
OXFORD UNIVERSITY

Part C Maths, Maths & Phil, Maths & Comp Sci
M.Sc. in Math Sci, M.Sc. in Maths and Foundations of Comp Sci

B.Phil. and M.St. in Philosophy

16 lectures on

Gödel’s Incompleteness Theorems
Hilary Term 2019

Daniel Isaacson
Faculty of Philosophy
Oxford University

6 March 2019

Copyright c⃝ 2019 by Daniel Isaacson
All rights reserved. No part of this publication may be reproduced
without prior permission by anyone other than for their own use in

studying this subject. Please send corrections or enquiries to
daniel.isaacson@philosophy.ox.ac.uk

Contents

1 Introduction: a weak form of Gödel’s First Incompleteness Theo-
rem; the symbols and expressions of a language for arithmetic LA;
Gödel numbering of the expressions of LA 5
1.1 Introduction: a weak form of Gödel’s First Incompleteness Theorem 5

1.1.1 Truth . 8
1.2 The symbols and expressions of a language for arithmetic LAE 12
1.3 Gödel numbering of the expressions of LAE 13

2 Terms and formulas of the language LAE; Expressibility in LAE;
Substitution and quasi-substitution of a numeral for a free variable
in a formula 17
2.1 Terms and formulas of the language LAE 17

2.1.1 Terms . 18
2.1.2 Formulas . 19
2.1.3 Free and bound variables; open formulas and sentences 19

2.2 Denotation of closed terms in LAE, truth of sentences of LAE, ex-
pressibility of sets and relations of natural numbers by formulas of
LAE . 21
2.2.1 Denotation of closed terms . 21
2.2.2 Expressibility . 21

2.3 Concatenation of numbers in a given base notation is expressible in
LAE. 22

2.4 Substitution and quasi-substitution 23

3 Arithmetization of quasi-substitution and diagonal quasi-substitution;
The Diagonal Lemma; expressibility of properties of sequence num-
bers 26
3.1 Arithmetization of quasi-substitution and diagonal quasi-substitution 26
3.2 The Diagonal Lemma . 28
3.3 Properties of sequences of digits . 29

1

CONTENTS 2

4 Expressibility of properties of sequence numbers in the language
LA; A formal system PAE for arithmetic; an arithmetized proof
predicate for PAE; the weak form of Gödel’s First Incompleteness
Theorem for PAE from Lecture 1 now proved; a weaker form of
incompleteness of PAE provd from the undefinability of truth for
LA in LA 32
4.1 Expressibility of properties of sequence numbers in the language LAE 33

4.1.1 Sequence numbers . 33
4.1.2 Coding of finite sequences of Gödel numbers 33

4.2 The formal system PAE for arithmetic 35
4.2.1 Formalization of first-order logic for PAE 35
4.2.2 The non-logical axioms of arithmetic for PAE 37

4.3 An arithmetized proof predicate for PAE 39
4.4 The weak form of Gödel’s First Incompleteness Theorem from Lecture

1 has now been established for PAE 43
4.5 A weaker form of incompleteness of PAE from the undefinability of

truth for LAE in LAE . 43

5 The system PA, with symbols for zero, successor, addition, muti-
plication, and less than or equals as primitive; Σ0 and Σ1-formulas
and relations; a Σ0-coding of finite sets of ordered pairs; exponen-
tiation, and all primitive recursive functions are ∆1-expressible in
the language of PA 45
5.1 The system PA, with zero, successor, addition, multiplication, and

less than or equals as primitive . 46
5.2 Σ0-formulas . 46
5.3 Σ1 and Π1-formulas; Σ1, Π1, and ∆1-relations 48
5.4 Arithmetization of the syntax of PA in the language of PA 49
5.5 A Σ0-coding of finite sets of ordered pairs of numbers 50
5.6 The relation xy = z is ∆1-expressible in the language of PA 53
5.7 Primitive recursive functions . 53
5.8 General recursive functions . 54

6 Every Σ-formula is provably equivalent to a Σ1-formula; the arith-
metized proof predicate for PA is Σ1; the arithmetical hierarchy;
the notions of Σ0-completeness and Σ1-completeness 56
6.1 Σ-formulas . 56
6.2 The arithmetized proof predicate for PA is Σ1 59
6.3 The arithmetical hierarchy . 60

7 The notions of Σ0-completeness and Σ1-completeness; Σ0-completeness

CONTENTS 3

of a very weak system of arithmetic R 62
7.1 Notions of Σ0-completeness and Σ1-completeness 62
7.2 Sufficient conditions for Σ0-completeness 63
7.3 Weak systems of arithmetic Q and R (without induction) 65
7.4 Σ0-completeness of systems R, Q, and PA 66

8 Σ0-completeness of the intermediate system Q and Σ0-completeness
of PA; Σ0-soundness and Σ1-soundness; the notions of consistency,
ω-consistency and n-consistency; Gödel’s First Incompleteness The-
orem on the assumption of 1-consistency; truth of the Gödel sen-
tence; ω-incompleteness. 68
8.1 The intermediate system Q and the system PA are Σ0-complete . . . 69
8.2 Σ0-soundness and Σ1-soundness . 71
8.3 The notions of consistency, ω-consistency and 1-consistency. 71
8.4 Incompleteness of PA from the assumption of 1-consistency 75
8.5 Truth of the Gödel sentence . 77

8.5.1 Any Σ1-sentence unprovable in a Σ0-complete theory is false . 78
8.6 Generalisation of the First Incompleteness Theorem 78
8.7 PA is ω-incomplete . 79

9 Enumerability and the Separation Lemma; incompleteness of PA
from the assumption of consistency (Rosser’s Theorem); weak and
strong definability of a function in a system 80
9.1 Enumerability and the Separation Lemma 81
9.2 Incompleteness of PA from the assumption of consistency (Rosser’s

Theorem) . 83
9.3 Weak and strong definability of a function in a system 84

10 Arithmetization of consistency; provable diagonal equivalences; prov-
ability predicates; Gödel’s Second Incompleteness Theorem; Löb’s
Theorem 88
10.1 Arithmetization of the statement that a system S is consistent 88
10.2 Formal provability of the Diagonal Lemma 90
10.3 Provability predicates. 91
10.4 Gödel’s Second Incompleteness Theorem 92
10.5 Löb’s Theorem . 94

11 Provable Σ1-completeness 97

12 The ω-rule and uniform reflection; PA proves that PA proves every
instance of the Gödel sentence; Π1-uniform reflection and consis-

CONTENTS 4

tency; PA is Π1-conservative over PAΠ2 ∪ {ConPA} 109
12.1 The ω-rule . 109
12.2 The arithmetized ω-rule: Uniform Reflection 111
12.3 PA proves that PA proves every instance of the Gödel sentence . . . 111
12.4 Equivalence of Π1-Uniform Reflection and consistency 112
12.5 PA is Π1-conservative over PAΠ2 ∪ {ConPA} 114

13 Provability logic: the system GL 117
13.1 The system GL for the logic of provability 117

13.1.1 The language of GL . 118
13.1.2 The axioms and inference rules of GL 118

13.2 Soundness and completeness of GL 119
13.3 Some derivations in GL . 120
13.4 Closure of GL under substitution by provably equivalent formulas . . 122
13.5 Closure of GL under substitution of provably equivalent formulas is

provable in GL . 124
13.6 Strengthened proof that the closure of GL under substitution of prov-

ably equivalent formulas is provable in GL 125

14 The fixed-point theorem for GL 128
14.1 The notion of a sentence letter modalized in a sentence, and arithme-

tized substitution for modalized sentences 128
14.2 The fixed point theorem for GL . 132

15 The arithmetized completeness theorem for first-order logic; non-
standard models of arithmetic; the Kreisel ∆2-Incompleteness The-
orem 140
15.1 Introduction . 140
15.2 Arithmetized completeness theorem for first-order logic 141
15.3 Non-standard models of arithmetic 143
15.4 The Kreisel Incompleteness Theorem 143

16 Determining the truth or falsity of undecidable Kreisel sentences 146

Lecture 1

Introduction: a weak form of
Gödel’s First Incompleteness
Theorem; the symbols and
expressions of a language for
arithmetic LA; Gödel numbering
of the expressions of LA

Monday, 14 January 2019

1.1 Introduction: a weak form of Gödel’s First

Incompleteness Theorem

The context of Kurt Gödel’s discovery of the phenomenon of formal incompleteness,
published in 1931 as “Über formal unentscheidbare Sätze der Principia mathematica
und verwandter Systeme I” (“On formally undecidable propostions of Principia
mathemataica and related systems I”), is David Hilbert’s programme for justifying
the use of the axiomatic method in mathematics by establishing the consistency of
systems formalizing the various branches of mathematics.

Over the course of the nineteenth century, mathematicians had established the con-
sistency of non-Euclidean geometry relative to the consistency of Euclidean geome-

5

LECTURE 1 6

try, e.g. by interpreting a two-dimensional non-Euclidean geometry as the geometry
of a curved surface in three-dimensional Euclidean geometry. What of the consis-
tency of Euclidean geometry? A basis for conviction that Euclidean geometry is
consistent is its interpretation in the theory of real numbers, i.e. as Cartesian ge-
ometry, insofar as we are convinced that the theory of real numbers is consistent.
But then on what basis can we be convinced that the theory of real numbers is
consistent? The theory of real numbers can be interpreted in set theory. That in-
terpretation has lots of virtues, but giving us a basis for confidence that the theory
of real numbers is consistent probably isn’t one of them, since the consistency of
set theory has been a real issue, while the consistency of the theory of real numbers
isn’t as much of a worry, though it’s still an issue. In the published text from his
address to the World Congress of Mathematicians in Paris in 1900, Hilbert set out
twenty-three problems whose solution he considered to be of the greatest importance
to the development of mathematics at that time. Problem number 2 as “to find a
direct proof for the consistency of the arithmetical [he meant the arithmetic of the
real numbers] by means of a careful study and suitable modification of the known
methods of reasoning in the theory of irrational numbers.” [Hilbert [6], p. 1104]

In 1918 he declared, in his paper “Axiomatisches Denken”, that

we must. . .make the concept of specifically mathematical proof itself into
an object of investigation (Hilbert [7], p. 1115).

Hilbert formulated the distinction between finitary and infintary mathematics as a
tool by which to justify and develop his use of the axiomatic method in mathema-
tiacs, and thereby his philosophy of mathematics. The paradigm of finitary mathe-
matics is arithmetical calculation. Finitary mathematics is mathematical bedrock,
corresponding to observation statements in science. A calculation such as 27 = 128
is finitary, but the claim that exponentiation to the power 2 always yields a value,
i.e. ∀x∃y(2x = y) is infinitary, and more generally, quantification over the infinite
domain of natural numbers is infinitary. However, quantification over a bounded,
i.e. initial, and thereby finite, segment of the natural numbers belongs to finitary
mathematics.

Hilbert’s deep insight was to recognize that the formal manipulation of all symbols,
not just the symbols for numbers, i.e. numerals and terms built up from numer-
als and symbols for arithmetical operations, belongs to finitary mathematics. In
particular,

a formalized proof, like a numeral, is a concrete and surveyable object.
([8], p. 383 and also in [9], p. 471.)

Hilbert recognized two sorts of finitary statements, general and particular (though
he did not introduce terminology for this distinction). Particular finitary statements

LECTURE 1 7

are decided by computations, e.g. 7 × 5 = 35, and 210 = 1024 and truth functional
combinations of them (the truth values of such combinations being computable
from the truth values of the component statements). General finitary statements
contain free variables, and can be thought of as a template for particular finitary
statements that result by substitution of numerals for the free variables, for example
x+ y = y+ x, and (n > 2 ⊃ xn + yn ̸= zn). On the other hand, ∀x∀y x+ y = y+ x
and ∀n∀x∀y∀z(n > 2 ⊃ xn + yn ̸= zn) are infinitary.

For F (v1) a general finitary statement with free variable v1, bounded quantification
on the variable v1, which is finitary, is expressible using (apparently) unbounded
quantification by, in the case of universal quantification, ∀v1(v1 ≤ t ⊃ F (v1)), for t
a term in the language of arithmetic, which we abbreviate as (∀v1 ≤ t)F (v1), and
in the case of existential quantification, ∃v1(v1 ≤ t ∧ F (v1)), which we abbreviate
(∃v1 ≤ v2)F (v1). For t a term that denotes a number (either a numeral or a
computable function applied to a numeral), (∃v1 ≤ t)F (v1) and (∀v1 ≤ t)F (v1) are
particular finitary statements if v1 is the only free variable in F (v1). If t is a free
variable or an arithmetical function applied to one or more variables, (∃v1 ≤ t)F (v1)
and (∀v1 ≤ t)F (v1) are general finitary statements.

Hilbert noted that general finitary statements are not closed under negation, i.e. the
negation of a general finitary statement cannot be expressed as a general finitary
statement. For example, Fermat’s Last Theorem is expressible as a general finitary
statement, (n > 2 ⊃ xn + yn ̸= zn), but to say that Fermat’s Last Theorem is
false requires existential quantification, ∃n∃x∃y∃z(n > 2 ∧ xn + yn = zn). On
the other hand, the statement that a specific quadruple of numbers a, b, c, d is a
counterexample, i.e. (a > 2 ∧ an + bn = cn), is a particular finitary statement.

The statement that particular formal derivation is a proof of a particular formula in
a specified formal system is, as Hilbert recognized, finitary, i.e. effectively decidable.
However, Hilbert missed something about this insight of his which Gödel realized,
namely that formal proofs can be literally identified with natural numbers, i.e. they
could be taken to be numerical expressions, rather than merely like them. As Gödel
put this point in (1931),

Of course, for metamathematical considerations it does not matter what
objects are chosen as primitive signs, and we shall assign natural numbers
to this use, that is, we map the primitive signs one-to-one onto some
natural numbers.

Numbers assigned to formulas of a formal language in this way are called Gödel
numbers. There are, of course, an uncountable infinity of assignments of numbers
to formulas, but also there are a countable infinity of assignments for which the
coding of a formula by a number, and decoding of a number as a formula can

LECTURE 1 8

be carried out effectively. The one we shall use here, which is not the one used by
Gödel, is due to W.V. Quine (and is used by Raymond Smullyan in his book Gödel’s
Incompleteness Theorems, which is the starting point of these notes).

Definition 1 (notation for the Gödel number of an expression) For a given
assignment of Gödel numbers, pEq =df the Gödel number of expression E.

To carry out the arithmetization of syntax, the system must be able to ”talk” about
numbers, i.e. there must be for each natural number an expression in the language
of the system that denotes that number.

Definition 2 (numerals for numbers) A set of expressions of a given formal
language such that each natural number is denoted by a unique expression in that
set will be called numerals.

Definition 3 (notaton for the numeral of a number) For formal languages that
have a numeral for each natural number, we denote by n the numeral for the natural
number n.

1.1.1 Truth

Truth for a sentence of LAE in the structure of the natural numbers (the intended
interpretation) can be defined by recursion over the recursive generation of the
sentence in the usual way. For none of the results in this course do we require a
formal definition of truth, and I will take it as known informally what it means for
a formula in the language of arithmetic to be true in the structure of the natural
numbers. As part of our informal notation, i.e. the mathematical language in which
we talk about denotation and truth of terms and sentences of the formal language
LAE, we denote the set of natural numbers by N.

Definition 4 (truth in a language of arithmetic) Whenever we speak off a sen-
tence in a language of arithmetic, i.e. a closed formula, as true, we mean that it is
true when interpreted in the domain of natural numbers with the usual arithmetical
functions and relations on the natural numbers (also known as the standard model).
When truth in a non-standard model is meant, that will be specified. Also, we speak
of a formula with free variables as true if for all substitution of numerals for vari-
ables results in a true sentence, so for example we say that v1 + v2 = v2 + v1 is
true.

Note that when LAE is interpreted over the natural numbers, in the standard inter-
pretation, every element of the domain of interpretation, the numbers, is designated
by a term in the language, the formal numerals. On this interpretation a sentence of
the form ∃viF (vi) is true if and only if there is a number n such that the setence F (n)

LECTURE 1 9

is true. As we shall see later, there are intepretations of LAE in which all the axioms
of a given formal system of arithmetic are true, but in which there are elements of
the domain, non-standard numbers, in which a sentence of the form ∃viF (vi) will be
true, but for no natural number n is the sentence F (n) true. This will be the case,
for example, when a formula F (n) has the meaning, on the standard interpretation,
that n is the Gödel number of a proof of a sentence which the system refutes e.g.
0 = 1, i.e. is a proof that the sytem is inconsistent. Gödel’s Second Incompleteness
Theorem, as we shall see, tells us that no consistent theory in which syntax can be
arithmetized can prove its own consistency. Hence a sentence asserting that there is
a proof in the system of an inconsistency can be consistently added to the system,
and since this extended theory is consistent, it will have a model, and in that model
∃viF (vi) will be true, which is to say that for some element a in the domain of that
model, a satisfies the formula F (vi), which we may express by writing F (a), but for
no number n is there a true sentence of the form F (n).

Gödel showed that the property of being the Gödel number of a provable formula
is expressible within any system which can express basic arithmetic, i.e. there is
a formula Pr(v1) with one free variable, in the language of a formal system for
arithmetic, S, such that for every formula X in the language of S, S ⊢ X if and
only if Pr(pXq) is true. And thereby unprovability is expressed by ∼Pr(pXq).
We shall establish the existence of such formulas for a particular formal system of
arithmetic in Lecture 4.

Gödel also showed (in effect, though it was Carnap who first explicitly stated this
general result) that for any formula with one free variable F (v1) (in particular a
formula that expresses the property of being the Gödel number of an unprovable
formula), there is a sentence D such that the equivalence (D ≡ F (pDq)) is true. D
is called a diagonal sentence for F (v1). We shall establish this result in Lecture 3.

From these results and on the assumption that everything provable in a given system
S is true (in the sense of Definition 4) (a very strong assumption, much stronger
than is needed to establish incompleteness, but it is illuminating to consider this
simple case), it is easy to see that for G such that (G ≡∼ Pr(pGq)), S 0 G, G is
true, and S 0∼ G, as follows.

Theorem 1 (weak form of Gödel’s first incompleteness theorem) Let S be
a theory such that for each natural number n there is a numeral n in the language
of S, and assume that:

(i) there is a mapping pq of the expressions of the language of S to natural numbers,
and a formula Pr(v1) in the language of S, such that for each formula X, S ⊢ X if
and only if the sentence Pr(pXq) is true;
(ii) there is a sentence G such that the sentence (G ≡ ∼Pr(pGq)) is true;

LECTURE 1 10

(iii) every theorem of S is true.

Then S 0 G, G is true, and S 0 ∼G.

Proof. (1) Suppose that S ⊢ G.

(2) By (1) and (i), Pr(pGq) is true.
(3) From (2) and (ii), G is false.

(4) From (3) and (iii), S 0 G.

(5) Since (4) contradicts (1), we have by reductio ad absurdum that S 0 G.

(6) From (5) and (i), Pr(pGq) is false.
(7) From (6) and (ii), G is true.

(8) From (7) and (iii), S 0 ∼G. N

Remarks about this result:

This version of the first Gödel incompleteness theorem is weak since, while assump-
tions (i) and (ii) can be established, which we shall do, assumption (iii), soundness
of the system with respect to truth in arithmetic, is a highly non-finitistic assump-
tion which is much stronger than necessary. The unprovability of the Gödel sentence
holds from the assumption that S is consistent, which is finitistic is also the minimal,
i.e. necessary condition, since an inconsistent theory proves everything, i.e.

Proposition 2 For any system S and sentence X, a proof that S 0 X from the
assumption of consistency is best possible.

Proof. If S is inconsistent, it proves everything, since ((A ∧ ∼A) ⊃ B) is logically
valid, so in particular S ⊢ X. N
Corollary 3 If there is a formula X such that S 0 X, then S is consistent.

Proof. By contraposition of the proof of Proposition 2. N
Gödel sketches the proof of this weak form of the First Incompleteness Theorem
in section 1 of his 1931 paper, and notes that “The purpose of carrying out the
above proof with full precision in what follows is, among other things, to replace
the second of the assumptions just mentioned [every provable formula is true in the
interpretation considered] by a purely formal and much weaker one.” [Gödel [5], p.
176 (151)].

In his introductory section Gödel notes that this argument is “closely related” to
the argument for the “Liar” paradox. The argument does not lead to a contradic-

LECTURE 1 11

tion since it starts from the assumption that G is provable, and so by reductio ad
absurdum establishes that G is not provable. Use of the Liar paradox also shows,
as we shall see, that unlike provability in a formal system, truth in a language of
arithmetic cannot be expressed in the language.

We shall establish how much basic arithmetic is required for arithmetization of
syntax, i.e. to prove assumptions (i) and (ii), which will be made precise by the
notion of Σ0-arithmetic, which essentially consists of truth functional combinations
of computations with addition and multiplication. Exponentiation is not needed.
This shows that arithmetized syntax is a proper sub-part of what Hilbert meant by
finitist mathematics. Hilbert never gave a precise characterization of finitist math-
ematics, but it is clear that it includes all primitive recursive functions, so plus and
times, but also exponentiation and beyond. On the other had, both addition and
multiplication are needed for incompleteness, as shown by the fact that Presburger
Arithmetic, which is the theory of zero, successor, and addition, is complete. This
completeness is no consolation for anyone who hoped for a complete system of arith-
metic, since the properties of numbers that can be expressed using only successor
and addition is extremely limited.

Gödel’s proof of the independence of the Gödel sentence from formal arithmetic was
unprecedented, in two crucial ways. One is in the means by which the proof is estab-
lished. In the previous hundred years the independence of Euclid’s fifth postulate
from the other postulates of geometry had been established by the construction of
a model in which the first four postulates of Euclidean geometry hold, and in which
the fifth postulate is false. By contrast, Gödel’s result is purely syntactic (exploiting
Hilbert’s insight). The other difference is that the fifth postulate is neither true nor
false, per se. It is true in Euclidean geometry and false in non-Euclidean geometries.
The Gödel sentence is demonstrably true, though not demonstrable in the system
for which it is constructed.

Proving that S 0 ∼G from a weaker condition than soundness of S. That
the Gödel sentenceG for a system S is not refutable, i.e. ∼G is not provable, requires
a stronger condition on S than consistency, though a condition much weaker than
the soundness of S is sufficient. This situation will be analyzed carefully in later
lectures.

Incompleteness from consistency. In 1936 J. Barkley Rosser established in-
completeness just on the minimal condition of consistency, i.e. he constructed a
sentence R for system S such that if S is consistent, S 0 R, and S 0 ∼R, and I
will prove Rosser’s Theorem in Lecture 9. Rosser’s Theorem is not a strengthening
of Gödel’s Theorem, i.e. Rosser has not proved on a weaker assumption than in
Gödel’s proof that the Gödel sentence is undecidabale by a consistent system, and

LECTURE 1 12

we shall see that there are consistent systems S such that for G the Gödel sentence
for S, S ⊢ ∼G.

Sketch of Gödel’s second incompleteness theorem. Given that provability in a
system S is expressible by a formula Pr(v1) in the language of S, then by Corollary 3,
the consistency of S can be expressed in the language of S by ∼Pr(pXq), for any
sentence X such that S ⊢ ∼X. Then the first half of Gödel’s first incompleteness
theorem for a system S can be expressed in the language of S by the sentence
(∼Pr(pXq) ⊃ ∼Pr(pGq)). By dint of considerable hard work, we are able to show
that this sentence is provable in S, i.e. S ⊢ (∼Pr(pXq) ⊃ ∼Pr(pGq)). Hence if
S ⊢ ∼Pr(pXq), S ⊢ ∼Pr(pGq). But also by dint of considerable hard work we
can show that S ⊢ (G ≡ ∼Pr(pGq)), so then S ⊢ G. But we will have established
that if S is consistent, S 0 G, so we have S is consistent. Hence we have shown
that if S ⊢ ∼Pr(pXq), S is inconsistent. By contraposition, if S is consistent,
S 0 ∼Pr(pXq), i.e. a consistent theory cannot prove its own consistency. This is a
deep result, from which a great deal else follows, as we shall see.

1.2 The symbols and expressions of a language

for arithmetic LAE

A formal system is constructed from a formal language, and a formal language
consists of terms and formulas specified from among the expressions generated by
concatenation from a finite alphabet of symbols. Following Smullyan [16] we will
use an alphabet of 13 symbols. We shall use these symbols to generate two different
languages, LAE, and a sublanguage of LAE, LA. We begin with LAE. The heuristic
meaning of LAE is a language of arithmetic with exponentiation (as a primitive
notion in the language), and correspondingly LA is a language of arithmetic without
exponentiation as primitive.

Definition 5 (the primitive symbols of LAE) The primitive symbols of the lan-
guage LAE are the following:

0 ′ () f ′ v ∼ ⊃ ∀ = ≤ ♯

These formal symbols will be used with the following intended meanings:

The symbol 0 denotes the natural number zero1.

1Note that in this sentence I am being casual about the distinction between use and mention.
That distinction is easily but cumbersomely dealt with by using quotation marks, in which case
this given sentence would read: “The symbol ‘0’ denotes the natural number zero”, which is fine,
though fussy, but the next sentence would become: “The symbol ‘′’ denotes the successor function”,

LECTURE 1 13

The symbol ′ denotes the successor function.

The symbols (and) are left and right brackets.

The symbols f and v are for functions and variables, to which numerical subscripts in
tally notation, i.e. iterations of the subscript ′ are attached. The strings of symbols
f′ , f′′ , f′′′ will denote the functions addition, multiplication, and exponentiation,
respectively, which we will write informally as +, ·, and exp or xy in the usual
notation. There are an infinity of variables v′ , v′′ , v′′′ , . . ., which we will usually
write as v1, v2, v3, If we want to signify a variable without specifying which
variable it is, we will write vi, vj etc or use informal variable letters x, y, z, u, v, w.

The symbol for the propositional connectives negation and implication are ∼ and
⊃. The symbol for the universal quantifier is ∀.

The symbols = and ≤ are for the two-place relations of equality and less than or
equals.

The symbol ♯ will be used to mark breaks between strings of symbols that are terms
and formulas of the language when these strings of formulas occur in sequences of
terms and formulas (to be defined in the next lecture).

An expression in the language is (almost) any finite string of these symbols. For a
technical reason (to do with our choice of Gödel numbering) we exclude from the
class of expressions strings of more than one symbol that begin with the symbol ′.
The set of expressions for the language LAE is specified by the following recursive
definition.

Definition 6 (expressions of LAE) basis: Each one of the symbols 0 ′ () f ′ v
∼ ⊃ ∀ = ≤ ♯ is an expression.

recursion: If Ei and Ej are expressions, and Ei is not the symbol ′, then the con-
catenation of Ei and Ej, i.e. the result of writing Ei directly followed by Ej, is an
expression, which we sometimes symbolize as EîEj, or more often simply as EiEj.

Remark: Because we have by this definition excluded from the class of expressions
strings of more than one symbol that begin with the symbol ′, the expression 0′′

exists as 0′ ̂ ′, but not as 0 ̂ ′′.

1.3 Gödel numbering of the expressions of LAE

.

which is difficult to read and looks silly.

LECTURE 1 14

We assign Gödel numbers to the expressions of LAE. This can be done in infinitely
many ways. The way we shall do it, following Smullyan following Quine, makes the
link between Gödel numbering of expressions as strings of formal symbols particu-
larly transparent. Gödel’s original method involved coding by exponents of prime
factors. On our method each number is the Gödel number of an expression, while
on Gödel’s method not every number is a Gödel number. Having every number be
a Gödel number makes the formulation of some results a little simpler but is not
essential.

Definition 7 (notation for an expression in term so its Gödel number) En =df

the expression with Gödel number n.

Corollary 4 (of Definitions 1 and 7) pEnq = n.

Proof. By Definition 1, pEnq is the Gödel number of En. By Definition 7, the
Gödel number of En is n. N

We are used to the idea that numbers are denoted by numerals and that numerals
are not the same thing as numbers. The Roman numerals for the first five non-zero
natural numbers are I, II, III, IV, V, while the Arabic numerals are 1, 2, 3, 4 ,
5. The crucial property of the Arabic numerals is that they are constructed on a
place-value system with a base of 10. That the system of numerals in common use
is base 10 is presumably down to the contingent fact (it could have been otherwise)
that human beings have 10 fingers. Any other number greater or equal to 2 gives
a perfectly good numeral system with that base. Machine code for computers is in
base 2, I take it. The number we write as 15 in base 10 we write as 1111 in base
2 (i.e. 15 = 8 + 4 + 2 + 1) and as 13 in base 12, i.e. as 12 + 3, taking the first
10 digits of base 12 notation to be the digits used in base 10 ; but to express 131
as given in base 10 in base 12, we need two more primitive symbols, say η and ϵ, so
13110 = ηϵ12, i.e. 10× 12 + 11.

We shall be using base 13 representation of numbers to generate Gödel numbers
for LAE by taking the Gödel number of each of the 13 primitive symbols to be the
number given by a digit base 13. However, within LAE, our numerals for numbers
will be given by a tally notation, rather than place values: the formal numeral

for the number n is the expression 0

n︷︸︸︷
′ . . . ′, i.e. the result of n-many iterations of

concatenating the symbol ′ on the right starting with the symbol 0.

The following function plays a key role in our chosen system of Gödel numbering.

Definition 8 (concatenation of base b numerals) For any natural numbers m
and n and natural number b ≥ 2, we denote by m ∗b n the number designated by the

LECTURE 1 15

base b numeral that results from concatenating the base b numeral for m with the
base b numeral for n.

Note that ∗b is a function mapping each pair of natural numbers to a natural
number. Natural numbers are not intrinsically in base b or any other base notation,
and the role of b in this function is to specify a method for calculating the function.
To calculate m ∗b n, we express m and n in base b notation and concatenate the
two expressions, in that order. By Definition 8, m ∗b n is the number whose base b
notation is produced by that concatenation.

Examples : For m = 673, n = 32 (written in base 10), m∗10 n = 67332 and n∗10m =
32673. For m = 59, n = 0,m ∗10 n = 590 and n ∗10 m = 059 = 59.

Remark : As illustrated by these examples, ∗b is not commutative. It is also not
associative, e.g. (17 ∗b 0) ∗b 59 = 17059 ̸= 1759 = 17 ∗b (0 ∗b 59). Non-associativity
only arises when the middle value is 0, but since we will include 0 as a Gödel number
we cannot suppress parentheses in multiple computations with ∗b except by adopting
a convention for reinstating them; we adopt the common convention of association
to the left, i.e. x ∗b y ∗b z = (x ∗b y) ∗b z.

