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Question 1

See lecture notes (complete proofs are given).

Question 2

We define α0 = 1, αβ+1 = αβ.α and for γ ∈ Lim, αγ =
⋃

β<γ α
β. By induction

on On we easily see that αβ ∈ On provided α, β ∈ On.
We need some facts about ordinal addition and multiplication:

• if x is a set of ordinals then sup x =
⋃

α∈x α;

• if x is an unbounded set in γ ∈ Lim then sup x = γ;

• thus for γ a limit ordinal and x unbounded in γ we have α + γ =
⋃

β∈x α + β, α.γ =
⋃

β∈x α.β and αγ =
⋃

β∈x α
β;

• ordinal addition and multiplication are non-decreasing in their second
variable;

• ordinal addition and multiplication are associative;

• if γ ∈ Lim and β ∈ On then β + γ, β.γ, βγ ∈ Lim;

In the following, we always assume that α is a non-zero ordinal:
First we show that αβ is non-decreasing in β: it is enough to show αβ ≤

αβ+1 as then the claim follows by induction. If α = 0 this is trivial. Otherwise
αβ+1 = αβ.α ≥ αβ as multiplication is non-decreasing and α ≥ 1.

Next we show αβ+γ = αβ.αγ : we induct on γ. The base case is trivial.
For the successor case

αβ+(γ+1) = α(β+γ)+1 = αβ+γ.α = αβ.αγ .α = αβ.αγ+1

where the first equality is the (recursive) definition of ordinal addition, the
second fact the (recursive) definition of exponentiation, the third the induc-
tive hypothesis and the last the (recursive) definition (together with various
omitted facts about ordinal multiplication).
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For the limit case:

αβ+γ =
⋃

δ<β+γ

αδ as β + γ is a limit

=
⋃

δ<γ

αβ+δ as {β + δ : δ < γ} is unbounded in β + γ

=
⋃

δ<γ

αβ.αδ inductive hypothesis

= αβαγ

where the last inequality follows from the fact that αγ is a limit if γ is and
that

{

αδ : δ < γ
}

is unbounded in γ.
Now we do αβ.γ = (αβ)γ: Again, we induct on γ. The base case is trivial.

For the successor step

αβ.(γ+1) = αβ.γ+β = αβ.γ.αβ = (αβ)γ.αβ = (αβ)γ+1

For the limit case:

αβ.γ =
⋃

δ<β.γ

αδ =
⋃

δ<γ

αβ.δ =
⋃

δ<γ

(αβ)δ = (αβ)γ

where each equality is either from the definition or justified as for αβ+γ =
αβαγ .

Inductively, 2n < ω for n ∈ ω: 2n+1 = 2n.2 = 2n + 2n. Now consider the
case that n = 0 so that 2n + 2n = 2 = (0 + 1) + 1 < ω and n = m+ 1 giving
2n + 2m+1 = (2n + 2m) + 1 + 1 < ω. Thus 2ω ≤ ω.

But if n ∈ ω, n ≥ 1 then again by induction 2n ≥ n so that {2n : n ∈ ω}
is unbounded in ω and hence 2ω ≥ ω.

Question 3

Define by recursion on n ∈ ω, α0 = α + 1 and αn+1 = F (α0) and let γ =
⋃

n∈ω αn+1 (this is the union of a set of ordinals, hence an ordinal). We
claim that F (γ) = γ. If F (α0) = α0 then inductively αn = α0 for all
n ∈ ω and hence γ = α0 = F (α0) = F (γ). Otherwise α0 < α1 and by
induction on n we see that αn < αn+1 for all n so that γ ∈ Lim. Then
F (γ) =

⋃

β<γ F (β). Now, if η ∈ γ then β ∈ αn ⊆ αn+1 = F (αn) ∈ F (γ).
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Conversely, if η ∈ F (β) for β < γ then β ∈ γ so there is αn with β < αn and
hence η ∈ F (β) ⊆ F (αn) = αn+1 ⊆ γ.

The smallest non-zero fixed point of F (x) = ω.x is ωω: first ω.ωω =
supn∈ω ω.ω

n = supn∈ω ω
n+1 = ωω; secondly, if α < ωω then α < ωn for some

n. Let n be least such that α < ωn. Either n = 0 giving α = 0 which
was disallowed. Or n = m + 1 and then ωm ≤ α < ωm+1. But then (as
multiplication is non-decreasing) F (ωm) = ω.ωm = ωm+1 = ωn > α = F (α),
a contradiction.

The Transitive Closure

Given a set x we want to define the transitive closure of x, denoted by TC(x),
as the smallest transitive set containing x as a subset. To do so, we have to
construct a transitive set containing x: By recursion on ω we define x0 = x

and xn+1 = xn∪
⋃

xn. The xn are sets byUnion and Pairing and induction.
Also xn ⊆ xn+1 for each n ∈ ω and hence ∀n,m ∈ ω [n ≤ m → xn ⊆ xm]
(by induction on m ≥ n). By Replacement and Union we then have that
z =

⋃

n∈ω xn is a set.
We now claim that z is transitive and contains x as a subset: since x0 = x

the latter is trivial. For the former, assume u ∈ w ∈ z. Find n ∈ ω such that
w ∈ xn and then note that u ∈ {t : ∃y t ∈ y ∈ xn} =

⋃

xn ⊆ xn+1 so that
u ∈ z as required.

