = ¢(P') = Q.
Since ker ¢ = {o,(0,0)}, we must have P’ = P + (0,0). Furthermore, if oy : a + bv/d
a+bVd, o5 :a+bVd— a—bVd is the Galois group of the extension Q(\/E) - Q, then
P’' = 05(P). So, we have a 1-1 correspondence between {k; = 0,ky = (0,0)}, given by
ki <> o1 and ko <> 09, with the property that, for any member of { P, P’}, the effect of adding
k; is the same as applying ;. We then have a map which takes a member of D(Q)/¢(C(Q))
to a 1 — 1 correspondence between {0, (0,0)} and the Galois group of a quadratic number
field. As we have seen, there are two main elements required to prove the Weak Mordell-Weil
Theorem: showing that ¢ is a homomorphism and that im ¢ is finite. For showing that ¢ is a
homomorphism, suppose that ¢(Q1) = d; and ¢(Q2) = do. Then, by definition, P;, P| [such
that ¢(P)) = ¢(P]) = Q1] and defined over Q(v/d;), and P», P} [such that ¢(P) = ¢(Py) =
Q5] and defined over Q(y/dy). Now, since ¢ is a homomorphism, ¢(P; + P) = Q1 + Q2
and P, + P, is defined over Q(v/d1,v/dz). But /dy — —/dy, /dy — —+/dy has the same
effect as adding (0,0) to each of P;, P, and so leaves P; + P, unchanged, so that P, + P,
is defined over Q(v/dyds); similarly for the other preimage of Q; + Q. under ¢. Hence
q(Q1 + Q2) = didy = q(Q1)q(Q2), giving that ¢ is a homomorphism [without needing to
work explicitly with the group law]. For the finiteness of im ¢, let ¢(Q) = d, a square free
integer, and imagine that a prime p of good reduction is a factor of d. By the definition
of ¢, there are P, P, defined over Q(v/d) such that ¢(P) = ¢(P') = Q. But, on reduction

modulo ,/p, conjugation Vd — —/d has no effect modulo /D, contradicting the fact that
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P’ = P +(0,0) is distinct from P. Hence d has only primes dividing the discriminant as
factors, and so has only finitely many possibilities.

This approach is cleaner, and does not require getting our hands dirty with explicit
group law manipulations. On the other hand, it is often worth a more from-first-principles

proof (as given previously), as it provides us with an explicit method for trying to compute

C(Q)/2¢(Q).
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SECTION 7. THE MORDELL-WEIL THEOREM

When €& is an elliptic curve over Q, we've seen that Eos(Q) and £(Q)/2E(Q) are finite.
But £(Q) may sometimes be infinite [if P € £(Q) and P ¢ &os(Q) then P is of infinite
order and so £(Q) is infinite]. We shall show that £(Q) [whether finite or infinite| is always
finitely generated. That is, we aim to show that, for any elliptic curve &, there exists finite

number of elements P, ..., P, € £(Q) such that every P € £(Q) can be written as:
P:mlpl—i—...—i—mkPk, my,...,mg € 7.

This will be achieved via height functions; we first describe the general properties of a height

function on a general Abelian group.

Definition 7.1. Let A be an Abelian group with group operation +.

We say that h : A — R is a height function if it satisfies:
(1) For any @ € A, there exists C; = C1(Q) such that h(P+ Q) < 2h(P)+C for all P € A.
(2) There exists Cy, independent of P, such that h(2P) > 4h(P) — C, for all P € A.

(3) For any Cj, the set {P € A: h(P) < C3} is finite.

Theorem 7.2. Let A be an Abelian group which has a height function h, and suppose that

AJ2A is finite. Then A is finitely generated.

Proof We are given that A/2A is finite, so let A/2A =S5 = {Q1,...Q,} C A. Let P be any
element of A. Then P = @;, in A/2A for some Q);, € S and so we can write: P = 2P, + Q;,,
for some P; € A. Inductively, continue to write: P = 2P, + Q;,, Po = 2P5 4+ Qs, . . ., where
each P; € A and each Q;; € S. Now:

WEy) < H(h(2P) +C) by ()] = 4 (M1 — Q) + Co) < H(2h(Py) + Gy +Ca) by (1),

where:



12
C] = max{Ci(—Q) : Q € S}. So, if h(Pj_1) > (C] + C3)/2 then:

h(Py) < 1(20(Pj—1) + 2h(Pj-1)) = h(Pj1).

Imagine that h(P) > (C] + C2)/2 and h(P;) > (C] + C3)/2 for all j. Then the sequence
h(P),h(Py),h(Ps),... would be strictly decreasing, giving infinitely many distinct members
of A with height < h(P), which would contradict (3). This contradiction shows that there
must exist an n such that h(P,) < (C] + C3)/2. So, we can write: P = 2P, + Q;, =
22P, + Qi) + Qi = ..., and after n steps P will be written as a linear combination of P,
and members of S. Let T'={Q € A: h(Q) < (C] + C3)/2}. We have shown (since P, € T)
that any P € A is a linear combination of members of SUT. Furthermore, T is finite, by (3).
In conclusion: A is generated by the finite set S U T, and so is finitely generated. U

A height function on £(Q) can be obtained as follows.