We assign Gödel numbers to expressions by first stipulating the Gödel numbers
of the symbols. We assign to these thirteen symbols the numbers denoted by the
thirteen digits of base 13 notation, where the digits for 10, 11, and 12 (as we write
them in base 10) are taken to be η, ϵ, and δ, respectively.

Definition 9 (assignment of Gödel numbers to expressions) By recursion over
the recursive definition of expressions.

Base case: The assignment of numbers to symbols is specified by

0 ′ () f ′ v ∼ ⊃ ∀ = ≤ ♯
1 0 2 3 4 5 6 7 8 9 η ϵ δ

Recursion: For expressions X and Y , pX̂Y q = pXq ∗13 pY q
It is in order for each expression to have a unique Gödel number that we stipulated
in Definition 6 that the class of expressions does not contain strings of more than one
symbol that begin with the prime symbol ′. For example, if ′∀ were an expression,
we would have p′∀q = 09 = 9 = p∀q, and if ′′ were an expression, we would have
p′q = 0 = p′′q.
There is a technical advantage in taking the base b to be a prime number but it is
not essential. We can use base 10 and the operation ∗10 even with thirteen symbols
by, for example, assigning the thirteen symbols respectively the following numbers
(written in base 10):

LECTURE 1 16

0 ′ () f ′ v ∼ ⊃ ∀ = ≤ ♯
1 0 2 3 4 5 6 7 89 899 8999 89999 899999

Of course on this assignment not every number is a Gödel number. But we can
effectively tell the ones that are, i.e. we know that if an 8 or a 9 occurs in its base
10 notation, it must occur within a string of the form 89, 899, 8999, 89999, 899999,
and we know which symbol is coded by counting the number of 9s in that string.

Lecture 2

Terms and formulas of the
language LAE; Expressibility in
LAE; Substitution and
quasi-substitution of a numeral for
a free variable in a formula

Wednesday 16 January 2019

2.1 Terms and formulas of the language LAE

Having specified the alphabet of primitive symbols for the language of arithmetic
LAE which we will be working in, and the notion of an expression in the language
as any finite concatenation of these primitive symbols, except for a strong of more
than one symbol that begins with a ′, we now specify from among all expressions in
LAE those that we use in a language. These are of two kinds, terms and formulas.
Terms and formulas are in turn of two kinds, closed (containing no free variables)
and open (containing one or more free variables). Closed terms designate objects in
the domain, under an interpretation of the language, and closed formulas are true
or false in an interpretation of the language. Open terms can be transformed into
closed terms by substituting a closed term for each free variable. Open formulas
can be transformed into closed formulas by, for each free variable in the formula,
substituting a closed terms for that free variable, or by prefixing a quantifier which

17

LECTURE 2 18

binds that free variable. The terms and formulas of LA are generated by the following
definitions.

2.1.1 Terms

Definition 10 (Variables) v′ is a variable, and if the expression E is a variable
then E ′̂ , i.e. E′ , the concatenation of E and the subscript symbol ‘′ ’, is a variable.

Remark: So formal variables in LA are expressions of the form v′ , v′′ , v′′′ , We
will abbreviate the string of symbols consisting of the formal variable symbol v
followed by n subscripts as vn.

Definition 11 (Numerals) The symbol 0 is a numeral. If the expression E is a
numeral, then the expression Ê′, i.e. E ′, the concatenation of E with the prime
symbol, is a numeral.

So numerals in LA are the expressions 0, 0′, 0′′, 0′′′, For each natural number n,

the numeral for n in LA is 0

n︷︸︸︷
′ . . . ′, which by Definition 3 we abbreviate as n. For

example, 0′′′′′′′ is the formal numeral in LA for the number 7, abbreviated as 7.

Corollary 5 (of the definition of numerals in LA) Writing ‘n + 1’ as our in-
formal notation for the next natural number after n, for any natural number n, n+ 1
is n̂′ (which we will usually write as n′), i.e. the numeral for the number n + 1 is
the concatenation of the numeral for the number n and the symbol ′.

Proof. Concatenation of ′ to a string of primes adds one prime to that string.
Hence the numeral for n+ 1 is the concatenation of one ′ to the numeral for n, i.e.
n+ 1 = n̂′, where this equation is of the form t = t. N
Definition 12 (Terms) Among expressions of LAE, the class of terms is specified
by the following recursive definition:

Base clause: Each variable and each numeral is a term.

Induction clauses: If t is a term, then t′ is a term. If t1 and t2 are terms, then
(t1f′ t2), (t1f′′ t2), and (t1f′′′ t2) are terms. As remarked in Lecture 1, the expressions
f′ , f′′ , and f′′′ in LAE will be interpreted as addition, multiplication, and exponen-
tiation, respectively.

Note that while the formal system for arithmetic with which we begin will have
exponentiation as primitive, i.e. it will include axioms governing f′′′ , we shall show,
following Gödel, that exponentiation can be expressed in terms of zero, successor,
plus, and times, and we shall drop the generation of terms in the language from f′′′ .

LECTURE 2 19

Definition 13 (closed terms) A term in which no variable occurs is called a
closed term.

2.1.2 Formulas

Definition 14 (Atomic formulas) For t1 and t2 any terms of LA, an atomic
formula is an expression of the form t1 = t2 or of the form t1 ≤ t2.

Definition 15 (Formulas) The class of formulas is specified by the following re-
cursive definition:

Base clause: Every atomic formula is a formula.

Induction clauses: If F and G are formulas, then ∼ F and (F ⊃ G) are formulas,
and for every variable vi, the expression ∀viF is a formula. [Note that the formula
(F ⊃ G) is enclosed in brackets, but that the other two formation rules do not
introduce new brackets.]

We will use the logical equivalences between conjunction, disjunction, and existential
quantification and expressions in terms of ∼,⊃, and ∀ as abbreviations, i.e.

Definition 16 For formulas A and B,

(A ∧B) =df ∼(A ⊃ ∼B);

(A ∨B) =df (∼A ⊃ B);

(A ≡ B) =df ((A ⊃ B) ∧ (B ⊃ A)) =df ∼((A ⊃ B) ⊃ ∼(B ⊃ A))

∃viA =df ∼∀vi∼A.

2.1.3 Free and bound variables; open formulas and sen-
tences

Definition 17 (a variable occurs free in a formula) (i) If F is an atomic for-
mula, all occurrences of variables in F are free.

(ii) If F is a formula and variable vi occurs free in F , then variable vi occurs free
in ∼F .

(iii) For F and G are formulas and variable vi occurs free in F or in G , then vi
occurs free in (F ⊃ G).

(iv) For any formula F , if vi occurs free in F , vi is free in ∀vjF iff j ̸= i.

LECTURE 2 20

Note that clause (iii) of this definition includes the case where vi occurs free both
in F and in G, since we take ‘or’ with its inclusive meaning, as in the truth function
for ∨.]

Definition 18 (bound variables) A variable occurs bound in a formula F iff it
occurs in F and does not occur free in F .

Definition 19 (open formulas) A formula with one or more free variables is an
open formula

Definition 20 (closed formulas) A formula with no free variables is a closed for-
mula, also called a sentence.

Notational convention: We write F (vi) to signify a formula in which the variable
vi occurs free. Other unspecified variables may occur free as well, unless we stipulate
that vi is the only variable free in F (vi). In the latter case we say that F (vi) is a
one-place formula. Similarly we write F (vi1 , . . . vik) for a formula in which variables
vi1 , . . . vik occur free, possibly with other free variables, unless we stipulate that
these are the only variables occurring free, in which case we say that F is a k-place
formula.

Note that this convention on possible occurrence of free variables other than those
explicitly shown is different from Smullyan, who says “We write F (vi1 , . . . vik) for
any formula in which vi1 , . . . vik are the only free variables.” (p. 16). Since there are
situations, e.g. in stating the Induction axioms, in which we need to allow for the
possibility of other free variables than those explicitly shown, Smullyan’s convention
has in those situations to be violated, e.g. “F (v1) is to be any formula at all (it
may contain free variables other than v1)” (Smullyan, p. 29). It seems to me more
coherent to allow unspecified other variablesin in general, and then to stipulate in
any particula case, where necessary, that there are no other free variables.

Definition 21 (regular open formulas) An open formula is regular if its k-many
free variables are the first k variables.

LECTURE 2 21

2.2 Denotation of closed terms in LAE, truth of

sentences of LAE, expressibility of sets and re-

lations of natural numbers by formulas of LAE

2.2.1 Denotation of closed terms

Proposition 6 On the intended interpretation of the formal language LAE, each
closed term denotes (designates, refers to) a particular natural number.

Proof By induction over the recursive definition of terms:

(i) the numeral 0 denotes the natural number zero.

(ii) If the closed term c denotes n, then the closed term c′ denotes the successor of n;
if the closed terms c1 and c2 denote n1 and n2 respectively, then (c1f′c2) denotes the
sum of n1 and n2, (c1f′′c2) denotes the product of n1 and n2, and (c1f′′′c2) denotes
n1 raised to the power n2. N

2.2.2 Expressibility

A very important notion in the arithmetization of syntax (and elsewhere in math-
ematical logic and mathematics more generally) is that of a formula in a given
language expressing a property of objects, or a relation between objects, in a do-
main of interpretation of the language. For example, the first hypothesis in the weak
form of Gödel’s first incompleteness theorem (Theorem 1) in Lecture 1 is that the
property of being the Gödel number of a formula provable in the given axiomatic
theory is expressible in the language of that theory. We define this notion with
respect to truth in the natural numbers (Definition 4).

Definition 22 (expressibility of relations) A formula F (v1, . . . , vk) in LAE with
k-many free variables is said to express a relation R ⊆ Nk iff for every k-tuple
< n1, . . . , nk > of natural numbers, the sentence F (n1, . . . , nk) is true iff
< n1, . . . , nk >∈ R, in which case the relation R is said to be expressible in LAE.

Definition 23 (expressibility of functions) A function f : Nk → N is express-
ible in LAE iff the relation f(n1, . . . , nk) = m is expressible in LAE.

LECTURE 2 22

2.3 Concatenation of numbers in a given base no-

tation is expressible in LAE.

The two-place function f(m,n) = m ∗b n introduced by Definition 8 in the previous
lecture is expressible in LAE, as follows:

Lemma 7 For a fixed number b ≥ 2, the condition that v1 is a power of b, which
we abbreviate as Powb(v1), is expressible in LAE.

Proof. Powb(v1) iff ∃v2(v1 = bv2), or more formally

Powb(v′) iff ∼ ∀v′′ ∼ v′ = (bf′′′v′′). N
Lemma 8 For ℓb(n) the length of the base b notation for n, i.e. the number of digits
in the base b notation of n, the two-place relation bℓb(v1) = v2 is expressible in LAE

Proof. In all but the case where v1 = 0, this is the condition that v2 is the least
power of b greater than v1, e.g. for b = 10 and v1 = 935, ℓ10(935) = 3, and 103 is the
least power of 10 greater than 935. In the case of v1 = 0, ℓb(0) = 1, so v2 = b1 = b,
but the least power of b greater than 0 is b0 = 1, so for v1 = 0, v2 = b (which is ̸= 1
since b is a base and hence ≥ 2).

This relation is thus expressed by the following condition on v1 and v2.

((v1 = 0∧v2 = b)∨(v1 ̸= 0∧Powb(v2)∧v1 < v2∧∀v3((Powb(v3)∧v1 < v3) ⊃ v2 ≤ v3))).

The above condition is expressible in LAE by Lemma 7 and the fact that v1 < v2 is
equivalent to (v1 ≤ v2∧ ∼ v1 = v2). N
Theorem 9 For any number b ≥ 2, the relation v1 ∗b v2 = v3 is expressible in LAE.

Proof. The relation v1 ∗b v2 = v3 is expressed by the condition that

v1 · bℓb(v2) + v2 = v3.

For example, 1570 ∗10 365 = 1570365 = 1570000 + 365 = 1570 · 103 + 365 = 1570 ·
10ℓ10(365) + 365.

This condition is equivalent to

∃v4(bℓb(v2) = v4 ∧ ((v1 · v4) + v2) = v3).

By Lemma 8, this relation is expressible in LAE. N

LECTURE 2 23

2.4 Substitution and quasi-substitution

The operation of substituting a numeral for a free variable in a formula lies at
the heart of constructing a ‘self referential’ sentence such as one that ‘says’ ‘This
sentence is not provable in the given formal system’. We introduce notation for
such substitutions in the more general case of substitution of a term for a variable,
but having introduced that notation, the case that will concern us is substitution of
terms that are numerals.

Notation for substitution of a term for a free variable in a term or a
formula: We write t1(vi/t2) to signify the result of substituting the term t2 for all
free occurrence of vi in the open term t1(vi) and F (vi/t) to signify the result of
substituting the term t for all (unless in a specified situation we allow the possibility
of some but not all) free occurrence of vi in the formula F (vi). In this notation we
allow the possibility that vi does not occur in t1 or in F (vi), in which case t1(vi/t2) is
t1 and F (vi/t) is F . If the context makes it clear that the variable to be substituted
for is vi, we may simply write t1(t2) or F (t). If vi is the only free variable in t1 or
in F (vi), and t is a closed term, then t1(vi/t) is a closed term, and F (t) is a closed
formula (sentence).

If vi1 , . . . vik are some (though not necessarily all) free variables occurring in the
formula F , we write, for terms t1, . . . , tk, F (vii/t1, . . . , vik/tk) for the result of sub-
stituting the terms t1, . . . , tk for all (unless in a specified situation we allow the
possibility of some but not all) free occurrences of vi1 , . . . vik in F (vi1 , . . . vik), re-
spectively. If it’s clear from the context which term is to be substituted for which
variable, we simply write F (t1, . . . , tk). If t1, . . . , tk are closed term and if vi1 , . . . vik
are the only variables that occur free in F (vi1 , . . . vik), and t1, . . . , tk are substituted
for all occurrences of vi1 , . . . vik in F , then F (v1i/t1, . . . , vik/tk) is a closed formula
(sentence). Similarly for substitutions into a term.

For F (v1, . . . , vk) a regular open formula with k-many free variables (Definition 21)
and < t1, . . . , tk > a k-tuple of terms, the expression F (t1, . . . , tk) is unambiguous,
i.e. we don’t need to stipulate which term is substituted for which variable. Again
similarly for terms.

In the following two definitions and subsequently, I use
.
= to signify that the two

expressions joined by it are identical, and square brackets to indicate in which term
or formula the substitution is being made.

Definition 24 (substitution of a numeral for a variable in a term)

Base: [vi](vi/n)
.
= n

For i ̸= j, [vj](vi/n)
.
= vj

LECTURE 2 24

[0](vi/n)
.
= 0

Recursion:

For any term t, [t′](vi/n)
.
= t(vi/n)

′

For any terms t1 and t2, [(t1f′ t2)](vi/n)
.
= (t1(v1/n)f′ t2(v1/n)), and

similarly for f′′ and f′′′ .

Definition 25 (substitution of a numeral for a free variable in a formula)
Base:

[t1 = t2](vi/n)
.
= t1(v1/n) = t2(vi/n)

[t1 ≤ t2](vi/n)
.
= t1(v1/n) ≤ t2(vi/n)

Recursion:

[∼F (vi)](vi/n)
.
= ∼F (vi/n)

[(F ⊃ G)](vi/n)
.
= (F (vi/n) ⊃ G(vi/on))

If i ̸= j, [∀vjF](vi/n)
.
= ∀vjF (vi/n)

[∀viF](vi/n)
.
= ∀viF (vi))

Note that by Definitions 24 and 25, if v1 does not occur in term t, then t(vi/n)
.
= t,

and if vi does not occur free in formula F , then F (vi/n)
.
= F .

To express substitution of a numeral for a free variable in a formula in arithmetized
syntax, we have to express the function s(x, y, z) = pEx(vz/y)q in LAE . This can
be done, but doing so requires decoding the formula Ex(vz/y)q from x, y, z by the
recursive Definitions 24 and 25, which is complicated and cumbersome. Tarski has
shown how to avoid these complications by arithmetizing a formula, which we will
call quasi-substitution, that is logically equivalent to substitution of a numeral in a
formula, but whose Gödel number is generated directly from the Gödel number of
the formula into which a numeral is being substituted, without going through the
recursive generation of the formula.

Definition 26 (quasi-substitution) For F (vi) a formula of LAE and n a nu-
meral, F [n] =df ∀vi(vi = n ⊃ F (vi)).

Lemma 10 (quasi-substitution logically equivalent to substitution) For F (vi)
a formula of LAE and n a numeral, (∀vi(vi = n ⊃ F (v1)) ≡ F (n)) is logically valid.

Proof. (i) Suppose ∀vi(vi = n ⊃ F (vi)). Then by universal instantiation, (n = n ⊃
F (n)). Since n = n is logically valid, by modus ponens, F (n).

LECTURE 2 25

(ii) Suppose F (n). Then by substitutivity of identity, (vi = n ⊃ F (vi)). By universal
generalization, ∀vi(vi = n ⊃ F (vi)). N
Note We could also have defined F [n] as ∃vi(vi = n ∧ F (vi)) since:

Lemma 11 (∀vi(vi = n ⊃ F (vi)) ≡ ∃vi(vi = n ∧ F (vi))) is logically valid.

Proof. Exercise. N

Lecture 3

Arithmetization of
quasi-substitution and diagonal
quasi-substitution; The Diagonal
Lemma; expressibility of
properties of sequence numbers

Monday, 21 January 2019

3.1 Arithmetization of quasi-substitution and di-

agonal quasi-substitution

Our first step in the arithmetization of syntax, i.e. showing that syntactic operations
on expressions of LAE correspond with operations on their Gödel numbers that are
expressible in LAE, is to show that the function s(m,n) that gives the Gödel number
of the formula that results from the quasi-substitution into Em of the numeral n,
i.e. Em[n], is expressible in LAE.

Definition 27 (the Gödel number of a quasi-substition)

s(x, y, z) =df p∀vz(vz = y ⊃ Ex)q

Note that for many values of x, Ex will not be a formula in which the variable
vz occurs free, or indeed will not be a formula at all. These are ‘don’t care’ cases.

26

LECTURE 3 27

We could rule them out by stipulating that s(x, y, z) has a value only if Ex is a
formula in which vz occurs free, meaning that s(x, y, z) is a partial function. For
our purposes it’s a bit simpler to let all the functions we deal with be total.

Before we can establish that the three-place relation s(m,n) = r is expressible in
LAE, we must calculate the Gödel numbers of the numerals.

Lemma 12 The Gödel number of n, the numeral of the number n, is 13n (where
thirteen has been written in base 10, but the calculation of the Gödel number uses
the concatenation of base 13 numerals).

Proof. The numeral of the number n is the expression 0

n︷︸︸︷
′ . . . ′. The symbol 0 is

assigned Gödel number 1, the symbol ′ is assigned the number 0, so that whole
expression is, by concatenation, assigned the number written in base-13 notation as

1

n︷ ︸︸ ︷
0 . . . 0, which is the number 13n, with thirteen written in base 10 notation. N

Theorem 13 (expressibility of the quasi-substitution function) There is a
three-place formula in LA, call it S(v1, v2, v3), such that for each triple of natu-
ral numbers < n1, n2, n3 >, S(n1, n2, n3) is true if and only if
p∀v1(v1 = n2 ⊃ En1)q = n3, i.e. by Definitions 22 and 23, S(v1, v2, v3) expresses
the function s(m,n) = r specified in Definition 27.

Proof. Let k = p∀v1(v1 =q, a particular number whose base 13 notation, given our
assignment of base 13 digits to the symbols of our language, is 965265η (or if we
use the base 10 Gödel numbering also given in Lecture 1, whose base 10 notation is
899652658999).

Going with our base 13 Gödel numbering, we have that the required relationship
between v1, v2, v3 is

v3 = k ∗13 (13f′′′v2) ∗13 8 ∗13 v1 ∗13 3,

but as it stands this does not give us expressibility in LAE, since the expressibility
in LAE of ∗13 as a two place function is given by a three-place formula in LAE, call
it C13(v1, v2, v3) (established in Theorem 9), so the required relationship between
v1, v2, v3 is expressed in LAE (omitting the subscript 13 to reduce clutter) as

∃v4∃v5∃v6(((C(k, (13f′′′v2), v4) ∧ C(v4, 8, v5)) ∧ C(v5, v1, v6)) ∧ C(v6, 3, v3))

N
Definition 28 (diagonal quasi-substitution) The diagonal quasi-substitution func-
tion d(n) =df s(n, n), i.e. d(n) = p∀v1(v1 = n ⊃ En)q.

LECTURE 3 28

Remark. By Definition 26, ∀v1(v1 = n ⊃ En) =df En[n], so Definition 28 means
that d(n) = pEn[n]q.
Corollary 14 (expressibility of diagonal quasi-substitution) There is a two-
place formula in LAE, call it D(v1, v2), such that for each pair of natural numbers
< m,n >, D(m,n) is true if and only if n = p∀v1(v1 = m ⊃ Em)q, i.e. the one-place
function that yields the Gödel number of a quasi-substution formula as a function of
the number whose numeral is being quasi-substituted into the formula which has that
number as its Gödel number, d(n) = p∀v1(v1 = n ⊃ En)q, is expressible in LAE.

Proof. Let D(v1, v2) be the formula that results by substituting v1 for v2 and v2 for
v3 in S(v1, v2, v3). For all numbers m,n, S(m,m, n) is true iff s(m,m) = n. By the
definition of d(m), s(m,m) = d(m). So D(m,n) is true iff d(m) = n. N

3.2 The Diagonal Lemma

The existence of a sentence G such that the equivalence (G ≡ ∼Pr(pGq)) is true,
i.e. condition (ii) of Theorem 1, is proved by the Diagonal Lemma, which establishes
the existence of a diagonal sentence for any formula F (vi) with one free variable.
Proof of the Diagonal Lemma is by a kind of double substitution into F (vi), first
substitution of an expression for the diagonal function in place of the variable vi, and
then substitution of the numeral for the Gödel number of the formula that results
from that first substitution in place of the free variable of the diagonal function as
substituted into F (vi).

Theorem 15 (Diagonal Lemma) For any open formula F (vi) in LAE with one
free variable vi, there exists a sentence C in LAE such that the equivalence
(C ≡ F (pCq)) is true.
Proof In this derivation D(v1, v2) is the formula in LAE proved to exist in Corol-
lary 14.

(1) (1) k = p∀v2(D(v1, v2) ⊃ F (v2))q Assumption(*)

(1)(2) (2) C
.
= ∀v1(v1 = k ⊃ ∀v2(D(v1, v2) ⊃ F (v2))) Assumption

(2) (3) (C ≡ ∀v2(D(k, v2) ⊃ F (v2)) (2) and Lemma 10

(4) D(k, d(k)) Corollary 14

(5) ∀v2(D(k, v2) ⊃ F (v2)) ⊃ (D(k, d(k)) ⊃ F (d(k))) logically valid

(6) ∀v2(D(k, v2) ⊃ F (v2)) ⊃ F (d(k)) (4)(5) logical inference

(2) (7) (C ⊃ F (d(k))) (3)(6) logic

(8) (8) F (d(k)) Assumption

(8) (9) (v2 = d(k) ⊃ F (v2)) (8) substitutivity of =

LECTURE 3 29

(10) ∀v2(D(k, v2) ⊃ v2 = d(k)) Corollary 14 and the fact
that d(x) is a function

(11) (D(k, v2) ⊃ v2 = d(k)) (10) ∀-Elimination

(8) (12) (D(k, v2) ⊃ F (v2)) (11)(9) transitivity of ⊃
(8) (13) ∀v2(D(k, v2) ⊃ F (v2)) (12) ∀-Introduction(**)
(8) (14) ∀v1(v1 = k ⊃ ∀v2(D(v1, v2) ⊃ F (v2))) (13) and Lemma 10
(8)(2) (15) C (14)(2)

(2) (16) (F (d(k)) ⊃ C) (8)(15) ⊃-Introduction

(2) (17) (C ≡ F (d(k))) (7)(16) ≡-Introduction
(1)(2) (18) d(k) = pCq (1)(2) (***)

(1)(2) (19) (C ≡ F (pCq)) (17)(18) substitutivity of =

(*)The formula F (v2) is F (vi/v2), subject to the proviso that vi is free for v2 in F ,
meaning that in F , vi does not occur within the scope of a quantifier which binds
the variable v2. If vi occurs within the scope of ∀v2 in F , change the variable of
quantification and the occurrence of v2 which it binds to a variable vj which doesn’t
occur in F , which results in a formula logically equivalent to F (vi).

(**)Justified since v2 is not free in the assumption F (d(k))

(***)The formula C is the quasi-substitution of the numeral for the Gödel number
of the formula into which it is being quasi-substituted, k, by (1) and (2), so by
Definition 28, pCq is the value of the function d(v1) applied to k. N

3.3 Properties of sequences of digits

The first tool we need in order to code sequences of numbers in LAE is to show that
we can express in LAE the relations that the base b notation of a number m begins,
or ends, or is part of the base b notation of a number n.

Definition 29 (x begins y) x begins y in base b notation iff the base b notation
of x is a (not necessarily proper) initial segment of the base b notation of y. We
write this as xBby.

Examples. In base 10, 2 begins 20, but note that in base 13, 2 (as it is written in
base 10, and in base 13) does not begin 20, since 20 base 10 is written 17 base 13.
Other examples (base 10): The numbers which written in base 10 are 7, 76, 760,
7600, 76007, 760074, and 7600748 all begin 7600748 in base 10. The last of these
examples points up the fact that every number begins itself, i.e. an initial segment
need not be a proper initial segment. Note that the number 0 does not begin any

LECTURE 3 30

number except itself, i.e. we don’t say that 0 begins 760748, even though 0760748
= 760748.

Definition 30 (x ends y) x ends y in base b notation, which we write as xEby,
if the base b notation of x is an end segment (not necessarily proper) of the base b
notation of y.

Examples. In base 10, the following numbers all end 7600748: 7600748, 600748,
748, 48, 8.

Given the notion of one number beginning another in a given base representation
and the notion of one number ending another in a given base, we can define the
notion of a number being part of another in a given base in terms of these two
notions:

Definition 31 (x is part of y) x is part of y, in base b notation, which we write
as xPby, if x ends some number that begins y.

Remark. Every number is a base b part of itself. Given a base b notation for x,
every proper sub-segment of the base b notation that does not begin with a 0 is
the base b notation of a number y that is a base b part of x. In base 10, the parts
of 2600748 are all the numbers that begin or that end it, and 60074, and all the
numbers that begin or end it, and 7.

Theorem 16 For any b ≥ 2 the following relations are expressible in LAE: (1)
xBby, (2) xEby, (3) xPby and, for any natural number n ≥ 2, (4) x1 ∗b . . . ∗b xnPby

Proof. We will prove a stronger result, which we need later, that these relations
not only are expressible in LAE, but also that this can be done using only bounded
quantifiers, i.e. that these are finitary properties of numbers.

1. If 0 does not occur in the base b numeral for y, then x begins y just in case there
exists z such that x ∗b z = y. However, if a zero or a string of zeros occurs in the
base b numeral for y and the base b numeral for x is an initial segment of the base
b numeral of y which ends just before the 0 or string of 0s in the base b numeral for
y or includes some but not all of those 0s, then the numeral of x has to be extended
by the remaining 0s before it can be concatenated with a numeral to result in the
numeral for y. The extension of the base b numeral for x by the required number of
0s is accomplished by multiplying x by b raised to the power of how many 0s need to
be appended. This condition can be expressed in terms of the previously expressed
notions Powb(w) and x ∗b z = y, as follows:

xBby iff (x = y ∨ (x ̸= 0 ∧ (∃z ≤ y)(∃w ≤ y)(Powb(w) ∧ (x · w) ∗b z = y)))

LECTURE 3 31

The bounds on the quantifiers hold from the fact that if z is part of y, then z ≤ y,
and any number of the form 10...0 in base b with a string of 0s in y is ≤ y.

2. xEby iff (x = y ∨ (∃z ≤ y)(z ∗b x = y)

For this case we don’t have any complications from the occurrence of zeros.

3. xPby iff (∃z ≤ y)(xEbz ∧ zBby)

4. x1 ∗b . . . ∗b xnPby iff (∃z ≤ y)(x1 ∗b . . . ∗b xn = z ∧ zPby). N

Lecture 4

Expressibility of properties of
sequence numbers in the language
LA; A formal system PAE for
arithmetic; an arithmetized proof
predicate for PAE; the weak form
of Gödel’s First Incompleteness
Theorem for PAE from Lecture 1
now proved; a weaker form of
incompleteness of PAE provd from
the undefinability of truth for LA
in LA

Wednesday 23 January 2019

32

LECTURE 4 33

4.1 Expressibility of properties of sequence num-

bers in the language LAE

4.1.1 Sequence numbers

Treating sequences of expressions as expressions with Gödel numbers is very conve-
nient. It requires making sequences of expressions into single expressions, which is
done by expanding the langauge of arithmetic by introducing a symbol to mark the
boundary between two successive expressions, for which we use ♯. We included ♯
among the primitive symbols of LAE (Lecture 1), which did not enter into the rules
for the formation of terms and formulas of LAE. When a sequence of expressions
has been concatenated with ♯, the whole sequence of expressions will itself be an
expression, which has a Gödel number.

Definition 32 (sequence number) x is a sequence number if it is the Gödel
number of an expression of the form ♯Ei1♯Ei2♯ . . . Eik♯ in LAE where each expres-
sion Eij does not contain the symbol ♯,

4.1.2 Coding of finite sequences of Gödel numbers

Recall the assignment of the first 12 digits of base 13 representation of natural
numbers to the 12 symbols that enter into formulas of the language LAE:

0 ′ () f ′ v ∼ ⊃ ∀ = ≤
1 0 2 3 4 5 6 7 8 9 η ϵ

Thus if a number is the Gödel number of a formula in LAE on the particular Gödel
numbering we have adopted, then the 13th digit, δ, will not occur in its base 13
representation. Call the class of such numbers Nδ.

A formal proof is a finite sequence of formulas, so to code a proof by a number it
suffices to find a way of coding finite sequences of numbers in Nδ. We code such a
sequence (a1, . . . , an) by the number δ ∗13 a1 ∗13 δ ∗13 a2 ∗13 δ ∗13 . . .∗13 δ ∗13 an ∗13 δ. In
future I shall mostly suppress the explicit notation of base 13 (or more generally base
b for any b ≥ 2) concatenation and write v1 = v2v3 for v1 = v2 ∗b v3, i.e. symbolize
the concatenation relation by concatenation itself.

