
Sheet 4

Question 1

The proof is essentially the same as for L.
The absoluteness result needed is of course: if B,C are transitive classes and

A ∈ B then the class function L[A] : On → V is absolute for B,C.
For choice, instead of starting with the trivial well-order on L0, you note

that if A ⊆ On then TC({A}) = {A} ∪ supA so that L[A]0 can be well-ordered
by taking the natural well-order on supA ∈ On and following this by {A} (or
having {A} first followed by supA)

To see that if A ⊆ ω then L[A] |= CH, you follow the proof that L |= CH.

Question 2

If Lα = Vα then |Lα| = |Vα|. But since V = L we have GCH so that |Vα| = ℵα,
giving ℵα = |α| ≤ α. But by a very easy induction on On we have α ≤ ℵα for
all α ∈ On. Hence α = ℵα as required.

For the converse, assume that α = ℵα. Lα ⊆ Vα is always true (see lecture
notes). So assume that x ∈ Vα. Since α is a cardinal, it is a limit ordinal, so
x ∈ Vβ for some β ∈ α. Hence |TC({x})| ≤ |Vβ | = ℵβ < ℵα (using GCH
for the =). Thus x ∈ Hℵα

and from the proof that V = L → GCH we have
Hℵα

= Lℵα
so x ∈ Lℵα

= Lα.
To construct ordinals α such that ℵα = α, we employ recursion: define

F : On → On;β 7→ ℵβ . This is weakly increasing so by a previous sheet has
arbitrarily large fixed points. Note that this only gives singular solutions (in
fact, solutions of countable cofinality).

Question 3

That cf(α) is regular follows from cfcfα = cfα.
Now assume that κ ∈ Card. If κ+ is not regular, then there is some ordinal

β < κ+ and an unbounded f : β → κ+. But then |β| ≤ κ since κ+ is a cardinal,
so there is an unbounded g : κ → κ+. For each α ∈ κ, |g(α)| ≤ κ so that
sup g =

⋃

α∈κ g(α) has cardinality ≤ κ ⊗ κ = κ < κ+. Hence g cannot be
unbounded.

Question 4

For the first part, it is enough to show that κcfκ > κ. By a result from the
lecture notes, we have a weakly increasing unbounded f : cfκ → κ. We then
apply König’s inequality to the f(α) < κ to obtain

κ = sup f ≤
∑

α∈cfκ

f(α) <
∑

α∈cfκ

κ = κcfκ.

Now assume that λ < cf(κ). We define an injection from {f : λ→ κ} into
⋃

α∈κ {f : λ→ α} as follows: for each f : λ→ κ we must have f [λ] bounded in
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κ (since κ is a cardinal) and thus we have a minimal αf < κ such that f [λ] ⊆ αf .
We then send f to f : λ→ αf .

Thus
κλ ≤

∑

α∈κ

∣

∣αλ
∣

∣ ≤ κ⊗ sup
∣

∣αλ
∣

∣ .

We next show that α ∈ κ implies
∣

∣αλ
∣

∣ ≤ κ and hence the result follows.

Since
∣

∣αλ
∣

∣ = |α|λ we may assume that α < κ and α is a cardinal. But for these
α < 2α so that

αλ ≤ [2α]
λ
= 2α⊗λ = 2max{α,λ} ≤ κ

by the assumption and the fact that maxα, λ < κ.
Now assume GCH. As above (and without GCH) if λ ≤ κ then κλ ≤

[2κ]
λ
= 2κ. Applying GCH then gives κλ ≤ κ+.

Of course, for any λ ≥ 1 we have κ ≤ κλ giving the result.

Question 5

This is similar to a question from the previous sheet. We define recursively for
n ∈ ω, α0 = α and αn+1 = sup g[αn]. Since κ is a cardinal, if αn ∈ κ then
sup g[αn] ∈ κ, so all αn ∈ κ (by induction). Since κ is regular uncountable this
implies β = supαn ∈ κ. This β works since if δ ∈ β then δ ∈ αn for some n ∈ ω

and hence g(δ) ∈ g[αn] = αn+1 ⊆ β.

Question 6

(i): By induction on α < κ we show |Vα| < κ: This is clear for finite ordinals
and for ω. If |Vα| < κ then |Vα+1| = 2|Vα| < κ by assumption. If γ < κ is a
limit ordinal then Vγ =

⋃

β<γ Vβ is a union of < κ many sets of size < κ, so by
regularity of κ has size < κ.

(ii): Since κ ⊆ Vκ (some previous sheet) we must have κ ≤ |Vκ|. But now Vκ
is the union of κ many sets of size ≤ κ (by (i)) so has size at most κ.κ = κ.

(iii): Suppose φ(x, y,~v) is a formula, ~a ∈ V n
κ and

Vκ |= ∀x∀y, y′ (φ(x, y,~a) ∧ φ(x, y′,~a) → y = y′

Write yx for the unique y ∈ Vκ such that φ(x, yx,~a) (if it exists) and yx = ∅ if
no such y ∈ Vκ exists (depending on your precise formulation of Replacement
you might not need this last bit).

Fix d ∈ Vκ and apply Replacement with ψ(x, y,~v) ≡ y ∈ Vκ ∧ φ(x, y,~v)Vκ

to obtain z = {yx : x ∈ d} ∈ V . But d ∈ Vκ, κ is a limit ordinal, so d ∈ Vα thus
d ⊆ Vα for some α < κ and hence |d| < κ. Also for each yx we have yx ∈ Vκ so
we can find αx < κ with yx ∈ Vαx

. Then α = sup {αx : x ∈ d} =
⋃

x∈d αx is a
< κ union of sets of size < κ, so α < κ by regularity of κ and hence α + 1 < κ

as κ is a limit ordinal. Hence z ⊆ Vα ∈ Vα+1 ⊆ Vκ. It is now standard to verify
that Vκ |= z = {yx : x ∈ d} as required.
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