C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford Hilary Term 2020

Problem Sheet 4

Throughout, \mathfrak{g} is a semisimple Lie algebra over an algebraically closed field k of characteristic zero.

1. Let V and W be two finite dimensional g-modules. Prove that $ch_{V\otimes W} = ch_V \cdot ch_W$.

2. Let $\omega_1, \ldots, \omega_n$ be the fundamental weights of \mathfrak{g} . Show that every finite dimensional simple \mathfrak{g} -module occurs as a direct summand in a suitable tensor product (repetitions allowed) of the simple modules $L(\omega_1), \ldots, L(\omega_n)$. We call these simple modules the fundamental representations of \mathfrak{g} .

3. Use Weyl's dimension formula to show that for every natural number k, there exists a simple \mathfrak{g} -module of dimension k^r , where r is the number of positive roots of \mathfrak{g} .

4. The length of an element $w \in W$ is the smallest $n \in \mathbb{N}$ such that w can be written as a product of n simple reflections. Prove that $\ell(w) = |\{\alpha \in \Phi^+ \mid w(\alpha) \in \Phi^-\}|$. [*Hint: Sheet 2 Question 2 may be useful.*]

- 5. (i) Let L be a finite dimensional g-module. Show that L is simple if and only if L^* is simple.
- (ii) Let $L(\lambda)$ be a simple \mathfrak{g} -module with highest weight $\lambda \in P^+$. Show that the dual $L(\lambda)^*$ is isomorphic to $L(-w_0(\lambda))$, where w_0 is the Weyl group element sending the positive roots Φ^+ to $-\Phi^+$.

6. Let $\mathfrak{g} = \mathfrak{sl}(n)$.

(i) Use Weyl's dimension formula to calculate dim $L(\omega_i)$ for each $1 \le i \le n-1$.

(ii) Why is the adjoint representation \mathfrak{g} irreducible?

(iii) Find non-negative integers k_1, \ldots, k_{n-1} such that $\mathfrak{g} \cong L(k_1\omega_1 + \cdots + k_{n-1}\omega_{n-1})$ as \mathfrak{g} -modules.

7. Define the Casimir element C in $U(\mathfrak{g})$ with respect to the Killing form of a semisimple Lie algebra \mathfrak{g} . Compute $\chi_{\lambda}(C)$ for the infinitesimal character defined by $\lambda \in \mathfrak{h}^*$, and the image of C under the Harish-Chandra isomorphism.

[Hint: Sheet 2 Question 1 may be useful.]

8. Let $\mathfrak{g} = \mathfrak{sl}(3)$ and $L(\omega_1)$, $L(\omega_2)$ the two fundamental representations. Verify:

- (i) $L(\omega_1)^* \cong L(\omega_2)$.
- (ii) Kostant's multiplicity formula, and
- (iii) Weyl's character formula for these two representations.

9. Let $M(\lambda)$ be a Verma module for the semisimple Lie algebra \mathfrak{g} , and let L be a finite dimensional module. Consider the tensor product $T = M(\lambda) \otimes L$; it is in category \mathcal{O} by Proposition 4.6(3). Prove that there exists a chain of submodules:

$$0 = T_{n+1} \subset T_n \subset T_{n-1} \subset \cdots \subset T_2 \subset T_1 = T,$$

where $n = \dim L$, and $T_i/T_{i+1} \cong M(\lambda + \mu_i)$, where μ_1, \ldots, μ_n are the weights of L (counted with multiplicity) in an appropriate order.

[*Hint: try to generalise Sheet 3 Question 3(c) and try to use formal characters.*]

10 (Optional. But if you wish to have more practice more with finite dimensional representations and learn more examples...). Let $\mathfrak{g} = \mathfrak{sp}(2n)$ realized as the space of matrices $X \in \mathfrak{gl}(2n)$ such that $X^t J + J X = 0$, where X^t is the transpose matrix, and $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$; here I_n is the $n \times n$ identity matrix.

- (i) Show that every $X \in \mathfrak{g}$ is of the form $X = \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix}$, where B and C are symmetric $n \times n$ matrices and A is an arbitrary $n \times n$ matrix.
- (ii) Let \mathfrak{h} be the subalgebra consisting of diagonal matrices. Determine the set of roots of \mathfrak{h} in \mathfrak{g} and the Cartan decomposition.
- (iii) Choose the system of positive roots such that the corresponding root vectors lie in matrices of the form $\begin{pmatrix} A & B \\ 0 & -A^t \end{pmatrix}$, where A is an upper triangular matrix and B is a symmetric matrix as before.
- (iv) Determine the fundamental weights.
- (v) Let $V = k^{2n}$ be the standard representation of \mathfrak{g} it is the restriction of the natural representation of $\mathfrak{gl}(2n)$ to \mathfrak{g} . Show that V is an irreducible \mathfrak{g} -representation and it is in fact a fundamental representation.
- (vi) Show that $\bigwedge^2 V$ decomposes as $W \bigoplus k$, where k is the trivial representation and W is an irreducible (fundamental) representation.
- (vii) For $\mathfrak{sp}(4)$, describe all the weights of the fundamental representations V and W and verify that the Weyl dimension formula holds for V and W.
- (viii) In $\mathfrak{sp}(2n)$, show that the k-th fundamental representation is contained in $\bigwedge^k V$ and in fact it is precisely the kernel of the *contraction* map $\phi_k : \bigwedge^k V \to \bigwedge^{k-2} V$ defined by

$$\phi_k(v_1 \wedge \dots \wedge v_k) = \sum_{i < j} Q(v_i, v_j) (-1)^{i+j-1} v_1 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge \hat{v}_j \wedge \dots \wedge v_k,$$

where Q is the skew-symmetric form defining \mathfrak{g} , i.e., $Q(v, u) = v^t J u$.

[For this exercise, you may consult Section 16 in Fulton-Harris "Representation Theory", especially for the structural results on roots and the Cartan decomposition.]