There are several points about the concatenation relation that need to be borne
in mind. (1) It is a three place relation and not a two-place function. (2) It is
a relation between numbers, and numbers are expressible in base b notation for all
b ≥ 2 but are not in base b notation. The situation is similar to what it is in number

LECTURE 4 34

theory generally. When we compute with natural numbers we do so using their base
10 notation (or in the case of computers, base 2 notation). But when we prove
something about numbers what we prove is proved using properties of numbers that
are not specific to decimal notation, even if what is being proved specifically refers
to decimal notation, as in “if the digits of a number in its base 10 notation add up
to 9 then the number is divisible by 9”, which is proved from general properties of
the congruence relation and the fact that 10 ≡ 1 (mod 9).

Proposition 17 (sequence numbers) A natural number n is a sequence number
iff n = δa1δa2δ . . . δanδ for ai ∈ Nδ.

Proof. Immediate from the definition of sequence number above.

Proposition 18 The property of being a sequence number, Seq(v1), is expressible
in LAE.

Proof. The property of being a sequence number is expressible by the following
formula:

(δBv1 ∧ δEv1 ∧ δ ̸= v1∧ ∼ δδPv1 ∧ (∀v2 ≤ v1)(δ0v2Pv1 ⊃ δBv2))

The first four conjuncts characterize the required occurrences of the digit δ in the
base 13 representation of v1. The last conjunct rules out the occurrence of a string
of zeros of length greater than one as a number in sequence coded by a sequnce
number. The reason for this requirement is we want each sequences of numbers in
Nδ to be coded by a unique sequence number. The sequence (0) is coded by δ0δ.
But since 00 = 0, it would also be coded by δ00δ, and δ00δ ̸= δ0δ. N
Definition 33 For v1 a sequence number, we say that v2 is in v1, symbolized as
v2 ∈ v1, iff v2 is one of the numbers coded by v1

Proposition 19 v2 ∈ v1 is expressible in LAE.

Proof. v2 ∈ v1 iff (Seq(v1) ∧ δv2δPv1∧ ∼ δPv2). It is a necessary condition for
v2 ∈ v1 that δv2δPv1 but not sufficient since numbers of the form δa1δa2δ satisfy it;
the condition ∼ δPv2 rules out those cases. N

In expressing the condition that a number is the Gödel number of a proof in a formal
system we need to be able to express the condition that one part of a sequence
number occurs earlier in the sequence than another. We do this as follows.

Definition 34 v2 ≺
v1

v3 iff v1 is the sequence number of a sequence in which v2

and v3 occur and the first occurrence of v2 in the sequence is earlier that the first
occurrence of v3 in the sequence.

LECTURE 4 35

Proposition 20 The three-place relation v2 ≺
v1
v3 is expressible in LAE.

Proof. v2 ≺
v1
v3 iff (v2 ∈ v1 ∧ v3 ∈ v1 ∧ (∃v4 ≤ v1)(v4Bv1 ∧ v2 ∈ v4∧ ∼ v3 ∈ v4))

Note that the formulas v2 ∈ v1 and v3 ∈ v1 each contains the condition Seq(v1), so
we don’t need a separate conjunct Seq(v1). N

4.2 The formal system PAE for arithmetic

4.2.1 Formalization of first-order logic for PAE

We now begin the investigation of formal systems of arithmetic. We shall adopt the
system PAE used by Smullyan in [16]. PA stands for Peano Arithmetic, a standard
misnomer1. The subscript E signifies that in this system exponentiation is taken as
primitive, i.e. the term f′′′ is governed by its own axioms. In Lecture 5 we shall see
that exponentiation need not be taken as primitive, and that via coding of ordered
pairs of natural numbers the relation xy = z can be expressed in terms of zero,
successor, addition, and multiplication.

A formal language is first-order if its quantifiers range only over the objects in its
domain of interpretation and not over collections (pluralities) of those objects. A
formal language is second-order if it has quantifiers that range over pluralities of
objects in its domain of interpretation, possibly also over relations between objects
and/or functions from objects to objects. A theory is first-order if its formal language
is first-order. Formal systems of first-order logic are complete (which Gödel proved
in 1930, in his doctoral thesis, published as Gödel [4]–the incompleteness theorem
was his Habilitation thesis). There is no complete axiomatization of full second-order
logic. Accordingly, where we are interested in properties of what can, or cannot, be
proved in formal systems, we shall be concerned only with first-order systems. In
this course we will investigate properties of a number of different formal systems for
arithmetic.

Stipulation 1 (Completeness with respect to logical validity) All formal sys-
tems considered in this course are assumed to contain a complete axiomatization of
(classical) first-order logic with identity

1It was Dedekind who established the first axiomatization of arithmetic, in 1888, which Peano
took over in his publication a year later. Peano cites Dedekind 1888 as the source of his axioms.
It seems to have been Russell who introduced the misnomer Peano Arithmetic.

LECTURE 4 36

I now set out the logical axioms and rules of inference for our system PAE. The
axioms fall into two groups, for propositional logic and for predicate logic.

Group I Axioms for propositional logic. All instances of the following schemata:

L1 (F ⊃ (G ⊃ F))

L2 ((F ⊃ (G ⊃ H)) ⊃ ((F ⊃ G) ⊃ (F ⊃ H)))

L3 ((∼F ⊃ ∼G) ⊃ (G ⊃ F))

These three axiom schema for propositional logic, are standard. Axioms L1 and L2

are precisely the axioms required to prove the Deduction Theorem for propositional
logic, and with L3 and Modus ponens (introduced below), the system is complete
with respect to classical truth-functional validity.

Group II Axioms for predicate logic. All instances of the following schemata:

L4 (∀vi(F ⊃ G) ⊃ (∀viF ⊃ ∀viG))

L5 (F ⊃ ∀viF), provided vi does not occur in F .

L6 ∃vi vi = t, provided vi does not occur in t.

L7 (vi = t ⊃ (Y1 ⊃ Y2)), where vi is any variable, t is any term, Y1 is any atomic
formula in which vi occurs, and Y2 is obtained from Y1 by replacing one occurrence
of vi in Y1 by t;

The formulation of this axiom schema can be given a more primitively syntactic
specification, as follows:

(vi = t ⊃ (X1̂vîX2 ⊃ X1̂t̂X2)), where vi is any variable, t is any term, and X1

and X2 are any expressions such that X1̂vîX2 is an atomic formula.

Rules of inference

R1 From F and (F ⊃ G), infer G. [Modus Ponens]

R2 From F , infer ∀viF . [Generalization]

The axiomatization of first-order predicate logic by the Group II schemata is highly
unnatural in terms of establishing formulas as logically valid. Its virtue for us is that
it is easy to arithmetize, as we shall carry out in the next section, since it involves
no substitution of terms for free variables, which more natural axiomatizations of
predicate logic with identity do. Note that L6 strictly should be written ∼ ∀vi ∼

LECTURE 4 37

vi = t. To prove the following valid formulas from these schemata is non-trivial:
vi = vi, (vi = vj ⊃ vj = vi), (∀viF (vi) ⊃ F (t)) for t any term of LAE not containing
a variable that is quantified in F (vi) within the scope of which vi occurs. For proofs
of these formulas from these schemata see Donald Kalish and Richard Montague [10],
Lemmas 2, 3, and 8, pp. 85-87. The Group II axioms are impractical for use by a
person constructing a proof. For this reason, when it’s necessary to establish that
a particular formula is derivable in our system for arithmeitc, PAE and variants, I
shall show that it is derivable using the system of natural deduction in the notes on
First-Order Logic posted on the course webpage

4.2.2 The non-logical axioms of arithmetic for PAE

The non-logical axiom of arithmetic for PAE are in two groups, one consisting of
axioms characterising the non-logical symbols of LAE, the other the axiom schema
of arithmetical induction. The axioms for the four arithmetical operation of succes-
sor, addition, multiplication, and exponentiation, and the ordering relation on the
natural numbers are in pairs, corresponding to the base case and the inductive step
of definitions by recursion, plus an axiom stipulating that ≤ is linear.

Group III Axioms specific to each of the primitive non-logical symbols of
the language

N1 (v′1 = v′2 ⊃ v1 = v2)

N2 ∼ 0 = v′1

N3 (v1 + 0) = v1

N4 (v1 + v′2) = (v1 + v2)
′

N5 (v1 · 0) = 0

N6 (v1 · v′2) = ((v1 · v2) + v1)

N7 (v1 ≤ 0 ≡ v1 = 0)

N8 (v1 ≤ v′2 ≡ (v1 ≤ v2 ∨ v1 = v′2))

N9 (v1 ≤ v2 ∨ v2 ≤ v1)

N10 v01 = 0′

N11 v
v′2
1 = (vv21 · v1)

Group IV Axiom schema of mathematical induction

LECTURE 4 38

Group IV is all instances of (a version of) the axiom schema of induction. A usual
formulation of the induction schema is

(F (0) ⊃ (∀v1(F (v1) ⊃ F (v′1)) ⊃ ∀v1F (v1)))

Two formulas within this schema are generated by substitution, namely F (0) and
F (v′1), and for ease of arithmetization we want to use quasi-substitution instead of
substitution. We can’t use quasi-substitution directly on F (v1) to express F (v′1),
since the quasi-substituted term cannot contain the quantified variable of the quasi
substitution, i.e. in this case we would have ∀v1(v1 = v′1 ⊃ F (v1)), which contains
the refutable antecedent v1 = v′1, so it’s provable outright, as well as which it’s a
sentence, i.e. v1 does not occur free in it, so in no way equivalent to F (v′1). We could
change the variable in the auxiliary quantification to vi for some vi that does not
occur free in F (v1), i.e. ∀vi(vi = v′1 ⊃ F (vi)), which is logically equivalent to F (v′1).
But this involves substitution of the variable vi for all free occurrences of v1 in F ,
which would defeat the purpose of avoiding substitution. However, we can achieve
the desired equivalence by double use of quasi-substitution. First we use quasi-
substitution to obtain from F (v1) a formula logically equivalent to F (vi), namely
∀v1(v1 = vi ⊃ F (v1)) where vi is any variable that does not occur in F (v1). Then we
use another quasi-substitution to obtain a formula without any substitutions that
is logically equivalent to F (v′1), namely ∀vi(vi = v′1 ⊃ ∀v1(v1 = vi ⊃ F (v1))). We
abbreviate this formula as F [[v′1]]. This logical equivalence requires that vi does not
occur free in F (v1), but the sufficient condition that it does not occur at all in F (v1)
is easier to express in arithmetized syntax, and that’s the condition we take.

N12 (F [0] ⊃ (∀v1(F (v1) ⊃ F [[v′1]]) ⊃ ∀v1F (v1))),

where, for vi any variable that does not occur in F (v1), and F [[v
′
1]] is

∀vi(vi = v′1 ⊃ ∀v1(v1 = vi ⊃ F (v1))).

Recall that when we write a schematic formula F (v1), unless we stipulate otherwise,
variables other than v1 may occur free in it. These other free variables are referred
to as parameters.

Definition 35 (the system PAE) The system PAE consists of the logical axioms
of Group I and Group II, the logical rules of inference R1 and R2, and the non-logical
axioms of Group III and Group IV.

Definition 36 (a proof in PAE) A proof in PAE is a sequence of formulas each
one of which is either an axiom of PAE or follows from two earlier formulas in the
sequence by R1, or follows from an earlier formula in the sequence by R2.

Definition 37 (provable in PAE) A formula F of LAE is provable in PAE, sym-
bolized as PAE ⊢ F , if there exists a proof in PAE of which F is a member.

LECTURE 4 39

4.3 An arithmetized proof predicate for PAE

Each numbered paragraph in this section is both a definition of a property or relation
of numbers, and a proposition that this property or relation is expressible in LAE,
which is established by the formula that follows. Because it will be needed for later
results, we prove, in all but cases (4) and (6), a stronger result than is needed for
the weak form of Gödel’s first incompleteness theorem, namely that the expressing
formulas in LAE contain only bounded quantifiers. The quantifications in (4) and
(6) can also be bounded, but these cases are considerably more complicated. The
property of being the Gödel number of a provable formula requires one unbounded
existential quantifier.

Both for ease of reading and of typesetting, I will usually abbreviate the abbreviation
∗13 for base 13 concatenation by using concatenation itself, e.g. for vi ∗13 vj I will
write vivj. Note that on our arithmetization of LAE, we have, for example, pf′q =

pfq ∗13 p′q = 4 ∗13 5 = 4513 = 5710, which is denoted in LAE by the term 0

57︷︸︸︷
′ . . . ′.

(1) V ar(v1): v1 is the Gödel number of a variable.

Recall that a variable is an expression of the form v′′···′ , i.e. the variable symbol
followed by a one or more subscript symbols. We have stipulated that the Gödel
number of the variable symbol is 6 (base 13) and of the subscript symbol is 5 (base
13), and that the Gödel number of an expression is the base 13 number that results
from concatenating the base 13 digits assigned to the symbols in the expression in
their corresponding order. Hence a number is the Gödel number of a variable if and
only if its base 13 expression begins with a 6 followed by one or more 5s.

(∃v2 ≤ v1)((∀v3 ≤ v1)(v3P13v2 ⊃ 0′′′′′P13v3) ∧ v1 = 0′′′′′′ ∗13 v2)

In this formula I write out the formal numerals 0′′′′′ and 0′′′′′′ rather than abbreviating
them as 5 and 6, respectively, to bring out the fact that the relation 0′′′′′P13v3) is
between numbers, in this case between the number 5 (as we write it in base 10,
and also, as it happens, in base 13 notation) and some other number and not a
relationship between numerals, though the relation between numbers is determined
to hold or not by going from the number to its, in this case, base 13 representation.
The number required to exist by the quantification over the variable v2 is the Gödel
number of a string of subscripts, by the condition that the subscript symbol is a part
of every part of that expression. All of which is to say that when the formula V ar(v1)
is written in the primitive notation of LAE, the numbers in it will be expressed by
numerals, i.e. 0′′′′′ for 5 and 0′′′′′′ for 6, and similarly in the rest of the formulas
expressing arithmetized syntax.

LECTURE 4 40

(2) Num(v1): v1 is the Gödel number of a numeral, i.e. an expression of the form
0′...′

Pow13(v1)

(3) Seqt(v1): v1 is the Gödel number of a formation sequence for a term, i.e. a
sequence of expressions each one of which is either a variable or a numeral or the
result of applying one of the four functions of successor, addition, multiplication, or
exponentiation to an expression or expressions occurring earlier in the sequence, i.e.
of the form t′ or (t1f′ t2) or (t1f′′ t2) or (t1f′′′ t2).

(Seq(v1) ∧ (∀v2 ≤ v1)(v2 ∈ v1 ⊃ (V ar(v2) ∨ Num(v2) ∨ (∃v3 ≤ v1)(v3 ≺
v1
v2 ∧ v2 =

v30)∨(∃v3 ≤ v1)(∃v4 ≤ v1)(v3 ≺
v1
v2∧v4 ≺

v1
v2∧(v2 = 2v345v43∨v2 = 2v3455v43∨v2 =

2v34555v43)))))

(4) Tm(v1): v1 is the Gödel number of a term.

∃v2(Seqt(v2) ∧ v1 ∈ v2)

Note: The formula Seqt(v2) in (4) is obtained from the formula Seqt(v1) in (3) by
changing the free variable from v1 to v2. In changing the free variable in this way
corresponding changes of bound variables in Seqt(v1) must be made so that v1 is
free for v2 in a logically equivalent transform of Seqt(v1), e.g.

(Seq(v1) ∧ (∀v5 ≤ v1)(v5 ∈ v1 ⊃ (V ar(v5) ∨ Num(v5) ∨ (∃v3 ≤ v1)(v3 ≺
v1
v5 ∧ v5 =

v30)∨(∃v3 ≤ v1)(∃v4 ≤ v1)(v3 ≺
v1
v5∧v4 ≺

v1
v5∧(v5 = 2v345v43∨v5 = 2v3455v43∨v5 =

2v34555v43)))))

If we had given the formula in (4) as the logically equivalent formula ∃v5(Seqt(v5)∧
v1 ∈ v5), the only change needed to obtain Seqt(v5) from Seqt(v1) is to replace all
occurrences of v1 by v5.

Note: The formula in (4) above contains an initial unbounded existential quantifier.
This quantifier can be bounded by the correlate in arithmetized syntax of Problem
2 on Problem sheet 1, i.e. decidability of whether or not an expression is a term, but
it’s a delicate question in which languages, i.e. with what primitives, that bound can
be expressed by a term. We can live with it as an unbounded existential quantifier
since the proof predicate necessarily contains an unbounded existential quantifier,
and the unbounded existential quantifier of this formula will occur inside the scope
of that quantifier.

(5) AF (v1): v1 is the Gödel number of an atomic formula, i.e. of the form t1 = t2
or t1 ≤ t2 for t1, t2 terms.

LECTURE 4 41

(∃v2 ≤ v1)(∃v3 ≤ v1)(Tm(v2) ∧ Tm(v3) ∧ (v1 = v2ηv3 ∨ v1 = v2ϵv3))

(6) Seqf(v1): v1 is the Gödel number of a formation sequence for a formula, i.e. a
finite sequence of expressions each one of which is either an atomic formula or of
the form ∼ E for E occurring earlier in the sequence or of the form (Ei ⊃ Ej) for
Ei and Ej occurring earlier in the sequence or of the form ∀viE for vi any variable
and E occurring earlier in the sequence.

(Seq(v1) ∧ (∀v2 ≤ v1)(v2 ∈ v1 ⊃ (AF (v2) ∨ (∃v3 ≤ v1)(v3 ≺
v1
v2 ∧ v2 = 7v3) ∨ (∃v3 ≤

v1)(∃v4 ≤ v1)(v3 ≺
v1

v2 ∧ v4 ≺
v1

v2 ∧ v2 = 2v38v43) ∨ (∃v3 ≤ v1)(∃v4 ≤ v1)(v3 ≺
v1

v2 ∧ V ar(v4) ∧ v2 = 9v4v3))))

(7) Fm(v1): v1 is the Gödel number of a formula.

∃v2(Seqf(v2) ∧ v1 ∈ v2))

Note: The remark as at (4) above applies here also. We know by Problem 2 on
Problem sheet 1, that we can determine by a finite search whether an expression
is a formula, but it’s a delicate matter to determine in exactly what language of
arithmetic, i.e. with what primitives, this numerical quantifier can be bounded by
a term of the language.

(8) Ax(v1): v1 is the Gödel number of an axiom of PAE. There are seven schemata
of logical axioms L1 −L7 and eleven axioms of arithmetic N1 −N11 plus one axiom
schema of arithmetic N12 (Induction). We need formulas Li(v1) such that Li(v1) iff
v1 is the Gödel number of an axiom of form Li, and Ni(v1) such that Ni(v1) iff v1 is
the Gödel number of an axiom of form Ni. The property that v1 is the Gödel number
of an axiom of PAE is expressed by (L1(v1) ∨ . . . ∨ L7(v1) ∨N1(v1) ∨ . . . ∨N12(v1)).
Finding N12(v1) is given as a problem on Problem sheet 2. I will treat a couple of
cases from each of the other groups of axioms.

Logical axioms:

Group I

L1(v1): (∃v2 ≤ v1)(∃v3 ≤ v1)(Fm(v2) ∧ Fm(v3) ∧ v1 = 2v282v38v233)

L3(v1): (∃v2 ≤ v1)(∃v3 ≤ v1)(Fm(v2) ∧ Fm(v3) ∧ x = 227v287v3382v38v233)

Group II

L4(v1): (∃v2 ≤ v1)(∃v3 ≤ v1)(∃v4 ≤ v1)(Fm(v2) ∧ Fm(v3) ∧ V ar(v4) ∧ v1 =
29v42v28v33829v4v289v4v333)

L7(v1): (∃v2 ≤ v1)(∃v3 ≤ v1)(∃v4 ≤ v1)(∃v5 ≤ v1)(∃v6 ≤ v1)(∃v7 ≤ v1)(V ar(v2) ∧
Tm(v3) ∧ v6 = v4v2v5 ∧ AF (v6) ∧ v7 = v4v3v5 ∧ v1 = 2v2ηv382v68v733)

LECTURE 4 42

Group III

N1(v1): v1 is the Gödel number of the axiom N1, which in primitive notation is
(v′

′ = v′′
′ ⊃ v′ = v′′).

v1 = 2650η6550865η6553.

N7(v1): v1 is the Gödel number of the axiom N7. To compute the Gödel number of
N7 we must write it in primitive notation. This requires expressing ≡ in terms of ∼
and ⊃, by the truth-functional definitions: ((A ≡ B) =df (A ⊃ B) ∧ (B ⊃ A)) and
((C ∧D) =df

∼(C ⊃ ∼D)), which yields ((A ≡ B) =df ∼((A ⊃ B) ⊃ ∼(B ⊃ A))).

So N7 = ∼((v′ ≤ 0 ⊃ v′ = 0) ⊃ ∼(v′ = 0 ⊃ v′ ≤ 0))

v1 = 72265ϵ1865η138765η18265ϵ133

(9) PrfPAE
(v1): v1 is the Gödel number of a proof in PAE, i.e. a sequence of

formulas each one of which is either an axiom of PAE, or is the result of applying R1

[Modus Ponens] to two formulas occurring earlier in the sequence, or is the result of
applying R2 [Generalization] to a formula occurring earlier in the sequence.

(Seq(v1) ∧ (∀v2 ≤ v1)(v2 ∈ v1 ⊃ (Ax(v2) ∨ (∃v3 ≤ v1)(∃v4 ≤ v1)(v3 ≺
v1

v2 ∧ v4 ≺
v1

v2 ∧ v4 = 2v38v23) ∨ (∃v3 ≤ v1)(∃v4 ≤ v1)(V ar(v3) ∧ v4 ≺
v1
v2 ∧ v2 = 9v3v4)))))

(10) ProvPAE
(v1, v2): v2 is the Gödel number of a proof of the formula with Gödel

number v1.

ProvPAE
(v1, v2) ≡ (PrfPAE

(v2) ∧ v1 ∈ v2))

(11) PrPAE
(v1): v1 is the Gödel number of a formula in the language LAE that is

provable in PAE.

∃v2ProvPAE
(v1, v2).

Theorem 21 (Arithmetical proof relation) The two place relation between num-
bers m and n given by the condition that n is the Gödel number of a proof in PAE

of the formula whose Gödel number is m is expressible in LAE.

Proof. The formula ProvPAE
(v1, v2) in (10) expresses “Ev2 is a proof of Ev1”. This

is evident from this formula and (1) - (9). N
Corollary 22 (Arithmetical proof predicate) The property of a number that it
is the Gödel number of a formula provable in PAE is expressible in LAE,

Proof. PAE ⊢ En if and only if ∃v2ProvPAE
(n, v2) is true. N

LECTURE 4 43

Remark: As the construction of the proof predicate for PAE shows, arithmetization
by assignment of digits to symbols and of concatenation of corresponding sequences
of digits (numbers in the given base notation) to concatenation of sequences of
symbols (expressions) makes the correspondence between formal expressions and
numbers, which Hilbert recognized (see quotation in the first lecture) completely
direct. What Gödel achieved, going beyond Hilbert’s insight, was to show that the
formal syntax of strings of symbols by which a formal system of proof is established
corresponds exactly with arithmetically definable properties of the corresponding
numbers.

4.4 The weak form of Gödel’s First Incomplete-

ness Theorem from Lecture 1 has now been

established for PAE

We have now established hypotheses (i) and (ii) of Theorem 1 for PAE in the
language LAE, and so are able to prove

Theorem 23 (weak form of Gödel’s First Incompleteness Theorem for PAE)
There is a sentence G in LAE such that, if every sentence provable in PAE is true,
PAE 0 G, G is true, and PAE 0 ∼G.

Proof. By the immediately previous result, Corollary 22, there is a formula in LAE,
PrPAE

(v1), that expresses the property of being the Gödel number of a formula
derivable in PAE, which establishes hypothesis (i) of Theorem 1. By the Diagonal
Lemma (Theorem 15) applied to ∼ PrPAE

(v1), there is a sentence G such that the
sentence (G ≡ ∼PrPAE

(pGq))) in LAE is true. This establishes hypothesis (ii) of
Theorem 1. Hence on the assumption that every sentence provable in PAE is true,
i.e. hypothesis (iii) of Theorem 1, the proof of Theorem 1 establishes that PAE 0 G,
G is true, and PAE 0 ∼G. N

4.5 A weaker form of incompleteness of PAE from

the undefinability of truth for LAE in LAE

Theorem 24 (Tarski’s Theorem for LAE) The set of Gödel numbers of the sen-
tences of LAE that are true is not expressible in LAE.

Proof. Exercise (Problem sheet 1 problem 4) N

LECTURE 4 44

Tarski’s Theorem has as an immediate corollary an extremely weak form of Gödel’s
First Incompleteness Theorem, extremely weak because it establishes, on the as-
sumption that every provable sentence is true, the existence of a true sentence which
is unprovable in PAE and whose negation is unprovable, without providing an in-
stance of such a sentence.

Theorem 25 (a very weak form of incompleteness theorem) If every sentence
provable in PAE is true, then there must be a sentence which is true but unprovable
in PAE and whose negation is unprovable.

Proof. If every provable sentence is, by hypothesis, true, and every true sentence is,
by assumption (as the basis for an argument by reductio ad absurdum), provable,
then the set of Gödel numbers of true sentence in LAE coincides with the set of
Gödel numbers of sentences provable in LAE. But this would mean that the set
of Gödel numbers of true sentence in LAE is expressible in LAE by the formula
PrPAE

(v1), which would contradict Tarski’s Theorem. So the assumption that every
true sentence is provable is refuted, i.e. there is a true unprovable sentence. Since
the negation of a true is false, the hypothesis that every every provable sentence is
true tells us that the negation of this true unprovable sentence is not provable. N
Note that this argument for incompleteness via Tarski’s theorem is highly inef-
ficient since it does not generate a specific true unprovable sentence, but at the
same time requires all the work by which to generate a particular true unprovable
sentence, namely the Diagonal Lemma, needed in proving Tarski’s theorem, and
the arithmetical proof predicate in order to establish that truth and proof do not
coincide.

Lecture 5

The system PA, with symbols for
zero, successor, addition,
mutiplication, and less than or
equals as primitive; Σ0 and
Σ1-formulas and relations; a
Σ0-coding of finite sets of ordered
pairs; exponentiation, and all
primitive recursive functions are
∆1-expressible in the language of
PA

.

Monday 28 January 2019

45

LECTURE 5 46

5.1 The system PA, with zero, successor, addi-

tion, multiplication, and less than or equals

as primitive

Definition 38 (the system PA) The language LA for PA is obtained from the
language LAE for PAE by dropping the condition in the definition of terms for LAE,
Definition 12, that if t1 and t2 are terms, then (t1f′′′ t2) is a term, which correspond-
ingly removes from formulas of the language LE any expressions that contain the
expression f′′′ (without having to make any change to Definition 15). The axioms
of PA are obtained from those of PAE by dropping axioms N10 and N11 (which are
not formulas in the language LA).

By very simple modification of the construction of an arithmetized proof predicate
for PAE in the language LAE, given in Section 4.3, we obtain an arithmetized proof
predicate for PA in LAE. By showing that exponentiation is expressible by LA, we
establish the existence of an arithmetized proof predicate for PA in LA.

Theorem 26 (proof predicate for PA in LAE) There are formulas PrfE
PA(v1),

ProvEPA(v1, v2), and Pr
E
PA(v1) in the language LAE that express the property of being

the Gödel number of a proof sequence for PA, the relation of being the Gödel number
of a formula that occurs in the proof sequence coded by a given number, and the
property of being the Gödel number of a theorem of PA.

Proof. We show this by modifying the constructions for PAE in Theorem 21 and
Corollary 22. We drop the disjunct corresponding to term formation by the func-
tion expression f′′′ , i.e. v2 = 2v34555v43, so that Seqt(v1) is (Seq(v1) ∧ (∀v2 ≤
v1)(v2 ∈ v1 ⊃ (V ar(v2) ∨ Num(v2) ∨ (∃v3 ≤ v1)(v3 ≺

v1
v2 ∧ v2 = v30) ∨ (∃v3 ≤

v1)(∃v4 ≤ v1)(v3 ≺
v1
v2 ∧ v4 ≺

v1
v2 ∧ (v2 = 2v345v43 ∨ v2 = 2v3455v43))))). In the for-

mula Ax(v1) that expresses “Ev1 is an axiom of PAE” (p. 41) the disjuncts N10(v1)
and N11(v1) are dropped. With these modifications, the formulas for PrfPAE

(v1),
ProvPAE

(v1, v2), and PrPRE
(v1) on p. 42 are transformed to corresponding formulas

PrfE
PA(v1), Prov

E
PA(v1, v2), and Pr

E
PA(v1). N

5.2 Σ0-formulas

Definition 39 (bounded quantifiers) For vi any variable and t a term which is
either a numeral n or a variable vj j ̸= i, an expression in either of the forms
∀vi(vi ≤ t ⊃ F) or ∃vi(vi ≤ t ∧ F) is called bounded quantification, abbreviated as

LECTURE 5 47

(∀vi ≤ t)F and (∃vi ≤ t)F , respectively, and the expressions (∀vi ≤ t), and (∃vi ≤ t)
are called bounded quantifiers.

Remark. The restriction that the variable vj be distinct from the variable vi when
the bound on the quantification is a variable is essential, since ∀vi(vi ≤ vi ⊃ F)
is logically equivalent to ∀viF , which is unbounded quantification. Also, note that
bounded existential quantifications are, in primitive notation, formulas of the form
∼ ∀vi ∼ (vi ≤ n ∧ F) and ∼ ∀vi ∼ (vi ≤ vj ∧ F).

Definition 40 (Σ0-formulas) (a) Every atomic formula of the language LA of PA
is a Σ0-formula, i.e. for any terms t1 and t2, t1 = t2 and t1 ≤ t2 are Σ0-formulas.

(b) If F is a Σ0-formula, then ∼F is a Σ0-formula.

If F and G are Σ0-formulas, then (F ⊃ G) is a Σ0-formula.

(c) If F is a Σ0-formula, vi any variable, and t either a variable distinct from vi or
a numeral, then (∀vi ≤ t)F , i.e. ∀vi(vi ≤ t ⊃ F), is a Σ0-formula.