Lemma 7.3. Let € be an elliptic curve, defined over Q. Define h, : £E(Q) — R by:
h.((z,y)) = logmax(|al, |b]), where z = %, a,b € Z, ged(a,b) =1,

and define h,(0) = 0. Then h, is a height function on £(Q). Indeed, there exists a con-
stant C, independent of P, Q, such that |hy(P + Q) + h,(P — Q) — 2h,(P) — 2h,(Q)| < C,
for all P,Q € £(Q), from which properties (1),(2) can be deduced [property (3) is trivially

true/.

For the proof (optional) see, for example, p.201 of Silverman.
Aside: The proof uses the explicit group law; for example, ' = da’'/V, the x-coordinate
of 2P = 2(x,y) is gwen by (quartic in z)/(cubic in z), and so max(|d'|,|V'|) is ‘approzi-

mately’ max(|al, [b])?, giving that logmax(|a’], |V']) is ‘approximately’ 41log max(|al,|b|), that
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is hy(2P) is ‘approximately’ 4h,(P). It is only necessary to control the amount of cancella-

tion occurring, when writing the x-coordinate of 2P in lowest terms.

Theorem 7.4. (The Mordell-Weil Theorem). Let £ be any elliptic curve over Q. Then

E(Q) is finitely generated.
Proof This follows immediately from Theorem 6.10, Theorem 7.2 and Lemma 7.3. U

Comment 7.5. This means that we know what £(Q) looks like:
E(Q) = Eiors(Q) X Z7, for some r > 0,1 € Z.
The number r is called the rank of £(Q) (or just the rank of £). Clearly:
£(Q) has finitely many points <= rank (5(@)) = 0.
To solve £(Q), we want to know: Es(Q) and r (the rank). Note that:
E(Q)/26(Q) = Ein(Q)/2Eion@ x (Z/22)
so that:
£(Q)/26(Q) = £(Q)2] x 3,

where £(Q)[2] denotes the 2-torsion subgroup of £(Q) (see Comment 0.40).

Example 7.6. Let C: Y? = X(X?— X +6). In Example 6.12, we found that C(Q)/2C(Q) =
Cy x Cy. Also, C(C)[2] = {o} U {points of order 2} = {0, (0,0), (*¥=2,0), (:2,0)},
so that C(Q)[2] = {0,(0,0)} = Cs. Since C(Q)/2C(Q) = C(Q)[2] x C%, we deduce that
Cy x Cy = Cy x CF and so the rank r» = 1 [C(Q) is infinite, but is generated by Cios(Q) and

one element of infinite order].
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SECTION 8. CRYPTOGRAPHY

Public keys allow message to be encoded (not decoded). Suppose A wants to send the
integer X to B safely; we assume that everything transmitted can be intercepted.
Step 1. B (in private) takes 2 large prime numbers p,q (usually about 250 digits) and
multiplies them together to give N = pq, chooses an exponent d, and publicises N, d to the
world.
Step 2. A (in private) computes Y = X9 (mod N) and sends the message Y to B.
Step 3. B privately computes ¢(N) = ¢(p)p(q) = (p — 1)(¢ — 1) and also computes (by

Euclid’s Algorithm) e such that de =1 (mod ¢(N)). Note that:
ye = (Xd)e = Xde _ X1+/€¢(N) [fOI' some k € Z] = X<X¢(N))k = X,

since X?) =1 (mod N) by Euler’s Theorem, provided that X, N are coprime. Assuming
X < N, this decodes the message.

Note that computing X? (mod N) [and Y (mod N)] is fast even when d is large, by
writing d in base 2 as d = 2% 4+ ... 4 2%» (k; < ... < k). One then obtains X% =

X, X% = (X¥)2 X2 = (X2)2, ... X% by k, squaring operations, after which:
X?= X" X X (mod N),

which takes roughly log d operations.

Anyone wishing to crack the code must be able to compute ¢(NV), which requires finding
p,q from N = pq. A naive (and very slow) approach is trial division: checking for each
c=2,...,[V/N ] whether ¢|N.

Much better is Pollard’s p — 1 method. One chooses base a and exponent £ = product of

powers of small primes. Compute a* (mod N) [as usual, after first writing &k in binary], and
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then ged(a® — 1, N) using Euclid’s Algorithm. If there exists prime p|N such that p — 1]k

[k = (p—1)s, say| then:
a* = (a"")" =1° =1 (mod p) [by Fermat],

provided that p f a. This gives p|(a* — 1) and so p|ged(a* — 1, N). Unless we have bad luck,

ged(af — 1, N) # N, and so ged(a® — 1, N) will be a proper factor of N [# 1,# N].