We could now either apply Separation to form the smallest transitive
subset containing x as a subset. Or we show that z is as required: for
suppose z′ is transitive and contains x as a subset. Then x0 = x ⊆ z′ and by
transitivity ∀w w ⊆ z′ →

⋃

w ⊆ z′ so that inductive each of the xn ⊆ z′ and
hence z ⊆ z′ as required.

Let us also note that TC({x}) is the smallest transitive set containing x

as an element.

Question 4

Suppose Hω 6= Vω. Assume first that Hω \ Vω 6= ∅ and pick x ∈ Hω \ Vω. If
x ⊆ Vω then for each t ∈ x, let nt ∈ ω be least with t ∈ Vnt

. As x is finite,
N = maxt nt ∈ ω exists and then x ⊆ VN , giving x ∈ P (VN) = VN+1 ⊆ Vω,
a contradiction. Thus TC(x) \ Vω ⊇ x \ Vω 6= ∅ and thus TC(x) \ Vω (it
is a set by Separation) has a ∈-minimal element m. As ∅ ∈ Vω, m 6= ∅.
By assumption m ∈ Hω (using m ∈ TC(x) → TC(m) ⊆ TC(x)) and by
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minimality and transitivity of TC(x), ∀t ∈ m t ∈ Vω. But as above, this
gives m ⊆ VN for some N ∈ ω and thus m ∈ VN+1, a contradiction.

Next we show by induction on n, that Vn is finite (and in fact has size
2n).

Next, assume that Vω \Hω 6= ∅ and we again pick a ∈-minimal element
m ∈ Vω \ Hω (we already know that Vω is transitive and that Vω \ Hω is a
set). If m = ∅ then we are done as TC(∅) = ∅. Otherwise m ∈ Vn+1 for some
n and thus m ⊆ Vn and m is finite. For t ∈ m we have t ∈ Vω by transitivity
of Vω and t ∈ Hω by minimality of m. Thus TC(m) = {m} ∪

⋃

t∈m TC(t) is
a finite union of finite sets, so finite. Hence m ∈ Hω, a contradiction.

Question 5

Only the forward direction is interesting (since V |= Foundation the back-
wards direction is trivial). So assume Foundation. Assume for a con-
tradiction that there is x with x 6∈ V . Use Separation and Union and
Replacement to form the set TC(x) and z = TC(x) \ V ⊇ x \ V . If z = ∅
then x ⊆ V and thus x ∈ V . Otherwise, let m be ∈-minimal in z. Since
TC(x) is transitive and m is ∈-minimal in z we must have ∀t ∈ m t ∈ V , i.e.
m ⊆ V giving m ∈ V a contradiction.

Question 6

For Union: Suppose x ∈ V . Then x ∈ Vα for some least α ∈ On. Note
that α must be a successor ordinal β + 1 (if α is a limit then x ∈

⋃

β∈α Vβ

so x ∈ Vβ for some β ∈ α contradicting minimality of α). Hence x ⊆ Vβ. In

U form z =
⋃U

x. For t ∈ z find y ∈ x with t ∈ y ∈ x ⊆ Vβ. Since Vβ is
transitive t ∈ Vβ and hence z ⊆ Vβ. Thus z ∈ Vα. Also, z =

⋃

x is absolute
so if U |= z =

⋃

x and x, z ∈ V then V |= z =
⋃

x.
For Infinity: We can either show (see next sheet) that ω ⊆ Vω so that

ω ∈ Vω+1. Or we show that Vω is an inductive non-empty set: clearly ∅ ∈
V1 ⊆ Vω. If x ∈ Vω then x ∈ Vn+1 for some n ∈ ω, so x ⊆ Vn ⊆ Vn+1.
Also {x} ⊆ Vn+1 so x ∪ {x} ⊆ Vn+1 giving that x ∪ {x} ∈ Vn+2 ⊆ Vω. All
of these operations are absolute, so V also believes that Vω is inductive and
non-empty. Finally Vω ∈ Vω+1 ⊆ V .
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Question 7

From lectures we have α ⊆ Vα ∩On.
Now we inductively (on On) prove equality: this is clear for ∅. Suppose

Vα ∩ On = α. If β ∈ Vα+1 ∩ On then β ⊆ On and β ⊆ Vα. Thus β ⊆
Vα ∩ On = α. Hence either β ∈ α or β = α so that in either case β ∈ α + 1
as required.

For the second part, if α ∈ Vβ then by (i) we must have α ∈ β (as the
other cases lead to quick contradictions) so α + 1 ≤ β giving Vα ∈ P (Vα) =
Vα+1 ⊆ Vβ since (from lectures) δ ≤ β → Vδ ⊆ Vβ (induction on β).

Question 8

See the separate document on General Recursion.
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