Definition 41 (a formula is Σ0) If a formula F is provably equivalent in PA to
a Σ0-formula, we say that F is Σ0.

Corollary 27 (of Definition 40) For F any Σ0-formula, vi any variable, and t
either a variable different from vi or a numeral, (∃vi ≤ t)F , i.e. ∃vi(vi ≤ t ∧ F), is
Σ0.

Proof. By (b), ∼ F is a Σ0-formula. Then by (c), ∀vi(vi ≤ t ⊃∼ F) is a Σ0-formula.
Hence by (b) again, ∼ ∀vi(vi ≤ t ⊃∼ F) is a Σ0-formula, and this formula is logically
equivalent, and hence provably equivalent in PA, to ∼ ∀vi∼∼(vi ≤ t ⊃∼ F), which
is abbreviated as ∼ ∀vi ∼ (vi ≤ t ∧ F), which is abbreviated as ∃vi(vi ≤ t ∧ F),
which is abbreviated as (∃vi ≤ t)F is Σ0. N
Proposition 28 (Decidability of Σ0-sentences) We can effectively decide (com-
pute) the truth or falsity of each Σ0-sentence, i.e. closed Σ0-formula.

Proof. By induction over the recursive definition of Σ0-formulas, corresponding to
the clauses (a), (b), and (c) of the definition:

(a) A closed term is computable to a numeral (by Proposition 6), and sentences of
the form m = n and m ≤ n are immediately decidable.

(b) Given the truth value of F and G, we can compute the truth value of ∼ F and
of (F ⊃ G).

(c) Suppose vi occurs free in F . Then ∀vi(vi ≤ n ⊃ F (vi)) is equivalent to (F (0) ∧
. . .∧F (n)). By induction hypothesis each conjunct is decidable, so the conjunction
is decidable.

LECTURE 5 48

Suppose vi is not free in F . Suppose F is true. Then (H ⊃ F) is true for any H,
so ∀vi(vi ≤ n ⊃ F) is true. Suppose F is false. Since 0 ≤ n is true, (0 ≤ n ⊃ F) is
false, so ∀vi(vi ≤ n ⊃ F) is false. N

For reasons that will be apparent shortly, we also label Σ0-formulas as Π0 and as
∆0.

5.3 Σ1 and Π1-formulas; Σ1, Π1, and ∆1-relations

Definition 42 (Σ1-formula) A Σ1 formula is any formula of the form ∃viF where
F is a Σ0-formula.

Definition 43 (Σ1-relation) A relation R ⊆ Nk is Σ1 iff there is a Σ1-formula
G(v1, . . . , vk) that expresses R, i.e. such that for each k-tuple (n1, . . . , nk), G(n1, . . . nk)
is true iff (n1, . . . , nk) ∈ R.

Note that a Σ1-formula begins with one unbounded existential quantifier. (It may
contain other quantifiers so long as they are bounded.)

Proposition 29 Every Σ0-formula is logically, and hence provably, equivalent to a
Σ1-formula.

Proof. For vi not free in F , (F ≡ ∃viF) is logically valid (on our assumption that
all domains of interpretation are non-empty), and hence provable in every system
complete with respect to first-order logical validity. N
Definition 44 (Π1-formula) A Π1 formula is any formula of the form ∀viF where
F is a Σ0-formula.

Definition 45 (Π1-relation) A relation R ⊆ Nk is Π1 iff there is a Π1-formula
G(v1, . . . , vk) that expresses R, i.e. such that for each k-tuple (n1, . . . , nk), G(n1, . . . nk)
is true iff (n1, . . . , nk) ∈ R.

Lemma 30 (Σ1 and Π1 are dual to each other) The negation of a Σ1-formula
is Π1, and the negation of Π1-formula is Σ1.

Proof. By logic and the fact that the negation of a Σ0-formula is Σ0. N
Definition 46 (∆1 relations) A relation is ∆1 if and only if it is both Σ1 and Π1.

Remark. There is no such thing as a ∆1-formula, i.e. ∆1 is not a syntactic form,
but we shall sometimes say of a formula with is equivalent both to a Σ1-formula and
to a Π1-formula that it is ∆1.

LECTURE 5 49

Corollary 31 A relation is ∆1 iff it is Σ1 and its complement is Σ1.

Proof. Immediate from Definition 46 and Lemma 30. N

Remark. The definitions of Σ1 and Π1-formulas, and by the Remark above also
∆1-formulas, include the case of formulas with no free variables, i.e. sentences.
The definitions of Σ1, Π1, and ∆1-relations include the case of 0-ary relations, i.e.
propositions, and 1-ary relations, i.e. sets.

Example of a ∆1-proposition: The proposition expressed by the equivalent sen-
tences ∃v1(v1 = n ∧ F (v1)) and ∀vi(vi = n ⊃ F (vi)), where v1 is the only free
variable in a Σ0-formula F (v1). However, as we have seen, these sentences are logi-
cally equivalent to F (n), which is Σ0 for F (v1) Σ0. It is an important fact that there
are ∆1 relations, including 0-ary relations, that are ∆1 and not Σ0, but this is not
a fact we can prove on the basis of results so far obtained.

Definition 47 (a function is Σ1, Π1, ∆1) For f an n-ary function from Nn to
N, f is Σ1 iff the n + 1-ary relation f(v1, . . . , vn) = vn+1 is Σ1. Similarly for Π1

and ∆1.

Lemma 32 If a total function f : Nn → N is Σ1, then it is ∆1.

Proof. We show that the relation f(v1, . . . , vn) ̸= vn+1 is also Σ1, from which it
follows that the relation f(v1, . . . , vn) = vn+1 is ∆1. By the hypothesis that f is Σ1,
there is a Σ0-formula F (v1, . . . , vn, vn+1, vn+2) such that ∃vn+2F (v1, . . . , vn, vn+1, vn+2)
expresses the relation f(v1, . . . , vn) = vn+1. Then, since f is total so that, for every
v1, . . . , vn, there is vn+1 such that f(v1, . . . , vn) = vn+1, the relation f(v1, . . . , vn) ̸=
vn+1 is expressed by the condition ∃vn+3∃vn+2(F (v1, . . . , vn, vn+3, vn+2)∧ ∼ vn+3 =
vn+1). This condition is equivalently expressed by

∃vn+4(∃vn+3 ≤ vn+4)(∃vn+2 ≤ vn+4)(F (v1, . . . , vn, vn+3, vn+2)∧ ∼ vn+3 = vn+1)

By Definition 40,

(∃vn+3 ≤ vn+4)(∃vn+2 ≤ vn+4)(F (v1, . . . , vn, vn+3, vn+2)∧ ∼ vn+3 = vn+1)

is a Σ0-formula. Hence the preceding formula is Σ1. N

5.4 Arithmetization of the syntax of PA in the

language of PA

We have already seen that for any base b ≥ 2, concatenation to base b, x ∗b y = z, is
expressible in LAE. We now show that for base p for p a prime number, concatenation

LECTURE 5 50

to base p is expressible in LA, and indeed that it is Σ0-expressible in this language.
This result is based on an observation by John Myhill (see Smullyan, p. 43) that
the property of a number x that it is a power of a given prime p can be expressed
without using the exponentiation function, since x is a power of the given prime p
if and only if every proper divisor of x is divisible by p.

Lemma 33 For every prime number p the following conditions are Σ0.

1. x | y —x divides y.

2. Powp(x) —x is a power of p.

3. pℓp(x) = y —y is the smallest positive power of p greater than x.

Proof.

1. x | y if and only if (∃z x ·z = y∧y ̸= 0). We write this in the primitive notation of
LA by ∼(∼∀v′′′∼ (v′f′′v′′′) = v′′ ⊃ v′′ = 0) (see problem 3(a) on Problem sheet 1).

2. (∀z ≤ x)((z | x ∧ z ̸= 1) ⊃ p | z).

3. (Powp(y) ∧ y > x ∧ y > 1 ∧ (∀z < y) ∼ (Powp(z) ∧ z > x ∧ z > 1). N
Lemma 34 (base p concatenation is Σ0) For any prime p, the relation x∗p y =
z is Σ0.

Proof.

x ∗p y = z iff pℓp(y) + y = z iff (∃v1 ≤ z)(v1 = pℓp(y) ∧ ((x · v1) + y) = z).

The result follows by part 3 of Lemma 33. N
Lemma 35 The relation xPby (‘x is part of y’) for base b a prime number is Σ0.

Proof. By Theorem 16, Lemma 33 and Lemma 34. N

5.5 A Σ0-coding of finite sets of ordered pairs of

numbers

We now establish that the relation xy = z can be expressed in LA, i.e. without
exponentiation. The key to this result is a Σ0-coding of finite sets of ordered pairs
of numbers. This was proved by Gödel in his 1931 paper, for which he used the
Chinese Remainder Theorem, on solving simultaneous congruences. Given our dif-
ferent Gödel numbering, we obtain this result without using the Chinese Remainder
Theorem.

LECTURE 5 51

Remark: This coding of finite sets of ordered pairs of numbers requires a more
subtle idea than the coding of sequences of Gödel numbers of formulas. For sequence
numbers we could simply add a new symbol, for which we chose ♯, to mark the
boundary between expressions in the sequence, and then use our Gödel numbering
to code the resulting sequence of symbols. For coding finite sets of pairs of numbers,
we can’t add a new symbol to mark the boundaries between them since any such
symbol would have to be coded by a number, and that number could be among
those in the ordered pairs. Instead, we have to look at the particular finite set of
ordered pairs of numbers to find a number which for those numbers can function as
a boundary, in such a way that from the number coding the set of ordered pairs,
we can determine what the boundary number is, and thereby decode what numbers
are in the ordered pairs.

Theorem 36 (Σ0-coding of finite sets of ordered pairs) There is a Σ0-formula
K(v1, v2, v3) such that

1. For any finite set of ordered pairs of natural numbers (a1, b1), (a2, b2), . . . , (ar, br),
there is a number k such that for any numbers m and n, K(m,n, k) holds if and
only if (m,n) is one of the pairs (a1, b1), (a2, b2), . . . , (ar, br).

2. For any numbers v1, v2, v3, if K(v1, v2, v3) holds, then v1 ≤ v3 and v2 ≤ v3.

Proof. We need to describe two things which are dependently related to each other:
a process whereby a set of ordered pairs of numbers (a1, b1), (a2, b2), . . . , (ar, br) is
coded by a number k, and a formula K(v1, v2, v3) whereby, given a code number k,
the set of ordered pairs is decoded.

(1) Coding. By a frame number we shall mean a number whose numeral in a specified
base, in our case 13, is of the form 2t2 where t is a string of 1s (this idea goes back to
W.V. Quine, “Concatenation as a basis for arithmetic”, Journal of Symbolic Logic
11 (1946), pp. 105-114; see Smullyan p. 45). The condition that the base b numeral
for x is a string of 1s, which we shall abbreviate as 1b(x), is expressible by the
condition, (∀y ≤ x)(yPbx ⊃ 1Pby). Examples: 110(11110), but ∼ 110(11113) since
11113 = 18310, which also means that 113(18310).

Let θ be a finite sequence of ordered pairs, (a1, b1), (a2, b2), . . . , (ar, br), and let f be
any frame number that has a longer string of 1s in it than the longest string of 1s
that occurs in any of the numbers a1, b1, . . . , ar, br. The code k of θ with respect to
f is the number ffa1fb1ffa2fb2ff . . . ffarfbrff .

Note that for given θ, there are infinitely many frame numbers that have a longer
string of 1s in them than the longest strings of 1s that occur in any of the numbers
in θ, so there are infinitely many k that code θ.

(2) Decoding We call x a maximal frame in y if x is a frame number, x is part of

LECTURE 5 52

y, and x is as long as any frame that is part of y. This relation is expressed by the
following formula, which we will label MF (x, y):

(xPy ∧ (∃z ≤ y)(1(z) ∧ x = 2z2∧ ∼ (∃w ≤ y)(1(w) ∧ 2zw2Py))).

By Lemmas 34 and 35, MF (x, y) is Σ0.

Note that if y has a frame number in it, it has a maximal frame number, since the
length of frame numbers in y is bounded by the length of y. Since frame numbers
whose numerals in the given base are of the same length are equal, any number
which contains a frame number contains a unique maximal frame number.

Having expressed the notion of a maximal frame, we are then able to define a formula
K(v1, v2, v3) with which to decode the ordered pairs coded by the process specified
in (1).

K(v1, v2, v3) =df

(∃v4 ≤ v3)(MF (v4, v3) ∧ v4v4v1v4v2v4v4Pv3∧ ∼ v4Pv1∧ ∼ v4Pv2).

By Lemmas 34 and 35, the formula K(v1, v2, v3) is Σ0.

Let us suppose that the sequence of ordered pairs (a1, b1), (a2, b2), . . . , (ar, br) has
been coded by the number k using the above procedure. The frame number f
chosen for the coding occurs in k, and will be a maximal frame number for k since
the string of 1s in f is longer than any strings of 1s from the ai and bi. As noted
above, it is unique. Having recovered f from k, we can then decode each of the pairs
of numbers coded in k.

The second clause of the theorem, that for any numbers v1, v2, v3, if K(v1, v2, v3),
then v1 ≤ v3 and v2 ≤ v3, holds since the condition v4v4v1v4v2v4v4Pv3 immediately
implies that v1 < v3 and v2 < v3, so a fortiori v1 ≤ v3 and v2 ≤ v3. N

Note that there is an error in Smullyan’s proof (p. 45), at the point when he
says, let f be any frame number that is longer than any frame which is part of
any of the numbers a1, b1, . . . , ar, br. The problem is if one or more of the ai or bi
is a string of 1s that is longer than any string of 1s occurring in a frame number
in one of the numbers being coded. Let c be the longest such number and let f
be the frame number specified by Smullyan. In this case the maximal frame in
ffa1fb1ffa2fb2ff . . . ffarfbrff is 2c2 and not f , and the decoding fails.

LECTURE 5 53

5.6 The relation xy = z is ∆1-expressible in the

language of PA

Theorem 37 (exponentiation is Σ1) The relation xy = z is Σ1.

Proof. The relation xy = z holds if and only if there is a set of ordered pairs
{(0, 1), (1, x), (2, x2), . . . , (y, xy)} and (y, z) is a member of that set. Given the coding
and Σ0-decoding of finite sets of ordered pairs of numbers by Theorem 36, we can
express this by the formula ∃w(K(y, z, w) ∧ (∀u ≤ w)(∀v ≤ w)(K(u, v, w) ⊃ ((u =
0 ∧ v = 1) ∨ (∃r ≤ w)(∃s ≤ w)(K(r, s, w) ∧ u = r′ ∧ v = s · x))). The bounds in the
quantifiers in this formula are justified by part 2. of Theorem 36. Since K(v1, v2, v3)
is Σ0, this whole formula is Σ1. N
Corollary 38 (exponentiation is ∆1) The relation xy = z is ∆1.

Proof. Immediate from Theorem 37 by Lemma 32. N

A stronger result than Corollary 38 is true, namely:

Theorem 39 (exponentiation is Σ0) The relation xy = z is Σ0.

Proof. The proof is too complicated to give here. See Petr Hájek and Pavel Pudlák,
Metamathematics of First-Order Arithmetic, Springer, Berlin, 1993, Chapter V sec-
tion 3 part (c) (pp. 299-303), which has as its aim to construct a Σ0-formula
Exp(x, y, z) and to prove in IΣ0, i.e. PA with Induction restricted to Σ0-formulas,
the following formulae:

(c.1) Exp(x, 0, z) ≡ z = 1

(c.2) Exp(x, y + 1, z) ≡ ∃v(Exp(x, y, v) ∧ z = v · x),

from which it follows (Lemma 3.8) that Exp(m,n, k) ≡ mn = k. N

5.7 Primitive recursive functions

The primitive recursive functions, which include addition, multiplication, and expo-
nentiation, are a natural class of effectively computable total functions. The proof
of Theorem 39 for exponentiation does not generalize to other primitive recursive
functions, but the proof of Theorem 37 with Corollary 38 does generalize.

Definition 48 (primitive recursive functions) This definition is given in a lan-
guage LAPR (the language of arithmetic for primitive recursive functions) which

LECTURE 5 54

contains the symbols 0 and ′ and variables and numerals as for LA, and infinitely
many function symbols for each arity, i.e. for each number k and r, there is a k-ary
function symbol fk

r such that fk
r (v1, . . . , vk) = vk+1 is a well-formed formula. To

reduce clutter we may write different function symbols fr1 and fr2 with other letters,
for example g and h. The definition is by recursion:

Basis: The following explicitly defined functions are primitive recursive:

S(v1) = v′1

C(v1) = 0

For each i ≥ 1 and each j such that 1 ≤ j ≤ i, P i
j (v1, . . . , vj, . . . vi) = vj (Projection

Functions)

Recursion: Primitive recursive functions are generated from given primitive recur-
sive functions by the following two operations:

Composition: Given a primitive recursive function fk
r (v1, . . . , vk) and k-many t-ary

primitive recursive functions gtr1(v1, . . . vt), . . . , g
t
rk
(v1, . . . vt), then

h(v1, . . . , vt) = fk
r (g

t
r1
(v1, . . . vt), . . . , g

t
rk
(v1, . . . vt)) is a primitive recursive function.

Primitive recursion: Let fk(v1, . . . , vk) and gk+2(vk+1, vk+2, v1, . . . , vk) be primitive
recursive functions, then the function hk+1(vk+1, v1, . . . , vk) such that

hk+1(0, v1, . . . , vk) = fk(v1, . . . vk), and

hk+1(S(vk+1), v1, . . . , vk) = gk+2(vk+1, h(vk+1, v1, . . . , vk), v1, . . . , vk)

is a primitive recursive function.

Theorem 40 (primitive recursive functions are ∆1) Every primitive recursive
function fk

r (v1, . . . vk) = vk+1 is ∆1.

Proof (sketch) By recursion over the recursive definition of primitive recursive func-
tions, arithmetizing the conditions for the definition of a primitive recursive function
by one of the clauses in the definition of primitive recursive functions in terms of
the Σ0-formula K(v1, v2, v3) from Theorem 36. N

5.8 General recursive functions

The most general notion of computable function, which includes the primitive recur-
sive functions but goes beyond them, is that of general recursive function. We add to
primitive recursion the use of the µ-operator, where for a Σ0-formula F (v1, . . . , vk, vk+)),

LECTURE 5 55

µvk+1F (v1, . . . , vk, vk+1) is the minimum vk+1 such that F (v1, . . . , vk, vk+1). The
µ-operator can be used to compute a general recursive function f(v1, . . . , vk) =
µvk+1F (v1, . . . , vk, vk+1). Whether or not such an f is defined at (v1, . . . , vk) de-
pends on whether or not ∃vk+1F (v1, . . . , vk, vk+1), which is not decidable. Even if
we know that ∀v1 . . . ∀vk∃vk+1F (v1, . . . , vk, vk+1), i.e. that f is total, we don’t in
advance how many steps are required for the computation of F for given arguments,
unlike for primitive recursive functions, for which we know from the construction
of the function how long each computation will take. All of this shows how much
beyond primitive recursion general recursion goes. Even so, general recursion is ex-
pressible in LA, the following theorem, which we won’t prove in this course, as it’s
not needed for our results.

Theorem 41 A function is general recursive if and only if it is ∆1.

Lecture 6

Every Σ-formula is provably
equivalent to a Σ1-formula; the
arithmetized proof predicate for
PA is Σ1; the arithmetical
hierarchy; the notions of
Σ0-completeness and
Σ1-completeness

Wednesday 30 January 2019

6.1 Σ-formulas

Terminology: We define a class of formulas Σ which extends the class of formulas
that are Σ1 according to Definition 42 to all formulas provably equivalent in PA to a
Σ1-formula. We will often say of a formula in Σ that it is Σ1, rather than the more
ponderously precise statement that it is provably equivalent in PA to a Σ1-formula.
We justify this use of terminology by sketching here a proof that every formula in
Σ is provably in PA equivalent to a Σ1-formula.

Definition 49 (Σ-formula) Base: Every Σ1-formula is a Σ-formula.

56

LECTURE 6 57

Recursion: 1. If F is a Σ-formula, then for any variable vi, the formula ∃viF is a
Σ-formula.

2. For any Σ-formulas F and G, (F ∨G) and (F ∧G) are Σ-formulas.

3. For any Σ0-formula F and Σ-formula G, (F ⊃ G) is a Σ-formula.

4. If F is a Σ-formula, then for any distinct variables vi and vj, (∀vi ≤ vj)F is a
Σ-formula, and for any number n, (∀vi ≤ n)F is a Σ-formula.

5. If F is a Σ-formula, then for any distinct variables vi and vj, (∃vi ≤ vj)F is a
Σ-formula, and for any number n, (∃vi ≤ n)F is a Σ-formula.

To show that every Σ-formula is provably equivalent in PA to a Σ1-formula we
prove the following five lemmas, corresponding to the five recursion clauses in the
definition of a Σ-formula.

Lemma 42 PA ⊢ (∃vj∃viF (vi, vj) ≡ ∃vk(∃vj ≤ vk)(∃vi ≤ vk)F (vi, vj)).

Proof. Right to left is logically valid, so provable in PA. Left to right is provable
in PA using N9 (v1 ≤ v2 ∨ v2 ∨ v1). N
Lemma 43 (a) PA ⊢ ((∃viF (vi) ∨ ∃vjG(vj)) ≡ ∃vk(F (vk) ∨ G(vk))), for vk any
variable substitutable into F and G.

(b) PA ⊢ ((∃viF (vi) ∧ ∃vjG(vj)) ≡ ∃vi∃vj(F (vi) ∧ G(vj))), on the assumption,
without loss of generality, that vi does not occur free in G and vj does not occur free
in F .

Proof. (a) This equivalence is logically valid (Problem sheet 0 problem 2(a)), hence
provable in PA.

(b) This equivalence is logically valid, and hence provable in PA. N
Lemma 44 For F a formula in which vi does not occur free,
PA ⊢ ((F ⊃ ∃viH(vi)) ≡ ∃vi(F ⊃ H(vi))).

Proof. This equivalence is logically valid, and hence provable in PA. N
Lemma 45 PA ⊢ ((∀vj ≤ vk)∃viR(vi, vj) ≡ ∃vr(∀vj ≤ vk)(∃vi ≤ vr)R(vi, vj)). N
Proof. Right to left is logically valid, and hence provable in PA. The following is an
informal argument that the left to right implication is true in the natural numbers:
There are finitely many vj ≤ vk. If (∀vj ≤ vk)∃viR(vi, vj), then there are finitely
many minimum vi such that R(vi, vj) for vj ≤ vk. Among finitely many natural
numbers, there is a maximum, which is the required vr. Exercise: Show that this
informal argument can be formalized in PA. This requires an argument by induction

LECTURE 6 58

on vk from a PA induction axiom, using all three non-logical axioms of PA governing
≤. N
Lemma 46 PA ⊢ ((∃vj ≤ t)∃viR(vi, vj) ≡ ∃vi(∃vj ≤ t)R(vi, vj))

Proof. This equivalence, with the bounded quantifier expressed in primitive nota-
tion, is logically valid. (∃vj ≤ t)∃viR(vi, vj) in primitive notation is ∃vj(vj ≤ t ∧
∃viR(vi, vj)), which by prenexing is logically equivalent to ∃vj∃vi(vj ≤ t∧R(vi, vj)),
which is logically equivalent to ∃vi∃vj(vj ≤ t ∧ R(vi, vj)), which is expressed in the
defined notation for bounded quantifiers as ∃vi(∃vj ≤ t)R(vi, vj). N
Remark comparing Lemmas 42 and 46: The formula in Lemma 46 is logically
equivalent to a formula with a quantifier prefix of two existential quantifiers. How-
ever, Lemma 42 is irrelevant since a logical equivalence and definitional equivalence
results in a quantifier prefix with a single existential quantifier, without appeal to
any non-logical axioms.

Theorem 47 (Σ equivalent to Σ1) Every Σ-formula is provably equivalent in PA
to a Σ1-formula.

Proof. By induction on the recursive definition of Σ-formulas, with each induction
step established by one of Lemmas 42–46.

Base case: From PA ⊢ (F ≡ F), for every formula F .

Induction steps:

1. If ∃viF (vi, vj) is Σ1, then it must be that F (vi, vj) is Σ0, in which case,
(∃vj ≤ vk)(∃vi ≤ vk)F (vi, vj)) is Σ0. Hence by Lemma 42, ifH is provably equivalent
to a Σ1-formula, ∃viH is provably equivalent to a Σ1-formula.

2. (a) If F (vi) and G(vj) are Σ0, then (F (vi)∨G(vj)) is Σ0. Hence by Lemma 43(a),
if H and K are provably equivalent to Σ1-formulas, (H ∨K) is provably equivalent
to a Σ1 formula.

(b) If F (vi) and G(vj) are Σ0, then (F (vi) ∧ G(vj)) is Σ0. Hence by Lemma 43(b)
and Lemma 42, if H and K are provably equivalent to Σ1-formulas, then (H ∧K)
is provability equivalent to a Σ1-formula.

3. If ∃viH(vi) is Σ1, then H(v1) is Σ0. Then if F is Σ0, (F ⊃ H(vi)) is Σ0. Hence
by Lemma 44, if G is provably equivalent to a Σ1-formula, then (F ⊃ G) is provably
equivalent to a Σ1-formula.

4. If ∃viR(vi, vj) is Σ1, then R(vi, vj) is Σ0, and (∀vj ≤ vk)(∃vi ≤ vr)R(vi, vj) is Σ0.
Hence by Lemma 45, if H is provably equivalent to a Σ1-formula, than (∀vi ≤ vj)H
is provably equivalent to a Σ1-formula. Similarly if the bound is a numeral.

LECTURE 6 59

5. For R(vi, vj) Σ0, is ∃vi(∃vj ≤ t)R(vi, vj) is Σ1. By Corollary 27, for R(vi, vj) Σ0,
(∃vj ≤ t)R(vi, vj) is Σ0, so ∃vi(∃vj ≤ t)R(vi, vj) is Σ1, so (∃vj ≤ t)∃viR(vi, vj) is
logically equivalent to a Σ1-formula for R(vi, vj) Σ0. Hence by Lemma 46, if H is
provably equivalent to a Σ1-formula, the (∃vi ≤ vj)H is provably equivalent to a
Σ1-formula. Similarly if the bound is a numeral. N

6.2 The arithmetized proof predicate for PA is Σ1

Theorem 48 The set of Gödel numbers of formulas provable in PA is expressible
in LA.

Proof. By Theorem 26 and Lemmas 34 and 35. N

A much stronger result than Theorem 48 is true and is needed for what is to come,
namely that the arithmetized proof predicate for PA is Σ1. The first step is to show
that the two-place formula (PrfPA(v2)∧ v1 ∈ v2) is Σ1. With considerable effort we
could actually establish that it’s Σ0. We know from Problem 2 on Problem sheet
1 that whether a string of symbols is a term or a formula is decidable, so we know
that there is a bound on those quantifiers, but giving an explicit formulation of that
bound in the language of PA is hard work which we can avoid, since for the result
that the proof predicate for PA is Σ1 it’s sufficient, by Lemma 42 to show that
(PrfPA(v2) ∧ v1 ∈ v2) is Σ1.

Lemma 49 The formula (PrfPA(v2) ∧ v1 ∈ v2), i.e. (Seq(v2) ∧ (∀v3 ≤ v2)(v3 ∈
v2 ⊃ (AxPA(v3) ∨ (∃v4 ≤ v2)(∃v5 ≤ v2)(v4 ≺

v2
v3 ∧ v5 ≺

v2
v3 ∧ v5 = 2v48v33) ∨ (∃v4 ≤

v2)(∃v5 ≤ v2)(V ar(v4) ∧ v5 ≺
v2
v3 ∧ v3 = 9v4v5))) ∧ v1 ∈ v2), is logically equivalent

and hence provably equivalent to a Σ1-formula.

Proof. The key point is that the only place in the construction of PrfPA(v2) in
which we used an unbounded quantifier was in Tm(v1) (v1 is the Gödel number
of a term) as ∃v2(Seqt(v2) ∧ v1 ∈ v2) and Fm(v1) (v1 is the Gödel number of a
formula) as ∃v2(Seqf(v2 ∧ v1 ∈ v2)). These occur in the formula AxPA(v1), i.e.
(L1(v1) ∨ L2(v1) ∨ L3(v1) ∨ L4(v1) ∨ L5(v1) ∨ L6(v1) ∨ L7(v1) ∨ N1(v1) ∨ N2(v1) ∨
N3(v1)∨N4(v1)∨N5(v1)∨N6(v1)∨N7(v1)∨N8(v1)∨N9(v1)∨N12(v1)), in the disjuncts
for the axiom schemata L1 − L7 and N12. None of these occurrences of unbounded
existential quantifiers is in the antecedent of a conditional, and the occurrence of
Ax(v1) in (PrfPA(v2)∧v1 ∈ v2) is also not in the antecedent of a conditional. Hence
in a prenex normal form of (PrfPA(v2)∧v1 ∈ v2) these several existential quantifiers
come out as prenex existential quantifiers. By repeated application of Lemma 43,
this formula is provably equivalent to a Σ1 formula. N

LECTURE 6 60

Theorem 50 (proof predicate for PA is Σ1) The formula PrPA(v1),
i.e. ∃v2(PrfPA(v2) ∧ v1 ∈ v2), is equivalent to a Σ1-formula.

Proof. By Lemma 49 and repeated applications of Lemma 42. N
Corollary 51 {n : PA ⊢ En} is Σ1.

Proof. Immediate by Theorem 50. N

The following result requires the result, which we will prove in the next lecture, that
PA is complete for true Σ1 sentences.

Theorem 52 If every sentence provable in PA is true, then {n : PA ⊢ En}, which
by Corollary 51 is Σ1, is not ∆1.

Proof. Suppose the complement of {n : PA ⊢ En} is expressed by a Σ1-formula,
call it NPrPA(v1). Then the Gödel sentence G, such that (G ≡∼ Pr(pGq)) is
true, is equivalent to the Σ1-sentence NPRPA(pGq). By a simple modification of
Theorem 23 so that it applies to PA rather than PAE, G is true and, if every
sentence provable in PA is true, not provable in PA. But by the Σ1-completeness of
PA (to be proved in the next lecture), if G is true and equivalent to a Σ1-sentence,
then PA⊢ G, which contradicts the unprovability of G on the hypothesis that every
sentence provable in PA is true. (In Lecture 8 we shall prove this result on a much
weaker hypothesis.) N

Proposition 53 {n : PA ⊢ En[n]} is Σ1.

