- **1.** Find the torsion group over \mathbb{Q} for each of:
- (a). $Y^2 = X^3 + 1$. (b). $Y^2 = X(X 1)(X 2)$. (c). $Y^2 = X^3 + 1/3^6$.
- **2.** Let, as usual, $\mathcal{C}: Y^2 = X(X^2 + aX + b)$ and $\mathcal{D}: Y^2 = X(X^2 + a_1X + b_1)$, where $a, b \in \mathbb{Z}$, $a_1 = -2a, b_1 = a^2 - 4b$ and $b(a^2 - 4b) \neq 0$. Let $\mathcal{C}_{\text{oddtors}}(\mathbb{Q})$ denote the set of torsion elements of $\mathcal{C}(\mathbb{Q})$ which have odd order, and let $\mathcal{D}_{\text{oddtors}}(\mathbb{Q})$ denote the set of torsion elements of $\mathcal{D}(\mathbb{Q})$ which have odd order. Show that $\mathcal{C}_{\mathrm{oddtors}}(\mathbb{Q})$ and $\mathcal{D}_{\mathrm{oddtors}}(\mathbb{Q})$ are isomorphic.
- **3.** Let \mathcal{C} and \mathcal{D} be as in question 2. Let the homomorphisms $\phi, \hat{\phi}$ be defined as usual by

$$\phi: \mathfrak{C} \to \mathfrak{D}: (x,y) \mapsto \left(\left(\tfrac{y}{x} \right)^2, y - \tfrac{by}{x^2} \right), \quad \hat{\phi}: \mathfrak{D} \to \mathfrak{C}: (u,v) \mapsto \left(\tfrac{1}{4} \left(\tfrac{v}{u} \right)^2, \tfrac{1}{8} \left(v - \tfrac{b_1 v}{u^2} \right) \right).$$

What are the preimages of (0,0) under $\hat{\phi}$? Show that $(0,0) \in 2\mathcal{C}(\mathbb{Q})$ if and only if there exist $m, n \in \mathbb{Z}$ such that $b = m^2$ and $a + 2m = n^2$.

- 4. Find the ranks of the following elliptic curves.
- (a). $Y^2 = X(X^2 + 2X + 3)$. (b). $Y^2 = X(X^2 + 14X + 1)$.
- **5.** Let A, + be an Abelian group. Let $h: A \to \mathbb{R}_{\geq 0}$ satisfy:
 - (I) There exists a constant C, independent of P, Q, such that $|h(P+Q) + h(P-Q) - 2h(P) - 2h(Q)| \le C$, for all $P, Q \in A$,
 - (II) For any $B \in \mathbb{R}$, the set $\{P \in A : h(P) \leq B\}$ is finite.

Show that h is a height function on A. Show also that there exists a constant C_3 , independent of P, such that $|h(3P) - 9h(P)| \leq C_3$, for all $P \in A$.

$$[\mathbb{R}_{\geq 0} \text{ denotes } \{x \in \mathbb{R} : x \geqslant 0\}].$$

- **6.** A four-letter word $L_1L_2L_3L_4$ has been divided into two pairs: L_1L_2 and L_3L_4 . Each of these pairs has been converted into an integer (of at most 4 digits) via the standard map: $A \mapsto 01, B \mapsto 02, \dots, Z \mapsto 26$. These integers have been encoded by taking each to the power of d = 4085, modulo N = 10481. The encoded message reads: 6012, 3236. You may assume that N is the product of two primes. You should show, in your calculations, how you are only using numbers of length at most 9 digits.
- (a) Find a proper factor of N (that is, a factor d of N satisfying 1 < d < N) by applying Pollard's "p-1" method, using base 2 and exponent 46.
- (b) Factorise N by applying the Elliptic Curve Method, using the curve \mathcal{E} : $Y^2 = X^3 - X + 1$ and 3P, where P = (5, 11).
- (c) Use the factorisation of N to decode the message (which is the name of the town famous for being the country music capital of New Zealand).