Example 8.1. A four-letter word LiLsL3L, has been divided into two pairs: L;L, and
L3L4. Each of these pairs has been converted into an integer (of at most 4 digits) via the
standard map: A — 01, B+ 02,...,7Z — 26. These integers have been encoded by taking

each to the power of d = 6587, modulo N = 10123. The encoded message reads:
4268, 5744.

We shall factorise N by applying Pollard’s “p — 17 method, using base 2 and exponent 52,
and then use the factorisation of N to decode the message.

Write 52 as a sum of powers of 2: 52 = 4 + 16 + 32. First compute (modulo N = 10123):
21 =2 22 = (21)2 = 4, 2' = (2%)? = 16, 28 = (2%)? = 256, 210 = (28)2 = 4798, 232 =
(216)% = 4798% = 1102 (where each of these was obtained be squaring the previous one, and
reducing modulo N). Since 52 = 4 + 16 + 32, we have: 2°? = 24216232 = 16 - 4798 - 1102 =
5907 - 1102 = 425 modulo N, so that 252 — 1 = 424 modulo N.

Now, compute ged(424, N) by Euclid’s Algorithm:

10123 =23 - 424 +371; 424 =1-371 4+ 53; 371 = 7-53 + 0.

So, 53 is a factor of N. Compute 10123/53 = 191, giving the factorisation N = 10123 =

53 - 191.
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Since N = 53 - 191, we have ¢(N) = 52 - 190 = 9880. Compute the ged of ¢p(N) = 9880

and d = 6587 we see:

(o7 [ sr) =077 (o ) | gaee) =720 (L 50 1707) 27200 (2, 5 19),
where the x entries need not be computed. This gives us, all in the same computation, that
gcd (9880, 6587) = 1, and the bottom row of the last matrix gives ged(9880,6587) as a linear
combination of 9880, 6587, namely: 1 = —2-9880 + 3 - 6587. Hence 3-6587 = 1 (mod 9880),
that is, 3 is the inverse of 6587 modulo ¢(/N) = 9880.

The decoding operation is therefore Y + Y3 mod N. Computing 42683 = 42682 - 4268 =

4547 - 4268 = 805 (modulo N = 10123). Also: 57443 = 5744? - 5744 = 2679 - 5744 = 1216

(modulo N = 10123). The decoded message is therefore: 0805, 1216; that is: HELP.

The exponent k is typically chosen to be a product of powers of the first r primes, for
some r. Pollard’s p — 1 Method is fast when there exists at least one prime p|N such that
p — 1 = #[F; is only divisible by small primes, so that order(a)|#F;|k.

When Pollard’s p — 1 method is slow for some N, we can replace ‘powers of an integer
base a’ with multiples kP of a point P on an elliptic curve £.

We hope that, there exists prime p|/N such that #E (F,)|k, which would guarantee that
kP = o (the point at infinity) mod p; that is to say, a denominator divisible by p, in which
case, taking the gcd of the denominator and N will reveal the factor p. This will be fast
if there exists p| N such that #E (F,) is only divisible by small primes. Each new choice of
elliptic curve gives a new chance of this happening.

The Elliptic Curve Method (ECM) for attempting to factor an integer N is as follows.
Choose an elliptic curve £ mod N, some point P on &£, and some choice of k (normally a

product of powers of small primes). Attempt to compute kP (mod N) and hope that, in



47

performing one of the additions kP = ki P + k3 P, a denominator will have ged with N that

is a nontrivial factor of N (# 1 and # N).

Example 8.2. Let N = 10123, as in Example 8.1. We shall factorise N by applying the
Elliptic Curve Method, using the curve £ : Y2 = X3 + 5X — 5 and 4P, where P = (1,1).

The line tangent to € at P = (1, 1) has slope y’ given by 2yy’ = 32> +5, withz = 1,y = 1;
that is, the slope is 8/2 = 4. This tangent line also goes through (1,1) and so has equation:
Y = 4X — 3. The z-coordinate of 2P is therefore 4> — (1 + 1) = 14, and the y-coordinate
is: —(4-14 — 3) = =53 = 10070, so that @ = 2P = (14,10070) (modulo N = 10123). We
now wish to double the point () = 2P, and so again the first step is to find the line tangent
to £ at (). This has slope ¢ given by 2-10070 - ¢/ = 3 - 142 + 5, and so we need to compute
(3-14% +5)/(2-10070) (modulo N = 10123), for which the first step is to find the inverse
of 210070 = 10017 (modulo N = 10123). Using Euclid’s Algorithm:

10123 = 1- 10017 4 106; 10017 = 94 - 106 + 53; 106 = 2 - 53 + 0.
So, we cannot find the inverse of 10017 (modulo N = 10123), and this step has given us our
factor 53 of N. Asin the previous example, compute 10123/53 = 191, giving the factorisation

N =10123 = 53 - 191.
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