Proof. Exercise. N

6.3 The arithmetical hierarchy

The kind of classifications we introduced in Lecture 5 with the notions of Σ0, Π0,
∆0 and Σ1, Π1, ∆1 can be extended, by Prenex Normal Form Theorem and a
generalization of Theorem 47, to a hierarchy of all formulas in the language of
PA. This correspondingly defines a hierarchy of relations on natural numbers (the
arithmetical hierarchy).

Remark. A simple cardinality argument tells us that most relations on the natural
numbers, in particular the 1-ary relations, i.e. the sets of natural numbers, are not
in this hierarchy (there are uncountably many sets of natural numbers and there are
countably many formulas in the language of arithmetic).

LECTURE 6 61

Definition 50 (arithmetical hierarchy of formulas) (a) Σ0-formulas (=df Π0-
formulas) are as given by Definition 40.

(b) If F is Σn, then ∀viF is Πn+1.

(c) If F is Πn, then ∃viF is Σn+1.

There is a corresponding arithmetical hierarchy of sets and relations.

Definition 51 (arithmetical hierarchy of sets and relations) A relation on nat-
ural numbers is Σn (or Πn) if and only if it is expressible by a Σn-formula (respec-
tively a Πn-formula) in L.

Definition 52 If a relation is both Σn and Πn, it is said to be ∆n.

In order to generalize Theorem 47 in the arithmetical hierarchy of formulas, and for
many other purposes, we require a Σ0-pairing function.

Lemma 54 (Σ0 pairing function) The function p(m,n) = 1
2
(m+n+1)(m+n)+

m is a bijection between the natural numbers and pairs of natural numbers which is
strictly increasing in both arguments, and it is Σ0.

Proof. Exercise. N
Theorem 55 (1) For n > 0, formulas provably equivalent in PA to Σn-formulas
are closed under existential quantification and formulas provably equivalent to Πn-
formulas are closed under universal quantification, and (2) Formulas provably equiv-
alent to Σn-formulas, and formulas provably equivalent to Πn-formulas, are both
closed under conjunction and disjunction.

Proof. (1) and (2) are proved by a single induction on n in the conjunction of (1)
and (2). (Exercise). N
Corollary 56 Every formula in LA is equivalent to a Σn or Πn formula for some
n.

Proof. For a given formula, find a prenex normal form for it. By Theorem 55 (1),
adjacent like quantifiers can be collapsed to a single quantifier. N
Corollary 57 Formulas provably ∆n are closed under conjunction, disjunction, and
negation.

Proof. Exercise. N

Lecture 7

The notions of Σ0-completeness
and Σ1-completeness;
Σ0-completeness of a very weak
system of arithmetic R

Monday 4 February 2019

7.1 Notions of Σ0-completeness and Σ1-completeness

We now introduce the notions of Σ0-completeness and Σ1-completeness of formal
systems, which will play a crucial role throughout the rest of these lectures, either
explicitly, or as a background assumption. Σ0-completeness is a very weak condition,
but it is sufficient for the arithmetization of syntax, as we shall see.

Definition 53 (Σ0-completeness) A system S is Σ0-complete iff for each true
Σ0-sentence X, S ⊢ X.

Definition 54 (Σ1-completeness) A system S is Σ1 complete iff for each true
Σ1-sentence X, S ⊢ X.

On the face of it, Σ1-completeness may appear to be a stronger condition than Σ0-
completeness, since Σ1-sentences contain an unbounded quantifier. However, the
two conditions are equivalent, as shown by the following simple argument.

Proposition 58 A system S is Σ1-complete iff S is Σ0-complete.

62

LECTURE 7 63

Proof. Assume S is Σ0-complete and let X be a true Σ1-sentence, i.e. a sentence
of the form ∃viF (vi) where F (vi) is a Σ0-formula. Since X is true, for some number
k, F (k) is a true Σ0-sentence. By Σ0-completeness of S, S ⊢ F (k). Then by
∃-Introduction in S, S ⊢ ∃viF (vi).

For the converse, assume S is Σ1-complete and let X be a true Σ0-sentence. By
Proposition 29, X is logically equivalent to a Σ1-formula Y , so since X is true, Y
is true. Since Y is a true Σ1-sentence, S ⊢ Y . Since (X ≡ Y) is logically valid,
S ⊢ (X ≡ Y), so S ⊢ X. N
In this lecture we shall see that PA, and even very weak subsystems of PA, are
Σ0-complete, and hence by Proposition 58 Σ1-complete.

7.2 Sufficient conditions for Σ0-completeness

Definition 55 (system S correctly decides sentence X) System S correctly de-
cides sentence X iff either X is true and S ⊢ X, or X is false and S ⊢∼ X.

Lemma 59 (Σ0-complete iff correctly decides Σ0-sentences) A system S is
Σ0-complete iff S correctly decides every Σ0-sentence.

Proof. Half of the condition that S correctly decides every Σ0-sentence is that if X
is a true Σ0-sentence then S ⊢ X, i.e. Σ0-completeness of S.

Conversely, suppose S is Σ0-complete, and X is any false Σ0-sentence. Then ∼ X
is a true Σ0-sentence, so by Σ0-completeness, S ⊢∼ X, as required. N
Lemma 60 (two conditions that imply S correctly decides Σ0-sentences)
The following two conditions on a system S together imply that S correctly decides
every Σ0-sentence.

C1. S correctly decides every atomic sentence.

C2. For any Σ0-formula F (vi) with vi the only free variable and for every number
n, if S ⊢ F (0), . . . , S ⊢ F (n), then S ⊢ (∀vi ≤ n)F (vi).

Proof. By induction over the recursive definition of Σ0-formulas.

1. By C1 S correctly decides all atomic Σ0-sentences.

2. By propositional logic in S, if S correctly decidesX, then S correctly decides ∼X,
and if S correctly decides X and Y , then S correctly decides (X ⊃ Y). [Exercise]

3. Any Σ0-sentence Z that is neither atomic nor of the form ∼ X or (X ⊃ Y) must
be of the form (∀vi ≤ n)F (vi) where F (vi) is a Σ0-formula of lower degree in the

LECTURE 7 64

inductive generation of Σ0-formulas than Z and contains vi as its only free variable.

(i) Suppose (∀vi ≤ n)F (vi) is true. That means that each of the sentences F (0), . . . , F (n)
is true. Then by induction hypothesis, S ⊢ F (0), . . . , S ⊢ F (n). Then by condition
C2, S ⊢ (∀vi ≤ n)F (vi).

(ii) Suppose (∀vi ≤ n)F (vi) is false. Then for some m ≤ n, F (m) is false. Then
by induction hypothesis we have that S ⊢∼ F (m). Since m ≤ n is a true atomic
Σ0-formula, by C1, S ⊢ m ≤ n. Then since m ≤ n is true and F (m) is false,
(m ≤ n ⊃ F (m)) is false, and since by the preceding S correctly decides m ≤ n and
F (m), then by 2. S ⊢∼ (m ≤ n ⊃ F (m)).
(∀vi(vi ≤ n ⊃ F (vi)) ⊃ (m ≤ n ⊃ F (m))) is logically valid, and hence provable
in S, so by propositional logic in S, S ⊢∼ ∀vi(vi ≤ n ⊃ F (vi)), which is to say
S ⊢∼ (∀vi ≤ n)F (vi). N
Lemma 61 (three conditions that imply Σ0-completeness) The following three
conditions on a system S jointly imply that S is Σ0-complete.

D1. All true atomic sentences are provable in S.

D2. For any distinct numbers m and n, S ⊢∼ m = n.

D3. For any number n, S ⊢ (v1 ≤ n ⊃ (v1 = 0 ∨ . . . ∨ v1 = n)).

Proof. We show that conditions D1, D2, D3 imply conditions C1, C2 of Lemma 60,
which establishes that S correctly decides every Σ0-sentence, and so by Lemma 59
is Σ0-complete.

Specifically, D1, D2, D3 together imply C1, and D3 implies C2.

1. To establish C1, i.e. that S correctly decides all atomic sentences, we are given
by D1 that all true atomic sentences are provable in S, so it remains to show that
all false atomic sentences are refutable in S.

(i) Suppose the false atomic sentence is of the form t1 = t2. By Lemma 6, there
are numbers m and n such that the atomic sentences t1 = m and t2 = n are true,
so by D1, S ⊢ t1 = m and S ⊢ t2 = n. Since t1 = t2 is false, m ̸= on, so by D2

S ⊢∼ m = n. Then by propositional logic in S, S ⊢∼ t1 = t2.

(ii) Suppose the false atomic sentence is of the form t1 ≤ t2. By Lemma 6, there
are numbers m and n such that the atomic sentences t1 = m and t2 = n are
true, so by D1, S ⊢ t1 = m and S ⊢ t2 = n. Since t1 ≤ t2 is false, ∼ m ≤ n
is true, which means that all the sentences m = 0, . . . ,m = n are false. Hence
by D2, S ⊢∼ m = 0, . . . , S ⊢∼ m = n. Then by repeated application of ∧-
Introduction, S ⊢ (∼ m = 0 ∧ . . .∧ ∼ m = n), and so by propositional logic in
S, S ⊢∼ (m = 0 ∨ . . . ∨m = n). From D3, by ∀-Introduction and ∀-Elimination,

LECTURE 7 65

S ⊢ (m ≤ n ⊃ (m = 0 ∨ . . . ∨ m = n)). Hence by propositional logic in S,
S ⊢∼ m ≤ n. Then by substitutivity of identity, ⊢∼ t1 ≤ t2.

2. To show that D3 implies C2.

Suppose F (vi) is a Σ0 formula with vi its only free variable, and that n is a number
such that S ⊢ F (0), . . . , S ⊢ F (n). Then by pure logic (with identity) in S, S ⊢
(vi = 0 ⊃ F (vi)), . . . , S ⊢ (vi = n ⊃ F (vi)). Then by ∨-Elimination, ⊃-Elimination,
and ⊃-Introduction in S, S ⊢ ((vi = 0 ∨ . . . ∨ vi = n) ⊃ F (vi)). From D3, by
∀-Introduction and ∀-Elimination, S ⊢ (vi ≤ n ⊃ (vi = 0 ∨ . . . ∨ vi = n)). By
transitivity of ⊃ in S, S ⊢ (vi ≤ n ⊃ F (vi)). Then by ∀-Introduction in S, S ⊢
∀vi(vi ≤ n ⊃ F (vi)), i.e. S ⊢ (∀vi ≤ n)F (vi). N

7.3 Weak systems of arithmetic Q and R (without

induction)

Definition 56 (system Q) The system Q is obtained from PA by dropping the
axiom schema for induction, N12. Thus Q has only finitely many (nine) nonlogical
axioms:

N1 (v′1 = v′2 ⊃ v1 = v2)

N2 ∼ 0 = v′1

N3 v1 + 0 = v1

N4 v1 + v′2 = (v1 + v2)
′.

N5 v1 · 0 = 0

N6 v1 · v′2 = (v1 · v2) + v1

N7 (v1 ≤ 0 ≡ v1 = 0)

N8 (v1 ≤ v′2 ≡ (v1 ≤ v2 ∨ v1 = v′2)).

N9 (v1 ≤ v2 ∨ v2 ≤ v1).

The system Q is a variant of one due to Raphael Robinson. We will show that all
true Σ0-sentences are provable Q and so provable in PA, since all the axioms of Q
are axioms of PA. We prove this by proving a yet stronger result, namely that an
even weaker system R, also due to Raphael Robinson, is Σ0-complete. Instead of
the (finitely) many recursion axioms of PA and Q, it has as axioms infinitely many

LECTURE 7 66

instances of computations of addition, multiplication, and inequality, in three axiom
schemata, and two axiom schemata expressing properties of ≤.

Definition 57 (system R) The axioms of R are all sentences and formulas of LA

generated from natural numbers m and n by the following axiom schemata:

Ω1 m+ n = m+ n.

Ω2 m · n = m · n.

Ω3 ∼ m = n where m ̸= n.

Ω4 (v1 ≤ n ⊃ (v1 = 0 ∨ . . . ∨ v1 = n)).

Ω5 (v1 ≤ n ∨ n ≤ v1).

Note that the occurrence of the symbol + on the left side of the the formulation of
Ω1 above abbreviates the expression f′ in LA, and on the right does not abbreviate
the occurrence of an expression, but rather describes the expression that occurs on
the right, i.e. the instances of Ω1 are generated from pairs of natural numbers, m and
n, by writing an equation between the term (mf′n) on the left and the term 0 with
m+n many occurrences of the symbol ′ suffixed to it on the right. A corresponding
remark holds concerning occurrences of the dot symbol for multiplication in the
formulation of Ω2, e.g. an instance of Ω2 is (0′′f′′0

′′′) = 0′′′′′′.

The converse of Ω4 is provable in R. For this result we need

Lemma 62 For each natural number n, R ⊢ n ≤ n.

Proof. By ∀-Intro and ∀-Elim on the instance of Ω5 for n, Ω5 ⊢ (n ≤ n ∨ n ≤ n),
so by propositional logic, Ω5 ⊢ n ≤ n. N
Theorem 63 (converse of Ω4) For each number n,
R ⊢ ((v1 = 0 ∨ . . . ∨ v1 = n) ⊃ v1 ≤ n).

Proof. Exercise N

7.4 Σ0-completeness of systems R, Q, and PA

We will now show the R is Σ0-complete. Proposition 6 in Lecture 2 showed that for
each closed closed term t in LA, there is a number n such that the sentence t = n is
true. We now need to show that these sentences are provable in R.

Lemma 64 (evaluation of closed terms by R) For each closed term t in LA,
there is a unique number n such that R ⊢ t = n.

LECTURE 7 67

Proof. If t is a closed term it is either a numeral, or there is a closed term t1 such
that t is the term t′1, or there are closed terms t1 and t2 such that t is (t1f′t2), i.e.
t1 + t2, or t is (t1f′′t2), i.e. t1 · t2. If t is a numeral n then R ⊢ t = n by reflexivity of
identity. If t is of the form t′1 for some term t1, then by induction hypothesis there
is a numeral n such that R ⊢ t1 = n. Then by the logic of identity, R ⊢ t′1 = n′.
But n′ is n+ 1, which is to say that R ⊢ t = n+ 1. If t is of the form t1 + t2,
then by induction hypothesis there are numbers m1 and m2 such that R ⊢ t1 = m1

and R ⊢ t2 = m2. Let m1 + m2 = k. Then by Ω1, R ⊢ m1 + m2 = k. Then by
substitutivity of identity, R ⊢ t1 + t2 = k. Similarly, if m1 · m2 = k, then by Ω2,
R ⊢ m1 ·m2 = k, and by substitutivity of identity, R ⊢ t1 · t2 = k.

The uniqueness of n for a given term t follows by transitivity of identity. N
Proposition 65 The system R is Σ0-complete.

Proof. We establish this result by showing that R satisfies the conditions D1 D2

D3 of Lemma 61.

D1. (i) Suppose t1 and t2 are terms such that t1 = t2 is a true sentence. Since t1 = t2
is a sentence, the terms t1 and t2 contain no variables. Hence by Lemma 64 there
are numbers m1 and m2 such that R ⊢ t1 = m1 and R ⊢ t2 = m2. Since t1 = t2 is
true, m1 = m2, so m1 and m2 are the same numeral, so by reflexivity of identity in
R, R ⊢ m1 = m2. Hence by transitivity of identity in R, R ⊢ t1 = t2.

(ii) Suppose t1 and t2 are terms such that t1 ≤ t2 is a true sentence. Then t1 and
t2 have no free variables, so by Lemma 64 there are natural numbers m1 and m2

such that t1 = m1 and t2 = m2 are true sentences, and so by (i) provable in S.
Since t1 ≤ t2 is true, m1 ≤ m2. By the logic of identity, R ⊢ m1 = m1 and so by
propositional logic, R ⊢ (m1 = 0∨ . . .∨m1 = m1∨ . . .∨m1 = m2). By Theorem 63,
with ∀-introduction and ∀-elimination, and Modus ponens, R ⊢ m1 ≤ m2. Then by
substitutivity of identity, R ⊢ t1 ≤ t2.

D2. This is Ω3.

D3. This is Ω4. N

Lecture 8

Σ0-completeness of the
intermediate system Q and
Σ0-completeness of PA;
Σ0-soundness and Σ1-soundness;
the notions of consistency,
ω-consistency and n-consistency;
Gödel’s First Incompleteness
Theorem on the assumption of
1-consistency; truth of the Gödel
sentence; ω-incompleteness.

Wednesday 6 February 2019

68

LECTURE 8 69

8.1 The intermediate system Q and the system

PA are Σ0-complete

We prove this result by showing that

Proposition 66 R is a subsystem of Q.

Proof. We must show that every axiom of R is provable in Q, i.e. for every natural
number m and n, the instances of Ω1, Ω2, and Ω3 for m and n are provable in Q,
and for ever natural number n, the instances of Ω4 and Ω5 for n are provable in Q.
For each Ωi we use induction on n to show that each instance of Ωi with respect
to n is provable in Q. Note that Q does not contain induction, and the arguments
we give belong to informal mathematics—or as it is sometimes called in this kind of
application, metamathematics—and are not in Q, but about Q.

These arguments make essential use of Corollary 5 to the definition of numerals in
LA in Lecture 2, that n+ 1 is n′.

Ω1: We argue by induction on n that for all n, Q ⊢ m+ n = m+ n.

n = 0. By N3, ∀-I and ∀-E, Q ⊢ m + 0 = m. Since m = m + 0, m and m+ 0 are
the same term (formal numeral), so Q ⊢ m+ 0 = m+ 0.

Induction step.

(1) Q ⊢ m+ n = m+ n Induction hypothesis
(2) Q ⊢ m+ n′ = (m+ n)′ N4, ∀-I, ∀-E
(3) Q ⊢ m+ n′ = (m+ n)′ (1), (2), substitutivity of = in Q
(4) n′ is n+ 1 Corollary 5

(5) (m+ n)′ is (m+ n) + 1 Corollary 5

(6) Q ⊢ m+ n+ 1 = ((m+ n) + 1) (3)(4)(5)
(7) ((m+ n) + 1) = (m+ (n+ 1)) truth of arithmetic

(8) (m+ n) + 1) and (m+ (n+ 1)) are the same term (7)

(9) Q ⊢ m+ n+ 1 = m+ (n+ 1) (6), (8)

Hence by induction on n, for all n, Q ⊢ m+ n = m+ n

Ω2: We show by induction on n that Q ⊢ m · n = m · n.

n = 0 By N5, ∀-Intro, ∀-Elim, Q ⊢ m · 0 = 0. Since 0 = m · 0, 0 and m · 0 are the
same term. So Q ⊢ m · 0 = m · 0.

Induction step.

LECTURE 8 70

(1) Q ⊢ m · n = m · n Induction hypothesis
(2) Q ⊢ m · n′ = m · n+m N6, ∀-I, ∀-E
(3) Q ⊢ m · n′ = m · n+m (1), (2), substitutivity of = in Q
(4) Q ⊢ m · n+ 1 = m · n+m (3), Corollary 5

(5) Q ⊢ m · n+m = (m · n) +m by Ω1 (already proved)

(6) Q ⊢ m · n+ 1 = (m · n) +m (4)(5) trans of = in Q
(7) (m · n) +m = m · (n+ 1) truth of arithmetic

(8) (m · n) +m and m · (n+ 1) are the same term (7)

(9) Q ⊢ m · n+ 1 = m · (n+ 1) (6), (8)

Hence by induction on n, for all n, Q ⊢ m · n = m · n

Ω3: To show that for every m and n such that m ̸= n, Q ⊢∼ m = n. Suppose that
m ̸= n. Without loss of generality, we may suppose that m > n, since by logic of
identity in Q, if Q ⊢∼ m = n, then Q ⊢∼ n = m. We argue by cases.

n = 0. Then since m ̸= 0, there is a number k such that k+1 = m. By Corollary 5,
m is k

′
. By N2, ∀-Intro, ∀-Elim, Q ⊢∼ k

′
= 0, i.e. Q ⊢∼ m = 0.

n ̸= 0. Since m > n, there is a non-zero number d such that m = d + n. By
taking d in place of m in the argument for the previous case, Q ⊢∼ d = 0. By
contraposition of N1, ∀-Intro, ∀-Elim, Q ⊢ (∼ d = 0 ⊃∼ d

′
= 0′), so by Modus

ponens, Q ⊢∼ d
′
= 0′. By n many applications of this argument,

Q ⊢∼ d

n︷︸︸︷
′ . . . ′

= 0

n︷︸︸︷
′ . . . ′, i.e. Q ⊢∼ m = n.

Ω4: We show by induction on n that for each n, Q ⊢ (v1 ≤ n ⊃ (v1 = 0 ∨ . . . ∨ v1 =
n)).

n = 0. By ∧-Elim from N7, Q ⊢ (v1 ≤ 0 ⊃ v1 = 0).

Assume, as induction hyposthesis, that Q ⊢ (v1 ≤ n ⊃ (v1 = 0 ∨ . . . ∨ v1 = n)).

By ∧-Elim, ∀-Intro, ∀-Elim from N8, Q ⊢ (v1 ≤ n′ ⊃ (v1 ≤ n ∨ v1 = n′)). Then by
∨-Elim, Q ⊢ (v1 ≤ n′ ⊃ ((v1 = 0 ∨ . . . ∨ v1 = n) ∨ v1 = n′)), which is to say, by
Corollary 5, Q ⊢ (v1 ≤ n+ 1 ⊃ (v1 = 0 ∨ . . . ∨ v1 = n ∨ v1 = n+ 1)).

Ω5: N9 ⊢ Ω5 by ∀-Intro and ∀-Elim. N
Proposition 67 Q is Σ0-complete.

Proof. By Propositions 65 and 66. N
Theorem 68 PA is Σ0-complete.

LECTURE 8 71

Proof. By Proposition 67 and the fact that PA is an extension of Q. N

8.2 Σ0-soundness and Σ1-soundness

Definition 58 (Σ0-soundness) A system S is Σ0-sound if and only if for every
Σ0-sentence X, if S ⊢ X, then X is true (in the structure of the natural numbers).

Definition 59 (Σ1-soundness) A system S is Σ1-sound if and only if for every
Σ1-sentence X, if S ⊢ X, then X is true (in the structure of the natural numbers).

Proposition 69 If a consistent system is Σ0-complete, it is Σ0-sound.

Proof. Let S be a Σ0-complete system and let X be a false Σ0-sentence such that
S ⊢ X. Since X is Σ0 and false, ∼ X is Σ0 and true. Hence by Σ0-completeness of
S, S ⊢∼ X. But this means that S is inconsistent, contrary to hypothesis. N

Remark. Though a system is Σ0-complete if and only if it is Σ1-complete (Proposi-
tion 58), the proof of Proposition 69 does not extend to the case of Σ1-completeness
since in general the negation of a Σ1-sentence is not Σ1, and indeed such a result
does not hold in general for systems that are consistent and Σ1-complete. Gödel’s
First Incompleteness Theorem, in the strong form in which we will establish it in
Lecture 8, i.e. that for G the Gödel sentence of PA, if PA is consistent, PA 0 G,
gives a counterexample: From PA 0 G, it follows that PA ∪ {∼ G} is consistent,
and since if PA is consistent, G is true, and by its construction, G is Π1, so ∼ G is
Σ1, and if PA is consistent, false. Thus on the assumption that PA is consistent,
PA ∪ {∼ G} is a consistent Σ1-complete system which is not sound.

8.3 The notions of consistency, ω-consistency and

1-consistency.

Definition 60 (consistency) A system S is consistent if there is no formula X
in the language of S such that S ⊢ X and S ⊢∼ X.

Proposition 70 A system S (containing propositional logic) is consistent if and
only if there is a formula Y in the language of S such that S 0 Y .

Proof. (i) Left to right: We prove the contrapositive. Suppose for every X, S ⊢ X.
Then in particular for any formula Y , S ⊢ Y and S ⊢∼ Y .

LECTURE 8 72

(ii) Right to left: We prove the contrapositive. Suppose S is inconsistent, i.e. there
is a formula Y such that S ⊢ Y and X ⊢∼ Y . For any formulas Y and Z, ((Y ⊃
(∼ Y ⊃ Z)) is valid. So by two applications of ⊃-Elimination, S ⊢ Z. (This result
is sometimes called ex falso quodlibet—from a falsity everything follows.)N
Remark. Proposition 70 shows that we could equivalently have defined consistency
by:

Definition 61 (alternative definition of consistency) S is consistent if and only
if there is a formula X such that S 0 X.

This property of consistency shows that consistency is a necessary condition for any
unprovability result. We shall see that it is also sufficient for the unprovability of the
Gödel sentence. However, as we shall also see, consistency is not sufficient for the
unprovability of the negation of the Gödel sentence. Gödel introduced the notion
of ω-consistency in order to prove that the negation of the Gödel sentence is not
provable in the system. ω-consistency is a much weaker hypothesis than soundness,
i.e. that all theorems are true (which we saw already in Lecture 1 is sufficient
for the result), established by Proposition 75, which shows that ω-consistency only
implies a very limited amount of truth. Even so, ω-consistency is a considerably
stronger hypothesis than is necessary to established formal incompleteness. From
the fact that a proof predicate for a formal deductive system with arithmetized
syntax is Σ1, the First Incompleteness Theorem can be proved, as we shall see, with
just the assumption that there is no ω-inconsistency with a Σ1-formula. Kreisel
in 1957 [11] noted that the minimum case of ω-consistency, which he labeled 1-
consistency, is sufficient for the second half of Gödel First Incompleteness Theorem.
This special case of ω-consistency perhaps strictly should be labeled something like
Σ1 ω-consistency, but the label 1-consistency introduced by Kreisel has the virtue
of brevity and is standard in the literature.

While 1-consistency is both weaker and more natural than ω-consistency as a hy-
pothesis for proof of the second half of the First Incompleteness Theorem, we shall
see later that 1-consistency is also stronger than necessary for this result, but this
can only be shown after we have proved the Second Incompleteness Theorem.

Definition 62 (ω-consistency) A system S in a language L which for each natu-
ral number n contains a closed term n that denotes n is said to be ω-consistent if and
only if there is no formula F (vi) with one free variable in L such that S ⊢ ∃viF (vi)
and for each natural number n, S ⊢∼ F (n).

Proposition 71 (ω-consistency implies consistency) If a system is ω-consistent,
it is consistent.

LECTURE 8 73

Proof. The contrapositive is immediate: if S is inconsistent, S proves every formula
in the language of S, so in particular for any formula F (w) with one free variable,
S ⊢ ∃wF (w), and for each n S ⊢∼ F (n), i.e. S is ω-inconsistent. N
The converse of Proposition 71 does not hold, i.e.

Proposition 72 There are consistent systems that are ω-inconsistent.

Proof. We shall establish for PA that its Gödel sentence G is a true Π1 sentence, i.e.
of the form ∀v1F (v1) where F (v1) is Σ0 such that if PA is consistent, then PA 0 G.
Hence if PA is consistent, PA∪{∼ G} is consistent. The sentence ∼ G is equivalent
to ∃v1 ∼ F (v1). Since G is true, for each n F (n) is a true Σ0-sentence. Since PA
is Σ0-complete, as we proved in Lecture 7 (Theorem 68), for each n PA ⊢ F (n), so
also PA ⊢∼∼ F (n). This shows that PA ∪ {∼ G} is ω-inconsistent.

A simpler example of a consistent ω-inconsistent system is Q∪{∃v1(1+ v1) = v1} N
Proposition 73 If a system is sound with respect to truth in arithmetic, then it is
ω-consistent.

Proof. Let S be a system whose language contains numerals for the natural numbers
and which is sound with respect to truth in arithmetic. Suppose S ⊢ ∃wF (w). Then
∃wF (w) is true, i.e. there is a natural number n such that F (n) is true, which is to
say that ∼ F (n) is false. So S 0∼ F (n), which is to say that S is ω-consistent. N

The converse holds only to a strictly limited extent, as detailed by the following two
propositions, and in general ω-consistency does not imply truth.

Proposition 74 If a system S is Σ0-complete and ω-consistent, it is Σ2-sound, i.e.
if sentence X is Σ2 and S ⊢ X, then X is true.

Proof. Exercise. N

Remark The following proposition shows that Proposition 74 is best possible.

Proposition 75 There is an ω-consistent system that proves a false Σ3-sentence.

Proof. Exercise. N
Definition 63 (1-consistency) A system S in a language that contains a closed
term n for each natural number is said to be 1-consistent if and only if there is no Σ1-
formula ∃viF (vi), with no free variables, in the language of S such that S ⊢ ∃viF (vi)
and for each natural number n, S ⊢∼ F (n).

Proposition 76 (1-consistency implies consistency) If a system S is 1-consistent,
then S is consistent.

LECTURE 8 74

Proof. The contrapositive is immediate. If S is inconsistent, then S proves every-
thing, so in particular it proves 1-inconsistencies. N
Lemma 77 If S a Σ0-complete and 1-consistent, then S is Σ1-sound.

Proof. Suppose S is Σ0-complete and 1-consistent. Suppose S ⊢ ∃viF (vi) and
∃viF (vi) is false. By the supposed falsity of ∃viF (vi), for each number n, ∼ F (n) is
true. Since ∃viF (vi) is a Σ1-sentence, F (vi) is Σ0, and since Σ0-formulas are closed
under negation, ∼ F (vi) is a Σ0-formula. Hence by Σ0-completeness of S, for each
natural number n, S ⊢∼ F (n). This violates the hypothesized 1-consistency of S,
so if S ⊢ ∃viF (vi), then ∃viF (vi) is true, i.e. S is Σ1-sound. N
Lemma 78 If a system S is Σ1-sound, then S is 1-consistent.

Proof. Suppose S is Σ1-sound, and suppose S ⊢ ∃viF (vi). Then by Σ1-soundness
of S, ∃viF (vi) is true, which means that there is a natural number k such that F (k)
is a true Σ0-sentence, so ∼ F (k) is a false Σ0-sentence which, by Lemma 29, is
logically equivalent to a false Σ1-sentence. Then by Σ1-soundness of S, S 0∼ F (k).
Hence S cannot prove a 1-inconsistency, i.e. S is 1-consistent. N
Note that Lemma 78 does not require the S be Σ0-complete.

Theorem 79 (equivalence of Σ1-soundness and 1-consistency) If a system S
is Σ0-complete, then S is Σ1-sound if and only if S is 1-consistent.

Proof. By Lemma 77 and Lemma 78.

