Elliptic Curves. HT 2020/21. Sheet 1.

- 1. For each of the following elliptic curves, find all the points (including, as always, the point at infinity) over \mathbb{F}_5 . Draw a complete group table in each case and describe each group as a product of cyclic groups.
- (a) $Y^2 = X^3 + 2X$. (b) $Y^2 = X^3 + 1$.
- **2.** Show that the point (2,4) is of order 4 on $Y^2 = X^3 + 4X$, defined over \mathbb{Q} .
- **3(a).** Let $m \in \mathbb{N}$ be odd or $f_m \in (\mathbb{Q}^*)^2$ (or both). Show that the curve $Y^2 = f_m X^m + f_{m-1} X^{m-1} + \ldots + f_0$, where all $f_i \in \mathbb{Q}$ and $f_m \neq 0$, can be birationally transformed over \mathbb{Q} to a curve of the form $Y^2 = X^m + g_{m-1} X^{m-1} + \ldots + g_0$, with all $g_i \in \mathbb{Z}$.
- (b). Birationally transform over \mathbb{Q} the curve $Y^2 = \frac{1}{5}X^3 + 3X^2 + 1$ to a curve of the form $Y^2 = X^3 + AX + B$, where $A, B \in \mathbb{Z}$.
- **4(a).** Let $p \equiv 2 \pmod{3}$ be prime and let $A \in \mathbb{F}_p^*$. Show that the number of points (including the point at infinity) on the curve $Y^2 = X^3 + A$ over \mathbb{F}_p is exactly n+1
- (b). Let $p \equiv 3 \pmod{4}$ be prime and let $B \in \mathbb{F}_p^*$. Show that the number of points (including the point at infinity) on the curve $Y^2 = X(X^2 + B)$ over \mathbb{F}_p is exactly p + 1.
- **5(a).** Show that the point (2,0) is of order 2 on $Y^2 = (X-2)(X^2+X+1)$.
- (b) Find all \mathbb{Q} -rational points of order 2 and all \mathbb{C} -rational points of order 2 on each of the following elliptic curves: $Y^2 = X(X^2 3)$, $Y^2 = X^3 7$ and $Y^2 = X(X 1)(X 7)$. In each case, find the group structure (expressed as a product of cyclic groups) of the \mathbb{Q} -rational 2-torsion group (that is, the group of all \mathbb{Q} -rational points P such that $2P = \mathbf{o}$).
- **6.** Show that the point (0,2) is of order 3 on $Y^2 = X^3 + 4$.
- **7(a).** Let $Y^2 = (X \alpha)(X^2 + aX + b)$ be an elliptic curve with $a, b, \alpha \in K$ (characteristic $\neq 2$), and $\mathbf{o} = \text{point}$ at infinity, as usual. Show that $(\alpha, 0)$ is a point of order 2. Let x', y' be defined by: $(x', y') = (x, y) + (\alpha, 0)$, and define $T: K \to K: x \mapsto x'$. Find $t_{11}, t_{12}, t_{21}, t_{22}$ in terms of a, b, α such that: $x' = \mu(x) = (t_{11}x + t_{12})/(t_{21}x + t_{22})$. Check that $\mu^2: x \mapsto x$.
- (b). Consider $Y^2 = (X \alpha_1)(X \alpha_2)(X \alpha_3)$, with $\alpha_1, \alpha_2, \alpha_3$ distinct, and let T_1, T_2, T_3 be as in (a), but with α replaced by $\alpha_1, \alpha_2, \alpha_3$, respectively. Express each T_i in terms of $x, \alpha_1, \alpha_2, \alpha_3$. Show, directly from expressions, that T_1, T_2, T_3 commute (i.e. $T_1T_2 = T_2T_1$, $T_1T_2 = T_2T_1$ and $T_2T_3 = T_3T_2$), and that $T_1T_2T_3 : x \mapsto x$. Find the fixed points of T_1 and show that they are permuted by T_2 .
- **8.** Let K be any field with Char $K \neq 2, 3$, and let
- $\mathcal{E}: F(X_0,X_1,X_2) = X_1^2X_2 (X_0^3 + AX_0X_2^2 + BX_2^3)$, with $A,B \in K$, be an elliptic curve (N.B. This is just the standard projective form, but with X,Y,Z replaced by X_0,X_1,X_2). Let P be a point on \mathcal{E} .
- (a). Show that $3P = \mathbf{o}$ iff. the tangent line to \mathcal{E} at P intersects \mathcal{E} only at P.
- (b). Show that if $3P = \mathbf{o}$ then the 3×3 matrix $(\partial^2 F/\partial X_i \partial X_j(P))$ has determinant 0. [This matrix is called the Hessian matrix].
- (c). Show that there are at most nine 3-torsion points over K.