Exercise sheet 1*

(for the class in W2)

Exercise 1.1 (Yoneda's lemma). Let C be a category. Let $\mathbf{Sets}^{C^{\mathrm{opp}}}$ be the category of set-valued contravariant functors from C to \mathbf{Sets} . Prove that $\mathrm{Mor}_{C}(\bullet, C)$ defines a contravariant functor $h_{C}: C \to \mathbf{Sets}$ for each object C of C. Prove that h_{\bullet} defines a fully faithful functor $C \to \mathbf{Sets}^{C^{\mathrm{opp}}}$.

Exercise 1.2. Let A and B be two abelian categories. Let $L: B \to A$ (resp. $R: A \to B$) be additive functors. Suppose that L is left adjoint to R (see Weibel, Introduction to Homological Algebra, Appendix A.6). Then L is right-exact and R is left-exact.

Exercise 1.3. Show that Theorem 1.4 implies Theorem 1.3. Let A be an abelian category with enough injectives and let $F: A \to B$ be a left-exact functor to another abelian category. We say that an object A of A is F-acyclic if $R^kF(A)=0$ for all k>0. Show that if A is an object of A and C^{\bullet} is a resolution of A, such that C^k is F-acyclic for all $k\in \mathbb{Z}$, then there is a natural isomorphism $R^kF(A)\simeq \mathcal{H}^k(F(C^{\bullet}))$ for all $k\in \mathbb{Z}$.

Exercise 1.4 (optional). Show that an abelian group G is injective in the category \mathbf{Ab} if G is divisible (ie for all $n \in \mathbb{Z} \setminus \{0\}$, the 'multiplication by n' map $G \to G$ is surjective). Show that the category \mathbf{Ab} has enough injectives.

^{*}For the course C2.6 Introduction to Schemes, Oxford, Hilary Term 2019