Definition 64 (2-consistency) A system S in a language that contains a closed
term n, i.e. a numeral, for each natural number, is said to be 2-consistent if and
only if there is no Σ2-formula ∃viF (vi) with one free variable in the language such
that S ⊢ ∃viF (vi) and for each natural number n, S ⊢∼ F (n).

Lemma 80 If a system is Σ2-sound, then it is Σ1-sound

Proof. The proof is by vacuous quantification. Let S ⊢ ∃v1F (v1) for F (v1) a Σ0-
sentence (i.e. no free variables). Then S ⊢ ∃v1∀v2F (v1), and so by Σ2-soundness,
∃v1∀v2F (v1) is true. Then ∃v1F (v1) is true. N
Theorem 81 For a Σ0-complete system, 2-consistency is equivalent to Σ2-soundness.

Proof. (i) To show that if S is 2-consistent, then S is Σ2-sound: Suppose S is
2-consistent and suppose S ⊢ ∃v1∀v2F (v1, v2), where F (v1, v2) is a Σ0-formula, and
∃v1∀v2F (v1, v2) is false, which is to say that for each natural number n, ∃v2∼F (n, v2)
is a true Σ1-sentence. Then by the Σ1-completeness of every Σ0-complete theory
and predicate logic, for each natural number n, S ⊢∼ ∀v2F (n, v2). But then S is
2-inconsistent. So by RAA, ∃v1∀v2F (v1, v2) is true.

LECTURE 8 75

(ii) To show that if S is Σ2-sound, then S is 2-consistent: Suppose S is Σ2-sound
and suppose S ⊢ ∃v1∀v2F (v1, v2). Then ∃v1∀v2F (v1, v2) is true, so for some number
k, ∀v2F (k, v2) is true. Suppose S ⊢∼ ∀v2F (k, v2). Then S ⊢ ∃v2 ∼ F (k, v2). Since
S is Σ2-sound, by Lemma 80 it is Σ1-sound, so ∃v2 ∼ F (k, v2) is true. But this
contradicts the truth of ∀v2F (k, v2), so by RAA, S 0∼ ∀v2F (k, v2). This means
that S is 2-consistent. N
Theorem 82 (1-consistency is strictly weaker than ω-consistency) There are
1-consistent systems that are ω-inconsistent.

Proof. By Theorem 83, 1-consistency does not imply 2-consistency, but by Propo-
sition 74, ω-consistency does imply 2-consistency, so 1-consistency doesn’t imply
ω-consistency. N
Theorem 83 (1-consistency is strictly weaker than 2-consistency) There are
1-consistent systems that are not 2-consistent.

Proof. Exercise. N
Remark. We can define 3-consistency and n-consistency for larger n exactly as
for 1-consistency and 2-consistency, but these notions are not natural in the way 1-
consistency and 2-consistency are, since there is no equivalence with a corresponding
degree of soundness as in Corollary 79 Theorem 81, i.e.

Corollary 84 (of Proposition 75) There is a 3-consistent system that is not Σ3-
sound.

Proof. Since ω-consistency implies n-consistency for each n and so in particular
3-consistency, Proposition 75 means that there is a 3-consistent system that is not
Σ3-sound. N

8.4 Incompleteness of PA from the assumption of

1-consistency

We are now in a position to prove Gödel’s First Incompleteness Theorem in its
most natural and thereby strongest formulation, in which the unprovability of ∼G
is proved from the assumption of 1-consistency. (Later we shall see, after proving
the Second Incompleteness Theorem, that S 0 ∼G can be proved from the weaker
assumption that S∪{ConS} is consistent.) This theorem is much stronger than the
version of incompleteness we have already proved, Theorem 23, in that it proves this
result from the hypothesis that PA is 1-consistent, which is much weaker than the

LECTURE 8 76

hypothesis that PA is sound, i.e. that everything PA proves is true (in the structure
of the natural numbers). This hypothesis is a purely syntactic (finitary) property, as
opposed to a semantic (infinitary) property. It is also strictly stronger than Gödel’s
original First Incompleteness Theorem, since the hypothesis for the second half of
the theorem, that PA is 1-consistent, is strictly weaker than Gödel’s hypothesis of
ω-consistency, as we have seen, but the argument in the proof is exactly the same
as for Gödel’s result, i.e. Gödel’s original proof made no use of the extra strength
of ω-consistency over 1-consistency, so the proof from 1-consistency is really an
improvement in clarity rather than in strength.

Since we are no longer working with the notion of truth (in the structure of the nat-
ural numbers), we cannot use the Diagonal Lemma, Theorem 15, which establishes
the truth of the diagonal equivalence. However, we use the construction of the diag-
onal sentence for the one-place formula ∼ PrPA(v1) from the proof of the Diagonal
Lemma to obtain the same Gödel sentence for this theorem as for the weaker one.

Theorem 85 (Gödel’s First Incompleteness Theorem for PA) There is a Π1-
sentence G constructed by arithmetized syntax of PA such that

1. If PA is consistent, PA 0 G, and

2. If PA is 1-consistent, PA 0∼ G.

Proof. Let ∃v2A(v1, v2) be the Σ1-formula constructed by arithmetization of the
syntax of PA carried out in previous lectures that expresses {n : PA ⊢ En[n]}
(Proposition 53). Let a =df p∀v2∼A(v1, v2)q, and let G =df ∀v2∼A(a, v2).

1. Assume PA is consistent, and suppose PA ⊢ G. By Lemma 10 and the com-
pleteness of first-order logic of PA, PA ⊢ (∀v2∼A(a, v2) ≡ ∀v2∼A([a], v2)), so then
PA ⊢ ∀v2∼A([a], v2). Then a ∈ {n : PA ⊢ En[n]}. Since ∃v2A(v1, v2) expresses
{n : PA ⊢ En[n]}, ∃v2A(a, v2) is true. Since PA is Σ0-complete, by Theorem 68,
and hence, by Proposition 58, Σ1-complete, PA ⊢ ∃v2A(a, v2), i.e. PA ⊢ ∼G. This
contradicts the assumption that PA is consistent. So if PA is consistent, PA 0 G.

2. Assume PA is 1-consistent, and suppose PA ⊢ ∼G, i.e. PA ⊢ ∃v2A(a, v2). From
the assumed 1-consistency of PA, and the fact that PA is Σ0-complete, PA is Σ1-
sound, by Lemma 77, so ∃v2A(a, v2) is true. Since ∃v2A(v1, v2) expresses {n : PA ⊢
En[n]}, PA ⊢ Ea[a], i.e. PA ⊢ ∀v2∼A([a], v2)). Then since by Lemma 10 and the
completeness of first-order logic of PA, PA ⊢ (∀v2∼A([a], v2) ≡ ∀v2∼A(a, v2)),
PA ⊢ ∀v2∼A(a, v2), i.e. PA ⊢ G, which from the assumption that PA ⊢ ∼G means
that PA is inconsistent. But by the condition that PA is 1-consistent, PA is consis-
tent, by Proposition 76, so if PA is 1-consistent, PA 0 ∼G. N

LECTURE 8 77

8.5 Truth of the Gödel sentence

By the bivalence of truth, one or other of G and ∼G is true in the structure of
the natural numbers. Though PA cannot decide G, i.e. does not prove G and does
not prove ∼G, we have good reason to hold that G is true (in the structure of the
natural numbers) by the following considerations.

Theorem 86 G is true if and only if PA 0 G.

Proof. By Proposition 53, there is a Σ1-formula, ∃v2A(v1, v2), that expresses {n :
PA ⊢ En[n]}, i.e. PA ⊢ En[n] if and only if ∃v2A(n, v2) is true. Hence for a =df

p∀v2∼A(v1, v2)q, and G =df ∀v2∼A(a, v2), PA ⊢ G if and only if ∃v2A(a, v2) is true,
which is to say that PA ⊢ G if and only if ∼G is true. So by contraposition, PA
0 G if and only if G is true. N
Theorem 87 G is true if and only if PA is consistent.

Proof.

(i) If PA is consistent, then by the first part of Theorem 85, PA 0 G. Then by
Theorem 86, right to left, G is true.

(ii) If G is true, then by Theorem 86 left to right, PA 0 G. But if there is any
sentence that a system doesn’t prove then the system is consistent, which is to say
that PA is consistent. N
Remarks (1) By Theorem 87(i), we are justified in holding that the Gödel sen-
tence for PA is true insofar as we are justified in our conviction (universal among all
mathematicians except a few with very quirky views) that PA is consistent. Identi-
fying the basis of our conviction that PA is consistent lies outside the scope of these
lectures.

(2) Formalizing the proof of the first half of Theorem 85 in PA shows that if PA
is consistent it cannot prove its own consistency, since otherwise it would prove
G, which we have just shown, by Theorem 85 it cannot if it is consistent. This is
Gödel’s Second Incompleteness Theorem. Formalizing the proof of the first half of
Theorem 85 in PA requires some hard work, the hardest of which is formalizing the
proof that PA is Σ0-complete (provable Σ0-completeness), which I will do in Lecture
11.

(3) Having shown that G for PA can be seen to be true on the basis of the accepted
consistency of PA, it is important to realize that there is no weaker basis on which
to hold that G is true than that PA is consistent, i.e. G for PA cannot be established
as true on the basis of any considerations that do not also establish the consistency
of PA, by Theorem 87(ii).

LECTURE 8 78

8.5.1 Any Σ1-sentence unprovable in a Σ0-complete theory
is false

There is another argument to show that G is true which is weaker than the argu-
ment for Theorem 87 because it requires a stronger hypothesis than just consistency,
namely whatever it takes to prove the second half of the First Incompleteness The-
orem, for which 1-consistency suffices but consistency does not, but the argument
itself is of independent interest. It depends on the following general theorem.

Theorem 88 If a system S is Σ0-complete and does not prove ∃viF (vi) for F (vi)
a Σ0-formula, then ∃viF (vi) is false.

Proof. This theorem is the contrapositive of the implication that every Σ0-complete
system is Σ1-complete (Proposition 58), i.e. if ∃viF (vi) is true, then for some number
k, F (k) is true and hence provable in any Σ0-complete system, which then by pred-
icate logic also proves ∃viF (vi). By contraposition, if S 0 ∃viF (vi), then ∃viF (vi)
is false. N
Corollary 89 (truth of the Gödel sentence from 1-consistency)

Proof. By the second half of Theorem 85, if Theorem 88, if PA is 1-consistent, then
PA 0 ∼G. By the construction of G, ∼G is logically and hence provably equivalent
to a sentence of the form ∃viF (vi). Hence by Theorem 88, ∼G is false, which is to
say that G is true. N

8.6 Generalisation of the First Incompleteness The-

orem

The arguments by which we have established the First Incompleteness Theorem for
PA readily generalize to any Σ0-complete theory with arithmetized syntax which
yields a Σ1-predicate that expresses {n : S ⊢ En[n]}.

Proposition 90 For S any Σ0-complete theory with arithmetized syntax that has a
Σ1-predicate that expresses {n : S ⊢ En[n]}, there is a Π1-sentence G such that if S
is consistent, S 0 G, and if S is 1-consistent, S 0 ∼G, and G is true if and only if
S is consistent.

Proof. All of the results in this lecture, and in the buildup to this lecture in earlier
lectures, can be carried through more or less ‘word for word’ for such a system S.
This claim needs to be verified for any particular such S, e.g. Q and R. N

LECTURE 8 79

8.7 PA is ω-incomplete

Definition 65 (ω-completeness) A system S in a language containing a numeral
n for each natural number n is said to be ω-complete if for every formula F (v1) in
the language of S such that for each natural number n S ⊢ F (n), S ⊢ ∀viF (vi),
otherwise ω-incomplete.

An important aspect of the first half of Gödel’s First Incompleteness Theorem is that
it establishes ω-incompleteness of the systems to which it applies, i.e. that for such
a system S, there is a formula with one free variable F (vi) such that S proves every
numerical instance of F (vi), but cannot prove that F (vi) holds of every number. In
particular, the first half of the First Incompleness Theorem as established for PA
shows that:

Theorem 91 If PA is consistent, PA is ω-incomplete.

Proof. We have shown that if PA is consistent, PA 0 G, i.e. PA 0 ∀v2∼A(a, v2). We
have also seen that if PA is consistent then G is true, i.e. for each natural number
n, ∼A(a, n) is true. The sentences ∼A(a, n) are Σ0. Hence by the Σ0-completeness
of PA, for each n, PA ⊢ ∼A(a, n). Hence PA is ω-incomplete. N

Lecture 9

Enumerability and the Separation
Lemma; incompleteness of PA
from the assumption of
consistency (Rosser’s Theorem);
weak and strong definability of a
function in a system

Monday 11 February 2019

We have noted that since an inconsistent system proves everything, consistency
of a system S is a necessary condition for S 0 X, for any sentence X and in
particular for G the Gödel sentence for S. Generalizing from our account of the
First Incompleteness Theorem for PA, we can say that for S is any system that can
arithmetize its own syntax, S 0 G, if S is consistent. The condition of ω-consistency
is, as we have seen, a stronger condition than consistency, and a weaker condition
than soundness. We saw that 1-consistency arises in a natural way as a condition
sufficient to establish that S 0∼ G for G the Gödel sentence for S. There turns
out to be a form of incompleteness, discovered by J. Barkley Rosser (1936), that
is symmetric with respect to negation. Rosser gave the construction of a sentence
R for a system S with arithmetized syntax such that if S is consistent, S 0 R and
S 0∼ R. This result is of great interest, but it is not a strengthening of Gödel’s
First Incompleteness Theorem, as it is sometimes said to be, i.e. it does not show
that the Gödel sentence for S is undecidable in S just on the assumption that S is

80

LECTURE 9 81

simply consistent, and it is a fact, which we shall establish, that S 0∼ G requires a
stronger hypothesis than just that S is consistent. Like the Gödel sentence, if S is
consistent, the Rosser sentence for S is true, so if S is consistent, (G ≡ R) is true,
but this equivalence cannot be proved in S.

We will prove the Rosser Incompleteness Theorem from a separation property, itself
of independent interest and which we use also in proving that the diagonal equiv-
alence in the diagonal lemma is not only true, as we have seen, but also formally
provable, which we need in proving Gödel’s Second Incompleteness Theorem.

9.1 Enumerability and the Separation Lemma

Definition 66 (enumeration of a relation by a formula in a theory) A k-ary
relation R ⊆ Nk is enumerated by a k+1-place formula F (v1, . . . , vk, vk+1) in a sys-
tem S if and only if:

1. If ⟨n1, . . . , nk⟩ ∈ R, then there exists a number m such that S ⊢ F (n1, . . . , nk,m).
(We say that m is a witness to the fact that ⟨n1, . . . , nk⟩ ∈ R.)

2. If ⟨n1, . . . , nk⟩ /∈ R, then for every number m, S ⊢∼ F (n1, . . . , nk,m).

Theorem 92 (enumerability of Σ1-expressible sets and relations) If a rela-
tion R ⊆ Nk is expressed by a Σ1-formula ∃vk+1G(v1, . . . , vk, vk+1) in LA, then if
S is Σ0-complete, R is enumerated in S by G(v1, . . . , vk, vk+1), and conversely, if a
relation R ⊆ Nk is enumerated by a Σ0-formula G(v1, . . . , vk, vk+1) in a consistent
Σ0-complete system, then R is expressed by ∃vk+1G(v1, . . . , vk, vk+1).

Proof. Exercise. N
Definition 67 A formula F (v1, . . . , vk) separates a non-empty k-ary relation A
from a non-empty k-ary relation B in a system S if and only if for all (n1, . . . nk) ∈
A, S ⊢ F (n1, . . . , nk), and for all (n1, . . . nk) ∈ B, S ⊢∼ F (n1, . . . , nk).

Lemma 93 (1) If F (v1, . . . , vk) separates A from B in S, then ∼ F (v1, . . . , vk)
separates B from A in S. (2) If F (v1, . . . , vk) separates A from B in S and S is
consistent, then F (v1, . . . , vk) does not separate B from A in S. (3) If F (v1, . . . , vk)
separates A from B in S and S is consistent, then A and B are disjoint. (4) If S is
inconsistent, then for any formula F (v1, . . . , vk) and any k-ary relations A and B,
F (v1, . . . , vk) separates A from B in S.

Proof. Exercise. N
Theorem 94 (Separation Lemma) Let S be a system in which Ω4 and Ω5 hold,

LECTURE 9 82

and let A and B be disjoint k-ary relations such that A is enumerated in S by
F (v1, . . . , vk, x) and B is enumerated in S by G(v1, . . . , vk, x). Then the formula

∃x(F (v1, . . . , vk, x) ∧ (∀y ≤ x) ∼ G(v1, . . . , vk, y))

separates A from B in S.

Proof. In order to shorten formulas on the page, I shall take A and B to be unary
relations, i.e. sets. The proof for A and B as k-ary relations is just a notational
variant of this proof.

i) To show: if n ∈ A, then S ⊢ ∃x(F (n, x) ∧ (∀y ≤ x) ∼ G(n, y)).

(1) n ∈ A Assumption

(2) there exists k such that S ⊢ F (n, k) (1) and enumeration of A by F (v1, v2) in S
(3) n /∈ B (1) and hypothesis that A and B as disjoint
(4) for every m, S ⊢∼ G(n,m) (3) and enumeration of B by G(v1, v2) in S
(5) for every m, S ⊢ (y = m ⊃∼ G(n, y)) (4) substitutivity of =

(6) S ⊢ ((y = 0 ∨ . . . ∨ y = k) ⊃∼ G(n, y)) (5) ⊃-elim, ∨-elim, ⊃-intro

(7) S ⊢ (y ≤ k ⊃∼ G(n, y)) (6), instance of Ω4 and prop. logic

(8) S ⊢ ∀y(y ≤ k ⊃∼ G(n, y)) (7) by ∀-Intro
(9) S ⊢ (∀y ≤ k) ∼ G(n, y) (8) definition of (∀y ≤ k))

(10) S ⊢ (F (n, k) ∧ (∀y ≤ k) ∼ G(n, y)) (2) (9) ∧-Intro
(11) S ⊢ ∃x(F (n, x) ∧ (∀y ≤ x) ∼ G(n, y)) (10) ∃-intro

(ii) To show: if n ∈ B then S ⊢∼ ∃x(F (n, x) ∧ (∀y ≤ x) ∼ G(n, y)), which is
logically equivalent to S ⊢ ∀x(F (n, x) ⊃ (∃y ≤ x)G(n, y))

(1) n ∈ B Assumption

(2) there exists k such that S ⊢ G(n, k) (1) and enumeration of B by G(v1, v2) in S
(3) n /∈ A (1) and the hypothesis that A and B as disjoint
(4) for every m, S ⊢∼ F (n,m) (3) and enumeration of A by F (v1, v2) in S
(5) for every m, S ⊢ (y = m ⊃∼ F (n,m)) (4) substitutivity of =

(6) S ⊢ ((y = 0 ∨ . . . ∨ y = k) ⊃∼ F (n, y)) (5) ⊃-elim, ∨-elim, ⊃-intro

(7) S ⊢ (y ≤ k ⊃∼ F (n, y)) (6), instance of Ω4 and prop. logic

(8) S ⊢ (F (n, y) ⊃∼ y ≤ k) (7) by prop logic (contraposition)

(9) S ⊢ (F (n, y) ⊃ k ≤ y) (8) by Ω5 and prop logic

(10) S ⊢ (F (n, y) ⊃ (k ≤ y ∧G(n, k))) (2) (9) propositional logic
(11) S ⊢ ∃y(F (n, x) ⊃ (y ≤ x ∧G(n, y))) (10) ∃-Intro
(12) S ⊢ (F (n, x) ⊃ ∃y(y ≤ x ∧G(n, y))) (11) predicate logic (anti-prenexing)
(13) S ⊢ (F (n, x) ⊃ (∃y ≤ x)G(n, y)) (12) definition of (∃y ≤ x)
(14) S ⊢ ∀x(F (n, x) ⊃ (∃y ≤ x)G(n, y)) (13) ∀-Intro N

LECTURE 9 83

Note that in the proof of the Separation Lemma, the argument for (ii) uses both
Ω4 and Ω5 while the argument for (i) uses just Ω4.

9.2 Incompleteness of PA from the assumption of

consistency (Rosser’s Theorem)

Theorem 95 If a formula H(v1) separates {n : S ⊢∼ En[n]} from {n : S ⊢ En[n]}
in a consistent arithmetizable system S, then for h = pH(v1)q, S 0 H(h) and
S 0∼ H(h).

Proof. (i) Suppose S ⊢ H(h). Then since S ⊢ (H(h) ≡ H[h]), S ⊢ H[h], so
h ∈ {n : S ⊢ En[n]}. Then by the separation property of H(v1), S ⊢∼ H(h). This
contradicts the assumption that S is consistent. So S 0 H(h).

(ii) Suppose S ⊢∼ H(h). Then h ∈ {n : S ⊢∼ En[n]}. Then by the separation
property of H(v1), S ⊢ H(h). This contradicts the assumption that S is consistent.
So S 0∼ H(h). N
Lemma 96 If S be a consistent axiomatizable extension of R in which the formula
Pd(v1, v2) enumerates {n : S ⊢ En[n]} and the formula Rd(v1, v2) enumerates
{n : S ⊢∼ En[n]}, then the formula

∀v1(Pd(v3, v1) ⊃ (∃v2 ≤ v1)Rd(v3, v2))

separates {n : S ⊢∼ En[n]} from {n : S ⊢ En[n]}.

Proof. By Theorem 94 and Lemma 93 (1). N
Lemma 97 (expressibility of negated diagonal quasi-substitution) There is
a Σ1-formula ∃v2Rd(v1, v2) constructed by arithmetization of the syntax of PA that
expresses {n : PA ⊢ ∼En[n]}.

Proof. Problem 1 on Problem sheet 3. N
Theorem 98 (Rosser’s Theorem) There is an explicit sentence R such that if
PA is consistent, PA 0 R and PA 0 ∼R.

Proof. By Proposition 53, there is a Σ1-formula ∃v2Pd(v1, v2) constructed by arith-
metization of the syntax of PA that expresses {n : PA ⊢ En[n]}. Then by Theo-
rem 92, Pd(v1, v2) enumerates {n : PA ⊢ En[n]} in PA. By Lemma 97, there
is a Σ1-formula ∃v2Rd(v1, v2) constructed by arithmetization of the syntax of PA
that expresses {n : PA ⊢∼ En[n]}. Then by Theorem 92, Rd(v1, v2) enumerates
{n : PA ⊢∼ En[n]} in PA. Then by Theorem 95 and Lemma 96, there is an explicit
sentence R such that if PA is consistent, PA 0 R and PA 0∼ R, N

LECTURE 9 84

9.3 Weak and strong definability of a function in

a system

Definition 68 (weak definability of a function in a system) A function f :
Nn → N is weakly definable in a system S iff there is a formula F (v1, . . . , vn, vn+1)
such that.

(1) If f(a1, . . . , an) = b, then S ⊢ F (a1, . . . , an, b).

(2) If f(a1, . . . , an) ̸= b, then S ⊢∼ F (a1, . . . , an, b).

This notion is also sometimes called expressibility (e.g. Elliott Mendelson, Introduc-
tion to Mathematical Logic, 4th edn, Chapman and Hall, 1997, p. 170), or numeral-
wise expressibility (e.g. Stephen Cole Kleene, Introduction to Metamathematics, D.
Van Nostrand, 1950, p. 195).

Definition 69 (strong definability of a function in a system) A function f :
Nn → N is strongly definable in a system S iff there is a formula G(v1, . . . , vn, vn+1)
such that if f(a1, . . . , an) = b, then

S ⊢ (G(a1, . . . , an, b) ∧ ∀vn+1(G(a1, . . . , an, vn+1) ⊃ vn+1 = b)).

It’s easy to show that strong definability implies weak definability (Proposition 99).
The converse also holds but is considerably more complicated to prove (Theo-
rem 100).

Proposition 99 Let S be a system in which Ω3 holds. If a function is strongly
definable in S then it is weakly definable in S.

Proof. If f : Nn → N is strongly defined in S by the formula F (v1, . . . , vn, vn+1),
then it is weakly defined in S by the same formula. Assume that f(a1, . . . , an) = b.
Then by the first conjunct of the condition for strong definability, S ⊢ F (a1, . . . , an, b),
which is condition (1) of weak definability. Suppose c ̸= b, so f(a1, . . . , an) ̸= c. By
∀-elimination from the second conjunction of the condition for strong definability
in S, S ⊢ F (a1, . . . , an, c) ⊃ c = b. If c ̸= b, then by Ω3, S ⊢∼ c = b. So by
propositional logic in S, S ⊢∼ F (a1, . . . , an, b), i.e. clause (2) of the definition of
weak definability of a function. N

We will now show, just with the use of Ω4 and Ω5, that any function weakly definable
in a system S is strongly definable in S. Weak definability of a function f(x) = y
in S is the condition that there is a formula F (v1, v2) that separates in S the graph
of f(x) = y from its complement. The first conjunct of the condition for strong

LECTURE 9 85

definability is the same as the first clause for weak definability. The second conjunct
expresses the functionality condition for a given argument of the function, i.e. that
the only number that bears the defining relation to the given argument is the value
of the function for that argument. The way we do this is to define a new formula
from the formula that weakly defines the function with the additional condition that
the relationship between the argument and a number holds just in case it’s the least
number for which the weak definability relation holds.

Theorem 100 (weak definability implies strong definability) If S is an ex-
tension of {Ω4,Ω5}, then any function weakly definable in S is strongly definable in
S.

Proof. To reduce clutter, I give the proof for the case of a unary function, which
is also the case of immediate interest since the diagonal function is unary. The
argument for the general case is a notational variant.

Let F (x, y) be a formula that weakly defines f(x) in S, i.e.

(1) If f(a) = b, then S ⊢ F (a, b).

(2) If f(a) ̸= b, then S ⊢∼ F (a, b).

Let G(x, y) be the formula (F (x, y) ∧ ∀z(F (x, z) ⊃ y ≤ z)), i.e. G(x, y) if and only
F (x, y) and y is the least number z such that F (x, z). We show that G(x, y) strongly
defines f(x) in S, i.e.

If f(a) = b then S ⊢ (G(a, b) ∧ ∀y(G(a, y) ⊃ y = b)).

which we do by showing that, on the assumption f(a) = b, S proves each conjunct
of (G(a, b) ∧ ∀y(G(a, y) ⊃ y = b)).

(i) First conjunct: to show that if f(a) = b, S ⊢ (F (a, b) ∧ ∀z(F (a, z) ⊃ b ≤ z)).

(1) Since f(x) in weakly definable in S by F (v1, v2), S ⊢ F (a, b).

(2) To prove the second conjunct we establish (F (a, v1) ⊃ b ≤ v1) by ∨-elimination
from the instance of Ω5 for b, i.e. (v1 ≤ b ∨ b ≤ v1).

(3) We have S ⊢ (b ≤ v1 ⊃ (F (a, v1) ⊃ b ≤ v1)), as an instance of L3. So it remains
to show: S ⊢ (v1 ≤ b ⊃ (F (a, v1) ⊃ b ≤ v1))).

(4) Let k be any number such that k < b. Then k ̸= b, so by clause (2) of weak
definability, S ⊢∼ F (a, k). Then by propositional logic S ⊢ (F (a, k) ⊃ b ≤ k). Then
by substitutivity of identity, S ⊢ (v1 = k ⊃ (F (a, v1) ⊃ b ≤ v1)), for each k < b.

LECTURE 9 86

(5) Suppose k = b. We know by Lemma 62 that Ω5 ⊢ b ≤ b. So by L3 and Modus
ponens, S ⊢ (F (a, b) ⊃ b ≤ b). Then by substitutivity of identity, S ⊢ (v1 = b ⊃
(F (a, v1) ⊃ b ≤ v1).

(6) By ∨-elimination from the cases v1 = 0, . . . , v1 = b established in (4) and (5),
S ⊢ ((v1 = 0 ∨ . . . ∨ v1 = b) ⊃ (F (a, v1) ⊃ b ≤ v1)).

(7) From (6) by Ω4 and propositional logic, S ⊢ (v1 ≤ b ⊃ (F (a, v1) ⊃ b ≤ v1)).

(8) By ∨-elimination from Ω5 with (3) and (7), S ⊢ (F (a, v1) ⊃ b ≤ v1).

(9) by ∀-Intro from (8), S ⊢ ∀y(F (a, y) ⊃ b ≤ y).

(ii) Second conjunct: to show that that if f(a) = b, S ⊢ ∀y(G(a, y) ⊃ y = b), i.e.
S ⊢ ∀y((F (a, y) ∧ ∀z(F (a, z) ⊃ y ≤ z)) ⊃ y = b).

(1) By propositional logic, i.e. ∧-elimination and ⊃-Introduction,
S ⊢ ((F (a, y) ∧ ∀z(F (a, z) ⊃ y ≤ z)) ⊃ ∀z(F (a, z) ⊃ y ≤ z)).

(2) Since (∀z(F (a, z) ⊃ y ≤ z) ⊃ (F (a, b) ⊃ y ≤ b)) is logically valid, from (1) it
follows that S ⊢ ((F (a, y) ∧ ∀z(F (a, z) ⊃ y ≤ z)) ⊃ (F (a, b) ⊃ y ≤ b)).

(3) From (2), S ∪ {(F (a, y) ∧ ∀z(F (a, z) ⊃ y ≤ z)) ⊢ (F (a, b) ⊃ y ≤ b).

(4) By condition (1) of weak definability, S ⊢ F (a, b), so from (3) by ⊃-Elimination,
S ∪ {(F (a, y) ∧ ∀z(F (a, z) ⊃ y ≤ z)) ⊢ y ≤ b.

(5) Hence from (4) by⊃-Introduction, S ⊢ ((F (a, y)∧∀z(F (a, z) ⊃ y ≤ z)) ⊃ y ≤ b),
i.e. S ⊢ (G(a, y) ⊃ y ≤ b).

(6) We aim to show that S ⊢ (y ≤ b ⊃ (G(a, y) ⊃ y = b)) [proved at (11)], which
with (5), by the transitivity of ⊃, yields S ⊢ (G(a, y) ⊃ (G(a, y) ⊃ y = b)), and so
by propositional logic S ⊢ (G(a, y) ⊃ y = b), and so by ∀-Introduction, we have (ii).
Thus it remains to show that S ⊢ (y ≤ b ⊃ (G(a, y) ⊃ y = b)).

(7) For k any number such that k < b, k ̸= b, so f(a) ̸= k, so by weak definability of
f(x) by F (v1, v2), S ⊢∼ F (a, k), so S ⊢∼ G(a, k). So by propositional logic (every
sentence follows from a contradiction) S ⊢ (G(a, k) ⊃ k = b).

(8) From (7) by substitutivity of identity, for k < b, S ⊢ (y = k ⊃ (G(a, y) ⊃ y = b)

(9) By L3, S ⊢ (y = b ⊃ (G(a, y) ⊃ y = b)).

(10) By ∨-elimination from (8) and (9) and ⊃-introduction,
S ⊢ ((y = 0 ∨ . . . ∨ y = b) ⊃ (G(a, y) ⊃ y = b)).

(11) From (10) by Ω4 and propositional logic, S ⊢ (y ≤ b ⊃ (G(a, y) ⊃ y = b)).

LECTURE 9 87

(12) From (11) and the argument given in (6), S ⊢ (G(a, y) ⊃ y = b).

(13) From (12) by ∀-introduction, S ⊢ ∀y(G(a, y) ⊃ y = b). N
Theorem 101 (Σ1-expressible functions strongly definable) If a total func-
tion f is Σ1-expressible, then for S any Σ0-complete theory, f is strongly definable
S.

Proof. By Lemma 32 in Lecture 5, if the graph of a total function is Σ1, the
complement of its graph is also Σ1. By Theorem 92, that Σ1-relations are enumerable
in Σ0-complete systems, f is enumerable in any Σ0-complete system S, and its
complement is enumerable S. Then by the Separation Lemma, f is weakly definable
in S. Then by Theorem 100, f is strongly definable in S. N

Lecture 10

Arithmetization of consistency;
provable diagonal equivalences;
provability predicates; Gödel’s
Second Incompleteness Theorem;
Löb’s Theorem

Wednesday 13 February 2019

10.1 Arithmetization of the statement that a sys-

tem S is consistent

Gödel’s Second Incompleteness Theorem for a system S satisfying certain conditions
is the inference that if S is consistent, S cannot prove the consistency of S. Clearly,
then, a condition for Gödel’s Second Incompleteness Theorem to hold for a system
S is that the consistency of the system be expressible by a sentence in the language
of S.

The consistency of S is the condition that for every sentence X in the language of
S, S 0 (X∧ ∼ X), or equivalently (by propositional logic), there is some sentence
X such that S 0 X. Accordingly, if we have constructed a formula PrS(v1) in the
langauge of S that expresses {n : S ⊢ En}, S is consistent if and only the sentence
∀v2∼PrS(p(Ev2 ∧ ∼Ev2)q), or equivalently the sentence ∃v1∼PrS(v1) is true.

88

LECTURE 10 89

Definition 70 (definition of ConS) For Pr(v1) a formula that expresses {n : S ⊢
En} and X any sentence in the language of S such that S ⊢ ∼X, we let ConS, the
formal expression in the language of S of the consistency of S be ∼Pr(pXq).
The notation ConS does not notate relativity to the sentence X, nor relativity to
the chosen Gödel numbering and arithmetization of syntax. I will say something
later about provable invariance of the Gödel sentence and of ConS with respect to
Gödel numbering and arithmetization of syntax. As to relativity of ConS to the
unprovable sentence X, we have the following:

Lemma 102 If ∼PrS(pXq) is true, for X any sentence in L(S) and Pr(v1) any
formula in L(S) which expresses {n : S ⊢ En}, then S is consistent.

Proof. By the two hypotheses, S 0 X. Since an inconsistent system proves every-
thing, S must be consistent. N
Lemma 103 If S is consistent and S ⊢ ∼X, then for Pr(v1) any formula in L(S)
which expresses {n : S ⊢ En}, ∼Pr(pXq) is true.
Proof. By the first two hypotheses, S 0 X. then by the third hypothesis, ∼PrS(pXq)
is true. N
Lemma 104 (justifying the definition of ConS) A system S is consistent if and
only if ∼ Pr(pXq) is true, for Pr(v1) any formula in the language of S that ex-
presses {n : S ⊢ En}, and X any sentence in the language of S such that S ⊢ ∼X.

Proof. Immediate from Lemmas 102 amd 103. N

Remark. The separation of the proof of Lemma 104 into Lemmas 102 amd 103
brings out that only one direction of the biconditional requires that S ⊢ ∼X. The
relativity to X is dealt with by fixing on a specific X such that S ⊢ ∼X. A
particularly simple such X is 0 = 0′, since it is immediate from axiom N2 for PA
and Q, or from Ω3 for R, that S ⊢ ∼0 = 0′, and it is fairly standard to take ConS

to be ∼ Pr(p0 = 0′).

The Second Incompleteness Theorem is established by formalizing in S the proof
of the first half of the First Incompleteness Theorem, that if S is consistent, then
S 0 G, which is arithmetized as (ConS ⊃ ∼Pr(pGq)). Hence if S ⊢ ConS, then
S ⊢ ∼Pr(pGq) If the Diagonal Lemma is provable in S, then S ⊢ (G ≡ ∼Pr(pGq),
in that case S ⊢ G, which, if S is consistent, it doesn’t, by the first half of the First
Incompleteness Theorem.

This argument requires that the Diagonal Lemma be provable in S, not just that it
is true, as previously shown.

LECTURE 10 90

10.2 Formal provability of the Diagonal Lemma

As a first step to proving the Diagonal Lemma within a system S, we prove that
for f a strongly definable total function, and G(v1) a formula with one free in the
language of a system S, the property of n that G(v1) holds of f(n) is expressible by
a formula in the language of S.

Theorem 105 (provable substitution) If a total function f(x) is strongly defin-
able in a system S, then for each formula G(v1) with one free variable, there is a
formula H(v1) such that for each number n, S ⊢ (H(n) ≡ G(f(n))).

Proof. Let F (v1, v2) be a formula that strongly defines f(x) in S. For given formula
G(v1) let H(v1) =df ∃v2(F (v1, v2)∧G(v2)). Let n and m be such that f(n) = m. We
establish the provability of the two halves of the required biconditional as follows:

(i) To show that S ⊢ (G(f(n)) ⊃ H(n)): Since F (v1, v2) strongly defines f(x),
by clause (1) S ⊢ F (n,m). Hence by propositional logic in S, S ⊢ (G(m) ⊃
(F (n,m) ∧ G(m)). Then by ∃-introduction in S (note that in inferring ∃v1A(v1)
from A(t), v1 is substituted for some but not necessarily all occurrences of t in
A(t)), S ⊢ (G(m) ⊃ ∃v2(F (n, v2) ∧G(v2))).

(ii) To show that S ⊢ (H(n) ⊃ G(f(n))): By ∀-elimination from the second conjunct
of the condition for strong definability, S ⊢ (F (n, v2) ⊃ v2 = m). Therefore by
propositional logic in S, S ⊢ ((F (n, v2) ∧ G(v2)) ⊃ (v2 = m ∧ G(v2))). By =-
Elimination in S, S ⊢ ((v2 = m ∧G(v2)) ⊃ G(m)), so by transitivity of ⊃,
S ⊢ ((F (n, v2) ∧G(v2)) ⊃ G(m)). Then by ∀-Introduction,
S ⊢ ∀v2(F (n, v2) ∧G(v2) ⊃ G(m)), and so by anti-prenexing,
S ⊢ (∃v2(F (n, v2) ∧G(v2)) ⊃ G(m)) N
Theorem 106 (provable diagonal equivalence) Let S be any extension of R.
For any formula with one free variable, F (v1), in the language of S, there is a
sentence C such that S ⊢ (C ≡ F (pCq)).
Proof. The diagonal function is total, and we have shown, in the proof of Propo-
sition 53 (given as Problem 1 on Problem sheet 3) that it is Σ1-expressible. Hence
by Theorem 101, d(v1) = v2 is strongly definable in any Σ0-complete system.
By Theorem 105, given F (v1), there is a formula H(v1) such that for each n,
S ⊢ (H(n) ≡ F (d(n))), so in particular, for h = pH(v1)q, S ⊢ (H(h) ≡ F (d(h))).
S ⊢ (H(h) ≡ H[h]), since substitution and quasi-substitution are logical equivalent,
so S ⊢ (H[h] ≡ F (d(h))). By the construction of d(x), d(h) = pH[h]q, so taking
C =df H[h], we have S ⊢ (C ≡ F (pCq)), as required. N

LECTURE 10 91

10.3 Provability predicates.

The process of formalizing the argument for the First Incompleteness Theorem for
S in S is intricate. By work of Paul Bernays and Martin Löb, the requirements for
formalization are reduced to three conditions on the proof predicate for S. We shall
establish the Second Incompleteness Theorem from the assumption of these three
conditions. We also then have to show that the arithmetized proof predicate we
have established for PA satisfies these three conditions.

Definition 71 (provability predicate) A formula P (v1) is called a provability
predicate for a system S if for all sentences X and Y in L(S) the following three
conditions hold:

P1: If S ⊢ X, then S ⊢ P (pXq).
P2: S ⊢ (P (p(X ⊃ Y)q) ⊃ (P (pXq) ⊃ P (pY q)))

P3: S ⊢ (P (pXq) ⊃ P (pP (pXq)q))
Note that P1 is a one-way implication and not a biconditional. The converse impli-
cation is an instance of Σ1-soundness. The effect of this is that these conditions on
being a provability predicate do not require that a provability predicate expresses
{n : S ⊢ En}. Rather, it can express a superset of that set, in particular, the formula
x = x is a provability predicate.

Being a provability predicate is not extensional, i.e. as we shall see, there
are pairs of formulas, even in the same class of the arithmetical hierarchy, that have
the same extension, yet one of which is a provability predicate and the other is not.

Theorem 107 (Pr(v1) for PA is a provability predicate for PA) The arithme-
tized proof predicate for PA which we have constructed is a provability predicate for
PA.

Proof.

P1: We established property P1 (and its converse) for the arithmetized proof predi-
cate for PA by Theorem 26.

P2: We need to show that for X and Y any sentences in the language of PA,
PA⊢ (Pr(pX ⊃ Y q) ⊃ (Pr(pXq) ⊃ Pr(pY q))). This is given as an exercise on
Problem sheet 5.

P3: This is the arithmetization of P1, and follows from the arithmetization in PA
of the proof that PA is Σ0-complete, referred to as provable Σ0-completeness, which
we will establish in Lecture 11. N

LECTURE 10 92

The following properties of a provability predicate are immediate consequences of
the three conditions that define what it is to be a provability predicate.

Lemma 108 For P (v1) a provability predicate for a system S,

P4 If S ⊢ (X ⊃ Y), then S ⊢ (P (pXq) ⊃ P (pY q)).
P5 If S ⊢ (X ⊃ (Y ⊃ Z)), then S ⊢ (P (pXq) ⊃ (P (pY q) ⊃ P (pZq))).
P6 If S ⊢ (X ⊃ (P (pXq) ⊃ Y)), then S ⊢ (P (pXq) ⊃ P (pY q)).
Proof.

P4: If S ⊢ (X ⊃ Y), then by P1, S ⊢ P (p(X ⊃ Y)). Then by P2 and Modus ponens,
S ⊢ (P (pXq) ⊃ P (pY q)).
P5: By P4, S ⊢ (P (pXq) ⊃ P (p(Y ⊃ Z)q)). By P2, S ⊢ (P (p(Y ⊃ Z)q) ⊃
(P (pY q) ⊃ P (pZq))). Then by propositional logic, S ⊢ (P (pXq) ⊃ (P (pY q) ⊃
P (pZq)).
There is no corresponding result for S ⊢ ((X ⊃ Y) ⊃ Z).

P6: If S ⊢ (X ⊃ (P (pXq) ⊃ Y)), then by P5

S ⊢ (P (pXq) ⊃ (P (pP (pXq)q) ⊃ P (pY q))). Then by L2 and Modus ponens,

S ⊢ ((P (pXq) ⊃ P (pP (pXq)q)) ⊃ (P (pXq) ⊃ P (pY q))) Then by P3 and Modus
ponens, S ⊢ (P (pXq) ⊃ P (pY q)). N

10.4 Gödel’s Second Incompleteness Theorem

Lemma 109 For P (v1) a provability predicate for a system S which is an extension
of R, there is a sentence G in the language of S such that S ⊢ (G ≡ ∼P (pGq)).
Proof. Immediate from Theorem 106 by taking F (v1) as P (v1). N
Lemma 110 (arithmetization of the First Incompleteness Theorem) Let S
be a system which extends R and has a provability predicate P (v1), and let G be a
sentence in the language of S such that S ⊢ (G ≡ ∼P (pGq)). Then for X any
sentence in the language of S, S ⊢ (∼P (pXq) ⊃ ∼P (pGq)).
Proof.

(1) S ⊢ (G ≡ ∼P (pGq)) Lemma 109

(2) S ⊢ (G ⊃ ∼P (pGq)) (1) ∧-elimination

(3) S ⊢ (G ⊃ (P (pGq) ⊃ X)) (2) Prop Logic

(4) S ⊢ (P (pGq) ⊃ P (pXq)) (3) P6

LECTURE 10 93

(5) S ⊢ (∼P (pXq) ⊃ ∼P (pGq)) (4) contraposition N

Theorem 111 (Gödel’s Second Incompleteness Theorem) Let S be a system
which extends R and has provability predicate P (v1). Then for X any sentence in
the language of S, if S is consistent, S 0∼ P (pXq).
Proof.

(1) S ⊢ (G ≡∼ P (pGq)) Lemma 109

(2) S ⊢ (∼ P (pGq) ⊃ G) (1) ∧-EliminationR

(3) S ⊢ (∼ P (pXq) ⊃ G) (2) Lemma 110 and prop logic

(4) S ⊢∼ P (pXq) Assumption
(5) S ⊢ G (3) (4) ⊃-elimination

(6) S ⊢ P (pGq) (5) P1

(7) S ⊢ (G ⊃∼ P (pGq)) (1) ∧-EliminationL

(8) S ⊢∼ G (6)(7) prop Logic
(9) S is inconsistent (5)(8)

(10) S 0∼ P (pXq) by RAA (4)(9) and consistency of S N

Remarks on this proof:

(1) The proof of Lemma 110 is strictly part of the proof of Gödel’s Second Incom-
pleteness Theorem. I have made it into a separate Lemma to highlight that part of
the proof Gödel’s Second Incompleteness Theorem which is the arithmetization of
the proof of the first half of the First Incompleteness Theorem.

(2) Note that the three conditions on a Provability Predicate are used in this proof
at the following points: P1 at line (5) of Theorem 111 and P2 and P3 in the use of
P6 at line (4) of Lemma 109.

Remark: Gödel’s Second Incompleteness Theorem is a generalization of the first
half of the First Incompleteness Theorem, in the following sense. The first half of the
First Incompleteness Theorem establishes, for G the Gödel sentence S, that if S is
consistent, S 0 G. By the diagonal equivalence, this is tantamount to S 0∼ P (pGq).
The Second Incompleteness Theorem establishes that for every sentence X in the
language of S, if S is consistent, S 0∼ P (pXq)). The heart of the matter, however,
is that the Gödel sentence for S is equivalent provably in S to the consistency of
S. One direction of this equivalence is established at line (3) of the above proof
of the Second Incompleteness Theorem: If S is consistent, i.e. some sentence is
unprovable, then G holds. The converse of (3) for arbitrary X cannot be proved
because it doesn’t hold, if S is 1-inconsistent: If S ⊢ (G ⊃∼ P (pXq)) for X such

LECTURE 10 94

that S ⊢ X, then since by P1, S ⊢ P (pXq), S ⊢∼ G. However, if S ⊢∼ X, then
indeed the implication holds, i.e.

Proposition 112 Let P (v1) be a provability predicate for a system S, let G be a
sentence in the language of S such that S ⊢ (G ≡∼ P (pGq)), and let X be any
sentence in the language of S such that S ⊢∼ X. Then S ⊢ (G ⊃∼ P (pXq)).
Proof. Since S ⊢ ∼X, by propositional logic in S, S ⊢ (X ⊃ G). Then by P4,
S ⊢ (P (pXq) ⊃ P (pGq)). By contraposition, S ⊢ (∼ P (pGq) ⊃∼ P (pXq)), so by
S ⊢ (G ≡∼ P (pGq)) and transitivity of implication in S, S ⊢ (G ⊃∼ P (pXq)). N
Corollary 113 (to Proposition 112 and the proof of Theorem 111) Let P (v1)
be a provability predicate for a system S, let G be a sentence in the language of S
such that S ⊢ (G ≡∼ P (pGq)). and let X be any sentence in the language of S such
that S ⊢∼ X. Then S ⊢ (G ≡∼ P (pXq)).
Proof. Proposition 112 and line (3) of the proof of Theorem 111 are the two halves
of the biconditional. N

10.5 Löb’s Theorem

Löb’s Theorem is a deep result which characterizes the abstract properties of prov-
ability, i.e. it can be used as the fundamental axiom for a theory of provability,
as we shall see in Lectures 13 and 14. It is also a generalization of the Second
Incompleteness Theorem, though this was not immediately realized,. It arose in
response to an almost jokey question in the 1950s by Leon Henkin: Is the sen-
tence that asserts its own provability (there is such a sentence, by diagonalization,
i.e. S ⊢ (Pr(pHq) ≡ H)) provable (in which case it is true) or unprovable (in
which case it is false)? What Martin Löb showed was that from just half of that
diagonal equivalence, i.e. S ⊢ (P (pHq) ⊃ H), it follows that S ⊢ H (so H is prov-
able and true), because for any sentence X and any provability predicate P (v1), if
S ⊢ (P (pXq) ⊃ X), then S ⊢ X. Note that the converse holds by propositional
logic, from L1 and Modus ponens.

Theorem 114 (Löb’s theorem) Let S be a system in which the Diagonal Lemma
is provable, and let P (v1) be a provability predicate for S. For X any sentence in
the language of S, if S ⊢ (P (pXq) ⊃ X), then S ⊢ X.

Proof. (1) Assume that S ⊢ (P (pXq) ⊃ X).

(2) Let L be a provably diagonal sentence for the predicate (P (v1) ⊃ X), i.e.
S ⊢ (L ≡ (P (pLq) ⊃ X).

LECTURE 10 95

(3) S ⊢ (L ⊃ ((P (pLq) ⊃ X) from (2) by ∧-Elimination.

(4) S ⊢ (P (pLq) ⊃ P (pXq)) from (3) by P6 from P2 and P3.

(5) S ⊢ (P (pLq) ⊃ X) from (4) and (1) by transitivity of ⊃.

(6) S ⊢ ((P (pLq) ⊃ X) ⊃ L) from (2) by ∧-Elimination.

(7) S ⊢ L from (5) and (6) by ⊃-Elimination .

(8) S ⊢ P (pLq) from (7) by P1 .

(9) S ⊢ X from (8) and (5) by ⊃-Elimination. N

Definition 72 A sentence of the form (P (pXq) ⊃ X) is called a Reflection Prin-
ciple, or more specifically, a Local Reflection Principle.

Remark: A reflection principle (P (pXq) ⊃ X) expresses the soundness with respect
to provability of X of the system for which P (v1) expresses provability, i.e. it says
that if X is provable, then X, i.e. X is true. Löb’s Theorem says that the only
such statements that can be proved in a system are the ones that hold trivially by
propositional logic, i.e. for which S ⊢ X.

Theorem 115 Löb’s Theorem is a generalization of Gödel’s Second Incompleteness
Theorem.

partial Proof. (i) Löb’s Theorem implies the Second Incompleteness Theorem, as
follows: Suppose S ⊢ ∼P (pXq). Then by propositional logic in S, S ⊢ (P (pXq) ⊃
X). Then by Löb’s Theorem for S, S ⊢ X. Then by property P1 of P (v1) as
a provability predicate for S, S ⊢ P (pXq). Then S is inconsistent. So if S is
consistent, S 0 ∼P (pXq).
(ii)The Second Incompleteness Theorem proves Löb’s Theorem in those cases where
S ⊢ ∼X, as follows: Suppose S ⊢ ((P (pXq) ⊃ X)) and S ⊢ ∼X. Then by
propositional logic, S ⊢ ∼P (pXq). Then by the Second Incompleteness Theorem,
S is inconsistent, so proves everything, so in particular, S ⊢ X.

(iii) Löb’s Theorem holds by proposition logic for X such that S ⊢ X (an implication
is true if the consequent is true).

(iv) The Second Incompleteness Theorem for S does not establish Löb’s Theorem for
sentences X such that S 0 X and S 0 ∼X. In particular, for G a Gödel sentence for
S, the Second Incompleteness Theorem does not extablish that if S ⊢ (Pr(pGq) ⊃
G), then S ⊢ G. We shall see a rigorous proof of this result when we come to the
formalization of Provability Logic (in Lectures 13 and 14). N

LECTURE 10 96

Though Löb’s Theorem does not follow uniformly from the Second Incompleteness
Theorem, Löb’s Theorem can be proved from the Second Incompleteness Theorem
on a sentence by sentence basis. The situation is the following:

Theorem 116 For each sentence X in the language of S, the Second Incomplete-
ness Theorem for S ∪ {∼ X} implies that if S ⊢ (P (pXq) ⊃ X), then S ⊢ X.

Proof. Problem 4 on Problem sheet 5. N

Lecture 11

Provable Σ1-completeness

Monday 18 February 2019

The aim of these notes is to give a detailed and rigorous proof of condition P3

for a provability predicate. This is the most complex piece of arithmetization of
syntax in this subject, and proof of this result is seldom included in expositions of
the Second Incompleteness Theorem. Peter Smith in his book An Introduction to
Gödel’s Theorems gives a “sketch of a proof sketch” in half a page (p. 235). George
Boolos, in his brilliant and invaluable book, The Logic of Provability, gives a detailed
exposition of this result spread over 34 pages (pp. 15-49), but it seems to me that
there is a gap in his proof at a crucial point (p. 46), which it is not easy to see how
to fill.

Proposition 117 For Pr(v1) a formula in the language of PA that expresses {n :
PA ⊢ En} and X any Σ1-sentence in the language of PA, the sentence (X ⊃
Pr(pXq)) is true.
Proof. (i) If X is true, then by Σ1-completeness of PA, PA ⊢ X, and since Pr(v1)
expresses {n : PA ⊢ En}, Pr(pXq) is true. So (X ⊃ Pr(pXq)) is true.
(ii) If X is false, then (X ⊃ Pr(pXq)) is true. N

In this lecture we will establish that all these true sentences are provable in PA
(provable Σ1-completeness). Since for Y any sentence in the language of PA, the
sentence Pr(pY q) is Σ1, these sentences include all sentences of the form (Pr(pY q) ⊃
Pr(pPr(pY q)q)), i.e. P3, the third condition on a provability predicate.

Note that for X a Σ1-sentence, (X ⊃ Pr(pXq)) is ∆2. As we shall see, PA is not
∆2-complete. So the provability of these sentences in PA is specific to provability

97

LECTURE 11 98

properties of Σ1-sentences and of arithmetization of provability in PA.

While provable Σ1-completeness is a deep theorem whose proof is complicated, prov-
able completeness for Σ0-sentences is very easy to show.

Proposition 118 (provable Σ0-completeness for sentences) For Pr(v1) a for-
mula in the language of PA that expresses {n : PA ⊢ En} and X any Σ0-sentence
in the language of PA, PA ⊢ (X ⊃ Pr(pXq)).
Proof. Argument (1): (i) If X is true, then by Σ0-completeness of PA, PA ⊢ X, and
since Pr(v1) is Σ1, and expresses {n : PA ⊢ En}, Pr(pXq) is a true Σ1-sentence.
Then by Σ1-completeness of PA, PA ⊢ Pr(pXq), so by propositional logic in PA,
PA ⊢ (X ⊃ Pr(pXq)).
(ii) If X is false, then ∼ X is a true Σ0-sentence, so by Σ0-completeness, PA ⊢∼ X,
so by propositional logic in PA, PA ⊢ (X ⊃ Pr(pXq)).
Argument (2): If X is Σ0, then (X ⊃ Pr(pXq)) is Σ1, and hence provable in PA by
Σ1-completeness. N

Remark about the strategy for proving provable Σ1-completeness. Neither of the
two arguments for Proposition 118 can be extended to the case of X a Σ1-sentence.
For Argument (1), (i) holds for X a Σ1-sentence, but (ii) fails since the negation of
a Σ1-sentence is not, in general, a Σ1-sentence. For Argument (2), we noted above
that for X a Σ1-sentence, (X ⊃ Pr(pXq)) is ∆2, and as we shall see later, PA is
not ∆2-complete. The definition of what it is to be a Σ1-formula, Definition 42, is
explicit, rather than recursive, i.e. a Σ1 formula is any formula of the form ∃viF
where F is a Σ0-formula. So as in our proof that R and thereby Q and PA are
Σ1-complete (Propositions 58, 65, and 67, and Theorem 68), the proof of provable
Σ1-completeness has to go via a proof of provable Σ0-completeness. However, for
these purposes, provable Σ0-completeness cannot be as given by Proposition 118,
with its quite trivial proof.

The definition of Σ0-formula, Definition 40, is recursive, so the proof of provable Σ0-
completeness must proceed by induction over the recursive definition of Σ0-formulas.
The sequence of formulas by which a Σ0-sentence is generated by this recursion will
in general contain free variables. Thus we must prove provable Σ0-completeness for
formulas that may contain free variables.

We cannot formulate this result for Σ0-formulas with free variables as we did for
Proposition 118. Writing PA ⊢ (v1 + v2 = v3 ⊃ Pr(pv1 + v2 = v3q)), for example,
does not express that PA proves that for any three numbers a, b, and c such that
a + b = c, PA ⊢ a + b = c, since Pr(pv1 + v2 = v3q)) says that PA proves the one
particular formula v1+v2 = v3 (which it doesn’t). Instead, to express what’s wanted

LECTURE 11 99

we use a notation (invented by Solomon Feferman) of putting a dot over a variable
that occurs within an expression that occurs within pq to signify that the expression
whose Gödel number is being generated varies with the value of that variable, rather
than that the symbols which constitute that variable (i.e. v followed by a string of
subscript symbols) are part of that expression. For example, Pr(p∼0 = v′′q) says

that Pr(vi) holds of the Gödel number of Axiom N2, while ∀v′Pr(p∼0 = v̇′′q) says
that Pr(vi) holds of the Gödel number of each numerical instance of the axiom.
What we need to show is that for each Σ0-formula F (vk1 , . . . , vkm),

PA ⊢ (F (vk1 , . . . , vkm) ⊃ Pr(pF (v̇k1 , . . . , v̇km)q))

To formulate this result, we need to find a way to express the condition that a
substitution instance of a formula is provable.

To do this we need first to modify the definition we gave in Lecture 2 of quasi-
substitution (Definition 26), which was defined just for substitution on the free
variable v1, i.e. s(x, y) = p∀v1(v1 = y ⊃ Ex)q, to allow substitution on any specified
variable, i.e. s(x, y, z) = p∀vz(vz = y ⊃ Ex)q
Proposition 119 For the function s(x, y, z) = p∀vz(vz = y ⊃ Ex)q there is a Σ1-
formula S(x, y, z, w) in LA such that for all natural numbers n1, n2, n3, n4, S(n1, n2, n3, n4)
is true if and only if n4 = p∀vn3(vn3 = n2 ⊃ En1)q.
Proof.

The function f(z) =

z+1︷ ︸︸ ︷
5 . . . 5 is generated by the following primitive recursion:

f(0) = 5

f(n+ 1) = f(n) ∗13 5, so by generalization of Theorem 37, f(x) = y is Σ1.

s(x, y, z) = p∀vz(vz = y ⊃ Ex)q = 96

z︷ ︸︸ ︷
5 . . . 5 26

z︷ ︸︸ ︷
5 . . . 5 η ∗ 13y ∗ 8x3 =

96∗f(z−1)∗26∗f(z−1)∗η ∗13y ∗8x3 is expressed by a Σ1-formula S(v1, v2, v3, v4)
such that S(n1, n2, n3, n4) is true if and only if p∀vn3(vn3 = n2 ⊃ En1)q = n4. N
Definition 73 (arithmetized proof predicate with free variables) For Pr(v1)
a formula in the language of PA that expresses {n : PA ⊢ En} and F (vk1 , . . . , vkm)
any formula in the language of PA with exactly the free variables shown, and k =
max{k1, . . . , km}, Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm) =df

∃vk+1 . . . ∃vk+m(S(pF (vk1 , . . . , vkm)q, vk1 , k1, vk+1) ∧ S(vk+1, vk2 , k2, vk+2) ∧ . . .
∧ S(vk+m−1, vkm , km, vk+m)) ∧ Pr(vk+m)).

Remark 1: F (vk1 , . . . , vkm) and Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm) have the same
free variables.

LECTURE 11 100

Remark 2: The notation ‘Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm)’ stresses the impor-
tant point that it’s the Gödel number of the formula F (vk1 , . . . , vkm) that occurs in
Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm), and not the formula itself. Occasionally, to
avoid clutter, we will abbreviate this formula as Pr[F (vk1 , . . . , vkm)], which must be
read bearing in mind that F (vk1 , . . . , vkm) is not a sub-formula of Pr[F (vk1 , . . . , vkm)].
Note that this abbreviation cannot be used if we need to show the result of making
a substitution for a free variable of Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm).
Choice of provably equivalent definitions: Where a formula S(v1, v2) represents
a total function s(v1) = v2 in a theory T , we can express the substitution F (s(v1))
either by ∀v2(S(v1, v2) ⊃ F (v2)) or by ∃v2(S(v1, v2) ∧ F (v2)), since ∀v2(S(v1, v2) ⊃
F (v2)) and ∃v2(S(v1, v2)∧F (v2)) are logically equivalent. So we could have defined
Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm) as
∀vk+1 . . . ∀vk+m(S(pF (vk1 , . . . , vkm)q, vk1 , k1, vk+1) ⊃ S(vk+1, vk2 , k2, vk+2) ⊃ . . . ⊃
S(vk+m−1, vkm , km, vk+m)) ⊃ Pr(vk+m)). We do not use this latter formula as the
definition since, given that Pr(v1) is Σ1, this formula is Π2, whereas on the given
definition, Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm) is, like Pr(v1), Σ1.

Proposition 120 For any natural numbers a1, . . . am,
Pr[pF (vk1 , . . . , vkm)q](a1, . . . , am) is true if and only if Pr(pF (a1, . . . , am)q) is true.
Proof. By the definition of Pr[pFq], and provable equivalence of F (a) and F [a]. N
Corollary 121 (of Proposition 120) For any natural numbers a1, . . . am,
Pr[pF (vk1 , . . . , vkm)q](a1, . . . , am) is true if and only if PA ⊢ F (a1, . . . , am).

Proof. By Proposition 120 and the fact that {n : PA ⊢ En} is expressed by the
formula Pr(v1) (Corollary 51).

Proposition 122 For a formula F with no free variables,
PA ⊢ (Pr[pFq] ≡ Pr(pFq)).
Proof. For F with no free variables, consider Pr[pFq] with one vacuous quantifier,
e.g. ∀v1(S(pFq, v1, 0′, v2) ⊃ Pr(v2)). N
We need to generalize P1 and P2 to allow for occurrence of free variables. The
generalization of P1 expresses that if a formula with free variables is provable in PA,
then for each sentence that results from substituting numerals for the free variables
of that formula, PA proves the proof predicate for PA applied to the Gödel number
of that sentence.

Theorem 123 (P ∗
1 = P1 generalized to allow free variables) For any formula

F (vk1 , . . . , vkm) in the language of PA, if PA ⊢ F (vk1 , . . . , vkm), then
PA ⊢ Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm).
Proof. The proof is by induction on the number of free variables in F (vk1 , . . . , vkm).

LECTURE 11 101

Base case:

From the assumption that PA ⊢ F (v1), we need to show that
PA ⊢ ∃v2(S(pF (v1)q, v1, 0′, v2) ∧ Pr(v2))
The following argument establishes this result for each numeral n in place of the
variable v1. The question then is how to establish this result for the variable v1,
which of course does not follow from establishing it for each n.

(1) Since S(v1, v2, v3, v4) is a Σ1 formula that expresses the function
s(x, y, z) = p∀vz(vz = y ⊃ Ex)q, for all natural numbers n1, n2, n3, n4, S(n1, n2, n3, n4)
is true if and only if p∀vn3(vn3 = n2 ⊃ En1)q = n4. Hence
S(pF (v1), n, 0′, p∀v1(v1 = n ⊃ F (v1))q) is a true Σ1-sentence, and so by Σ1-completeness
of PA, PA ⊢ S(pF (v1), n, 0′, p∀v1(v1 = n ⊃ F (v1))q).
(2) We are given that PA ⊢ F (v1), so PA ⊢ ∀v1F (v1). By pure logic
PA ⊢ (∀v1F (v1) ⊃ F (n)), so by ⊃-Elimination, PA ⊢ F (n), so by P1,
PA ⊢ Pr(pF (n)q). By pure logic, PA ⊢ (F (n) ⊃ ∀v1(v1 = n ⊃ F (v1))). Then
by P1 and P2 for PA, PA ⊢ (Pr(pF (n)q) ⊃ Pr(p∀v1(v1 = n ⊃ F (v1))q)), so by
⊃-Elimination, PA ⊢ Pr(p∀v1(v1 = n ⊃ F (v1))q)
By ∧-Introduction from (1) and (2),
PA ⊢ (S(pF (v1), n, 0′, p∀v1(v1 = n ⊃ F (v1))q)∧Pr(p∀v1(v1 = n ⊃ F (v1))q)). Then
by ∃-Introduction, PA ⊢ ∃v2((S(pF (v1), n, 0′, v2)∧Pr(v2)), i.e. PA ⊢ Pr[pF (v1)q](n),
and not PA ⊢ Pr[pF (v1)q](v1), which is what’s required. N
Theorem 124 (P ∗

2 = P2 generalized to allow free variables) For any formu-
las F (vk1 , . . . , vkm) and G(vr1 , . . . , vrs) in the language of PA,
PA⊢ (P [(F ⊃ G)](vk1 , . . . , vkm , vr1 , . . . vrs) ⊃ (P [F](vk1 , . . . , vkm) ⊃ P [G](vr1 , . . . vrs))).

Proof. Exercise. N
Lemma 125 For all formulas F (vj1 , . . . , vjm) and G(vk1 , . . . , vkn), PA ⊢ (P [pFq](vj1 , . . . , vjm) ⊃
(P [pGq](vk1 , . . . , vkn) ⊃ P [p(F ∧G)q])(vj1 , . . . , vjm , vk1 , . . . , vkn))
Proof Exercise. N
Definition 74 A term t is free for variable vi in formula F (vi) if vi in F (vi) does
not occur within the scope of a quantifier whose variable of quantification is a free
variable in t.

Definition 75 For F (vi) a formula with free variable vi and t any term, F (vi/t)
is the result of substituting the term t for all occurrences of the variable vi in the
formula F (vi).

Lemma 126 Let F (vk1 , . . . , vkm) be a formula with free-variables vk1 , . . . , vkm. Let

LECTURE 11 102

vr1 , . . . , vrs be variables free for vk1 , . . . , vkm, respectively, in F (vk1 , . . . , vkm) and let
t1, . . . , tm be terms free for vk1 , . . . , vkm in F (vk1 , . . . , vkm). Then

PA ⊢ (Pr[pF (vk1 , . . . , vkm)q](vk1/t1, . . . , vkm/tm) ≡
Pr[pF (vk1 , . . . , vkm)q](vk1/vr1 , . . . , vkm/vrm)(vr1/t1, . . . , vrm/tm)).
Proof. From the definition of Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm), substitutivity of
=, and logical equivalence of F (vk1 , . . . , vkm) and F [vk1 , . . . , vkm]. N
Lemma 127 Let F (vk1 , . . . , vkm) be a formula with free-variables vk1 , . . . , vkm, and
let t1(vr1), . . . , tm(vrm) be terms free for vk1 , . . . , vkm in F (vk1 , . . . , vkm) with variable
vki distinct from vri. Then

PA ⊢ (Pr[pF (vk1/t1(vr1) . . . , vkm/tm(vrm))q](vr1 , . . . , vrm) ≡
Pr[pF (vk1 , . . . , vkm)q](vk1/t1(vr1), . . . , vkm/tm(vrm)))
Proof. From the definition of Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm), substitutivity of
=, and logical equivalence of F (vk1 , . . . , vkm) and F [vk1 , . . . , vkm]. N

Our proof in Lecture 7 that PA is Σ0-complete went by way of proving the very
strong result that the extremely weak system R is Σo-complete and then showing
that R is a subsystem of PA. Proving Σ0-completeness requires use of mathematical
induction, so this proof cannot be formalized in R, which is to say that while we
can prove that R is Σ0-complete, provable Σ0-completeness does not hold for R.
However, it holds for PA, which has induction. We could establish provable Σ0-
completeness of PA by formalizing in PA the proof of the Σ0-completeness of PA
we gave before, but it would be very roundabout to formalize in PA that R is Σ0-
complete and then formalize in PA that R is a subsystem of PA. Instead, I will give
a direct proof that PA is Σ0-complete for the case of atomic formulas v1 + v2 = v3,
and v1 · v2 = v3, then formalize this proof in PA.

Lemma 128 If a+ b = c, then PA ⊢ a+ b = c.

Proof. We argue by induction on the free variable b in the statement, ∀c (if a+b = c,
then PA ⊢ a + b = c). (The universal quantifier on the variable c is to strengthen
the induction hypothesis.) The result then follows by ∀-Elimination.

b = 0:

(1) (1) a+ 0 = c Assumption
(2) a+ 0 = a recursion equation for +

(1) (3) a = c (1)(2) transitivity of =
(1) (4) a and c are the same expression (3) defn of n
(1) (5) PA ⊢ a = c (4) PA ⊢ x = x

(6) PA ⊢ a+ 0 = a N3 in PA

LECTURE 11 103

(1) (7) PA ⊢ a+ 0 = c (5)(6) substitutivity of =
(8) if a+ 0 = c, then PA ⊢ a+ 0 = c (1)(7) if-then Intro
(9) ∀c (if a+ 0 = c, then PA ⊢ a+ 0 = c) (8) ∀-Intro (∗)

(∗) c not free in any assumption on which (8) depends, since (8) depends on no
assumptions.

Induction step.

(1) (1) ∀c (if a+ b = c, then PA ⊢ a+ b = c) Induction Hypothesis
(2) (2) a+ b′ = c Assumption

(3) a+ b′ = (a+ b)′ Recursion equation for +
(4) a+ b = a+ b logic of =
(5) ∃z(a+ b = z) (4) ∃-Intro

(6) (6) a+ b = d Assumption
(6) (7) (a+ b)′ = d′ (6) logic of =
(2)(6) (8) d′ = c (7)(3)(2) transitivity of =

(2)(6) (9) d′ is the same expression as c (8) defn of n

(10) d′ is the same expression as d
′

Corollary 5

(2)(6) (11) PA ⊢ d′ = c (9)(10) PA ⊢ x = x

(1) (12) (if a+ b = d, then PA ⊢ a+ b = d) (1) ∀-Elim
(6)(1) (13) PA ⊢ a+ b = d (6)(11) Modus ponens

(6)(1) (14) PA ⊢ (a+ b)′ = d
′

(13) logic of = in PA

(15) PA ⊢ a+ b
′
= (a+ b)′ N4 in PA

(6)(1) (16) PA ⊢ a+ b
′
= d

′
(14)(15) transitivity of =

(2)(6)(1) (17) PA ⊢ a+ b
′
= c (11)(16) transitivity of =

(2)(1) (18) PA ⊢ a+ b
′
= c (5)(6) ∃-Elim (∗)

(2)(1) (19) PA ⊢ a+ b′ = c Corollary 5

(1) (20) (if a+ b′ = c, then PA ⊢ a+ b′ = c) (2)(19) ⊃-Intro

(1) (21) ∀c (if a+ b′ = c, then PA ⊢ a+ b′ = c) (20) ∀-Intro (∗∗)

(∗) d not free in (6)(5)(2)(1).

(∗∗) c not free in (1).

Hence by induction on b, ∀c (if a+ b = c, then PA ⊢ a+ b = c).

Hence by ∀-Elimination, if a+ b = c, then PA ⊢ a+ b = c. N

LECTURE 11 104

Lemma 129 If a · b = c, then PA ⊢ a · b = c.

Proof. We argue by induction on the variable b in the sentence, For all c, if a ·b = c,
then PA ⊢ a · b = c.

b = 0 Assume a · 0 = c. Since a · 0 = 0, c = 0.

If c = 0, PA ⊢ c = 0.

By N5, PA ⊢ a · 0 = 0. Hence by logic of identity in PA, PA ⊢ a · 0 = c. So we have
shown that if a · 0 = c, then PA ⊢ a · 0 = c.

Then by universal generalization,
for any c, if a · 0 = c, then PA ⊢ a · 0 = c.

Induction step

Induction hypothesis: for all c, if a · b = c, then PA ⊢ a · b = c.

Assume a · b′ = c. By the recursion equations for multiplication, a · b′ = a · b + b.
Let d be such that a · b = d. By instantiation of the universal quantifier in the IH
by d and Modus ponens, PA ⊢ a · b = d. If d + b = c, then PA ⊢ d + b = c, as
proved in lecture. Then by substitutivity of identity, PA ⊢ a ·b+b = c. By universal
generalization and instantiation from N6, PA ⊢ a · b′ = a · b + b. Hence by logic of
identity in PA, PA ⊢ a · b′ = c. So if a · b′ = c, then PA ⊢ a · b′ = c. So for any c, if
a · b′ = c, then PA ⊢ a · b′ = c. N
We now turn to proof of the main theorem.

Theorem 130 (provable Σ0-completeness with free variables) For each Σ0-
formula F (vk1 , . . . , vkm), PA ⊢ (F (vk1 , . . . , vkm) ⊃ Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm)).
Proof. By induction over the inductive definition of Σ0-formulas.

Base case:

F is an atomic formula, i.e. a formula of the form t1 = t2 or t1 ≤ t2 for t1, t2 terms.
The proof of this case is by a double induction over the recursive definition of terms.
We will prove one of these cases. The others are similar.

PA ⊢ (v1 + v2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2, v3)), i.e. PA ⊢ (v1 + v2 = v3 ⊃
∃v4∃v5∃v6(S(pv1 + v2 = v3q, v1, 0′, v4) ∧ S(v4, v2, 0′′, v5) ∧ S(v5, v3, 0′′′, v6) ∧ Pr(v6))
The following is an informal description of a formal proof within PA. The proof is
by induction on the variable v2, but rather than argue by induction on v2 in the
formula (v1 + v2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2, v3)), we argue by induction on v2
in the formula ∀v3(v1 + v2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v3, v2)), in order to have a
stronger Induction Hypothesis.

LECTURE 11 105

Base case: v2 = 0. We need to show that PA ⊢ ∀v3(v1+0 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, 0, v3)).
(1) (1) v1 + 0 = v3 Assumption

(2) v1 + 0 = v1 N3

(1) (3) v1 = v3 (1) (2) subst =

(4) Pr[pv1 + 0 = v1q](v1) (2) P ∗
1

(5) (Pr[pv1 + 0 = v1q](v1) ⊃ Pr[pv1 + v2 = v3q](v1, v2/0, v3/v1)) Lemma 127

(6) Pr[pv1 + v2 = v3q](v1, v2/0, v3/v1) (4)(5) ⊃-elim

(1) (7) Pr[pv1 + v2 = v3q](v1, 0, v3/v1/v3) (6) (3) subst =

(8) (v1 + 0 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, 0, v3)) (1)(7) ⊃-intro

(9) ∀v3(v1 + 0 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, 0, v3)) (8) ∀-intro

Induction step:

We have to show, within PA, that there exists a derivation of
(∀v3(v1 + v2 = v3 ⊃ Pr[v1 + v2 = v3q](v1, v2, v3)) ⊃
∀v3(v1 + v′2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2/v′2, v3))).
(1) (1) ∀v3(v1 + v2 = v3 ⊃ Pr[v1 + v2 = v3q](v1, v2, v3) Assumption (induction hypothesis)
(2) (2) v1 + v′2 = v3 Assumption

(3) v1 + v′2 = (v1 + v2)
′ N4

(2) (4) (v1 + v2)
′ = v3 (2)(3) logic of =

(2) (5) ∃v4(v′4 = v3) (4) ∃-Intro
(6) (6) v′4 = v3 Assumption
(6)(2) (7) (v1 + v2)

′ = v′4 (4)(6) subst of =
(6)(2) (8) v1 + v2 = v4 (7) N1, logic

(1) (9) (v1 + v2 = v4 ⊃ Pr[v1 + v2 = v3q](v1, v2, v4)) (1) ∀-elimin

(1)(2)(6) (10) Pr[pv1 + v2 = v3q](v1, v2, v4) (8)(9) ⊃-Elim
(11) ((v1 + v2 = v4 ∧ v1 + v′2 = (v1 + v2)

′) ⊃ v1 + v′2 = v′4)
substitutivity of =

(12) Pr[p((v1 + v2 = v4 ∧ v1 + v′2 = (v1 + v2)′) ⊃ v1 + v′2 = v′4)q](v1, v2, v4)
(11) P ∗

1

(13) ((Pr[pv1 + v2 = v4q](v1, v2, v4) ∧ Pr[pv1 + v′2 = (v1 + v2)′q](v1, v2)) ⊃
Pr[pv1 + v′2 = v′4q](v1, v2, v4)) (12) P ∗

2

(14) (Pr[pv1 + v2 = v4q](v1, v2, v4) ≡ Pr[pv1 + v2 = v3q](v1, v2, v3/v4))
Lemma 126

(15) (Pr[pv1 + v′2 = v′4q](v1, v2, v4) ≡ Pr[pv1 + v2 = v3q](v1, v2/v′2, v3/v′4))
Lemma 127

(16) ((Pr[pv1 + v2 = v3q](v1, v2, v4) ∧ Pr[pv1 + v′2 = (v1 + v2)′q](v1, v2)) ⊃
Pr[pv1 + v2 = v3q](v1, v2/v′2, v3/v′4)) (13)(14)(15) prop logic

(17) Pr[pv1 + v′2 = (v1 + v2)′q](v1, v2) (3) P ∗
1

LECTURE 11 106

(1)(2)(6) (18) Pr[pv1 + v2 = v3q](v1, v2/v′2, v3/v′4) (16)(10)(17) ⊃-Elim

(1)(2)(6) (19) Pr[pv1 + v2 = v3q](v1, v2/v′2, v3/v′4/v3) (18)(6) subst =

(1)(2) (20) Pr[pv1 + v2 = v3q](v1, v2/v′2, v3) (6)(19) ∃-Elim
(1) (21) (v1 + v′2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2/v′2, v3)) (2)(20) ⊃-intro

(1) (22) ∀v3(v1 + v′2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2/v′2, v3)) (21) ∀-Intro v3 not free in (1)

(23) (∀v3(v1 + v2 = v3 ⊃ Pr[v1 + v2 = v3q](v1, v2, v3)) ⊃
∀v3(v1 + v′2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2/v′2, v3))) (1)(22) ⊃-Intro

By the instance of N12 for induction on v2 in the formula ∀v3(v1 + v2 = v3 ⊃
Pr[pv1 + v2 = v3q](v1, v2, v3)), we have proved in PA, ∀v3(v1+v2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2, v3)).
Then by one step of ∀-elimination, we have (v1+v2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2, v3)),
which was to be proved.

We now turn to the induction steps of the proof.

(i) F is ∼ G where G is Σ0.

Exercise.

(ii) F is (G ∧H), for G and H both Σ0-formulas.

(1) (G ⊃ Pr[G]) Induction hypothesis
(2) (H ⊃ Pr[H]) Induction hypothesis
(3) (G ⊃ (H ⊃ (G ∧H))) propositional logic
(4) Pr[(G ⊃ (H ⊃ (G ∧H)))] (3) Theorem 123
(5)(Pr[(G ⊃ (H ⊃ (G ∧H)))] ⊃ (Pr[G] ⊃ Pr[(H ⊃ (G ∧H))])) Theorem 124
(6) (Pr[(H ⊃ (G ∧H))] ⊃ (Pr[H] ⊃ Pr[(G ∧H)])) Theorem 124
(7) (Pr[G] ⊃ (Pr[H] ⊃ Pr[(G ∧H)])) (4) (5) (6) propositional logic
(8) ((G ∧H) ⊃ Pr[(G ∧H)]) (1) (2) (7) propositional logic

(iii) F is (∀v1 ≤ v2)G(v1), for G(v1) a Σ0-formula. This means that v2 is free in F .
To simplify notation we shall take it that no other variables are free in F , i.e. v1 is
the only free variable in G(v1). We need to give a proof in PA of (F ⊃ Pr[F]), i.e.
((∀v1 ≤ v2)G(v1) ⊃ ∀v3(S(p(∀v1 ≤ v2)G(v1)q, v2, 0′′, v3) ⊃ P (v3)).

The proof is by induction on the variable v2 occurring free in the formula (F ⊃
Pr[F]).

Base case: We need to prove that ((∀v1 ≤ 0)G(v1) ⊃ ∀v3(S(p(∀v1 ≤ 0)G(v1)q, 0, 0′′, v3) ⊃
P (v3))

LECTURE 11 107

To simplify notation I shall write v1 as x and v2 as y.

(1) (G(x) ⊃ Pr[pG(x)q](x)) Induction hypothesis for the main induction
(2) (G(x) ⊃ Pr[G(x)](x))(0) (1) ∀-Intro, ∀-Elim
(3) (G(0) ⊃ Pr[G(x)(x)](0)) (2) defn of subst
(4) (Pr[G(x)](0) ≡ Pr[G(0)]) Lemma 126
(5) (G(0) ⊃ Pr[G(0)]) (3) (4) propositional logic
(6) (∀x ≤ 0)G(x) ≡ G(0)) provable in PA
(7) ((∀x ≤ 0)G(x) ⊃ Pr[(∀x ≤ 0)G(x)]) (5) (6) logical equivalences

Induction step: On the assumption ((∀x ≤ y)G(x) ⊃ Pr[p(∀x ≤ y)G(x)q](y)),
which is the induction hypothesis for this sub-induction, we need to establish
((∀x ≤ y′)G(x) ⊃ Pr[p(∀x ≤ y′)G(x)q](y′)).
(1) (1) ((∀x ≤ y)G(x) ⊃ Pr[p(∀x ≤ y)G(x)q](y)) Assumption IH for sub-induction
(2) (2) (∀x ≤ y′)G(x) Assumption
(2) (3) ∀x(x ≤ y′ ⊃ G(x)) (2) defn of (∀x ≤ y′)
(2) (4) ∀x((x ≤ y ∨ x = y′) ⊃ G(x)) (3) N6

(2) (5) ∀x((x ≤ y ⊃ G(x)) ∧ (x = y′ ⊃ G(x)) (4) propositional logic
(2) (6) (∀x(x ≤ y ⊃ G(x)) ∧ ∀x(x = y′ ⊃ G(x))) (5) predicate logic
(2) (7) ((∀x ≤ y)G(x) ∧G(y′)) (6) defn of (∀x ≤ y), logic

(8) (8) (G(x) ⊃ Pr[pG(x)q](x)) Assumption IH for main induction

(8) (9) (G(y′) ⊃ Pr[pG(x)q](y′)) (8) ∀-Intro, ∀-Elim
(1)(2)(8) (10) (Pr[p(∀x ≤ y)G(x)q](y) ∧ Pr[pG(x)q](y′)) (7)(1)(9) propositional logic

(1)(2)(8) (11) Pr[p((∀x ≤ y)G(x) ∧G(y))q](x, y′) (10) Lemma 125
(1)(2)(8) (12) Pr[(∀x ≤ y′)G(x)] (11) N8, P

∗
1 , P

∗
2

(1)(8) (13) ((∀x ≤ y′)G(x) ⊃ Pr[(∀x ≤ y′)G(x)]) (2) (12) ⊃-Intro

Step (9) in the above derivation calls for comment. In deriving (9) from (8) ∀-
Intro is applied to (8) and the status of (8), as an induction hypothesis, is that of
assumption. If the variable in (8) were the variable of induction this ∀-Intro would
be illegitimate. However, the induction of which (8) is an induction hypothesis is
over formulas, so the assumption is about the formula G(x), and not about x, i.e.
x is a free variable in (8) to which ∀-Intro may be applied. N
Corollary 131 (provable Σ1-completeness with free variables) For each Σ1-
formula F (vk1 , . . . , vkm), PA ⊢ (F (vk1 , . . . , vkm) ⊃ Pr[pF (vk1 , . . . , vkm)q](vk1 , . . . , vkm).
Proof. We abbreviate vk1 , . . . , vkm as v, to avoid clutter. That F (v) is a Σ1-formula
means there is a Σ0-formula G(v, vi) such that F (v) = ∃viG(v, vi). The following
describes a derivation in PA.

LECTURE 11 108

(1) (G(v, vi) ⊃ Pr[pG(v, vi)q](v, vi) Theorem 130
(2) (G(v, vi) ⊃ ∃viG(v, vi)) predicate logic

(3) (Pr[pG(v, vi)q](v, vi) ⊃ Pr[p∃viG(v, vi)q](v)) (2) P ∗
1 , P

∗
2

(4) (G(v, vi) ⊃ Pr[p∃viG(v, vi)q](v) (1) (3) propositional logic

(5) ∀vi(G(v, vi) ⊃ Pr[p∃viG(v, vi)q](v) (4) ∀-Intro
(6) (∃viG(v, vi) ⊃ Pr[p∃viG(v, vi)q](v) (5) anti-prenexing, since vi not free

in the consequent of (5)
N

Lecture 12

The ω-rule and uniform reflection;
PA proves that PA proves every
instance of the Gödel sentence;
Π1-uniform reflection and
consistency; PA is Π1-conservative
over PAΠ2

∪ {ConPA}

Wednesday 20 February 2019

12.1 The ω-rule

We noted in Section 8.7 that the first half of the Gödel Incompleteness Theorem for
a Σ0-complete system S establishes that if S is consistent, then it’s ω-incomplete,
i.e. we have, for each n, S ⊢∼ Prov(pGq, n), but S 0 ∀v2 ∼ Prov(pGq, v2). Hence,
as a means of “overcoming” the Gödel incompleteness of a formal system S, we
might think of adding the following an (infinitary) inference rule to S which yields
∀v1F (v1) from each of its numerical instances, i.e.

Definition 76 (adding the ω-rule to a system S) We extend a system S of the
kind we have been considering in this course to a system Sω by adding the inference

109

LECTURE 12 110

rule that if for each n, Sω ⊢ F (n), then Sω ⊢ ∀v1F (v1), or in a two-dimensional
display.

Sω ⊢ F (0), Sω ⊢ F (1), . . . , Sω ⊢ F (n) . . .

Sω ⊢ ∀yF (y)

It’s immediate that

Proposition 132 The ω-rule is sound, in the sense that if a system S is sound,
Sω is sound.

Proof. If each numerical instance of a formula F (vi) with one free variable is true
(in the standard model of arithmetic), then ∀viF (vi) is true (in the standard model
of arithmetic). N
Note that the ω-rule is an infinite version of ∧-introduction, i.e.

S ⊢ A S ⊢ B

S ⊢ (A ∧B)

Definition 77 (a proof in a system with the ω-rule) For Sω as in Definition 76,
a proof of a formula X is a rooted tree of finite height, which has either one, two or
ω-many upward branches from each node, at the nodes of which are formulas, with
X at the root node of the tree, and at the top nodes are axioms of S. The formula
at a non-top node follows by a rule of inference of S from the formulas at the nodes
immediately above it. We write Sω ⊢ X if there is a proof of X in Sω.

Corollary 133 (of Definition 77) PAω ⊢ G

Proof Immediate from Definition 77 and the proof of Theorem 91.

This corollary is merely a relabeling of what we already knew. The ω-rule in this
form is so strong (which is not a virtue) that a much stronger result holds by a
vastly weaker argument, namely that R plus the ω-rule proves all true sentences.

Proposition 134 (Rω is complete) If a sentence X in LA is true, Rω ⊢ X.

Proof. We argue by induction over the arithmetical hierarchy.

Base case: If X is a true Σ0-sentence, then by Proposition 65, R ⊢ X, and hence
Rω ⊢ X.

Induction step: Assume for Induction Hypothesis that the result holds for Σn and
Πn-sentences. (i) Let X be a true Σn+1-sentence ∃viF (vi), where F (vi) is a Πn

formula. Then for some natural number m, F (m) is a true Πn-sentence. Then by
Induction Hypothesis Rω ⊢ F (m). Since R ⊢ (F (m) ⊃ ∃viF (vi)), Rω ⊢ ∃viF (vi).

LECTURE 12 111

(ii) Let X be a true Πn+1-sentence ∀viF (vi). Then for each number n, F (n) is a
true Σn-sentence. Then by Induction Hypothesis, for each n, Rω ⊢ F (n). Then by
one application of the ω-rule, Rω ⊢ ∀viF (vi). N

12.2 The arithmetized ω-rule: Uniform Reflec-

tion

The ω-rule has infinitely many premisses. Hence we cannot strictly write down
an application of the ω-rule. However, we can finitely express an application of
the ω-rule by stating in a single sentence that all numerical instances of a given
formula F (v1) are provable in a given system. By the arithmetization of syntax,
such single sentences can be expressed in the language of arithmetic, namely as
∀v1Pr[pF (v1)q](v1), where Pr[pF (v1)q](v1) is defined by Definition 73 in Lecture
11. We can then give finite expression to an ω-rule by the sentence:

(∀v1Pr[pF (v1)q](v1) ⊃ ∀v1F (v1)).

Such sentences are called Uniform Reflection Principles (see Smorynski [15], p. 845):

Definition 78 For F (v1) a formula in the language of PA with one free variable, a
Uniform Reflection Principle is any sentence of the form
(∀v1Pr[pF (v1)q](v1) ⊃ ∀v1F (v1)).

PA extended by Uniform Reflection Principles for all one-place formulas is strictly
weaker than PA extended by the infinitary ω-rule, since PA + all Uniform Reflection
Principles is axiomatic and hence incomplete, while PA + ω-rule = true arithmetic.

12.3 PA proves that PA proves every instance of

the Gödel sentence

The proof that PA proves that PA proves every instance of the Gödel sentence
makes essential use of provable Σ0-completeness of PA, as established in the previous
lecture.

Theorem 135 (PA proves that PA proves every instance of the Gödel sentence)

PA ⊢ ∀v1Pr[p∼Prov(pGq, v1)q](v1)
Proof. The following natural deduction shows the existence of a formal proof in

PA of ∀v1Pr[∼Prov(pGq, v1)q](v1).

LECTURE 12 112

(1) (1) ∼Pr[p∼Prov(pGq, v1)q](v1) Assumption

(2) (0 = 0′ ⊃ ∼Prov(pGq, v1)) PA ⊢ ∼0 = 0′

(3) (Pr[0 = 0′] ⊃ Pr[p∼Prov(pGq, v1)q])(v1) (2) P ∗
1 , P

∗
2 , ⊃-Elimination

(4) (∼Pr[p∼Prov(pGq, v1)q](v1) ⊃ ∼Pr[0 = 0′]) (3) contraposition

(1) (5) ∼Pr[p0 = 0′q] (1) (4) ⊃-Elimination

(1) (6) ∼Pr(p0 = 0′q) (5) Proposition 122 since
0 = 0′ has no free variables

(7) (∼Pr(p0 = 0′q) ⊃ ∼∃v1Prov(pGq, v1)) Lemma 110

(1) (8) ∼∃v1Prov(pGq, v1)) (7) (6) ⊃-Elimination

(1) (9) ∀v1∼Prov(pGq, v1)) (8) pred logic

(1) (10) ∼Prov(pGq, v1)) (9) ∀-Elimination

(11) (∼Prov(pGq, v1) ⊃ Pr[p∼Prov(pGq, v1)q])(v1) Theorem 130

(1) (12) Pr[p∼Prov(pGq, v1)q](v1) (10) (11) ⊃-Elimination

(13) ∼∼Pr[p∼Prov(pGq, v1)q](v1) (1)(12) ∼-Introduction

(14) Pr[p∼Prov(pGq, v1)q](v1) (13) propositional logic

(15) ∀v1Pr[p∼Prov(pGq, v1)q](v1) (14) ∀-Introduction N

Corollary 136 PA ∪{(∀v1Pr[p∼Prov(pGq, v1)q](v1) ⊃ ∀v1∼Prov(pGq, v1))}
⊢ G

Proof. By Theorem 135, ⊃-Elimination, and the fact that
PA ⊢ (G ≡ ∀v1∼Prov(pGq, v1)). N

12.4 Equivalence of Π1-Uniform Reflection and con-

sistency

Π1-Uniform Reflection for PA, i.e. the Uniform Reflection Principle restricted to Π1-
formulas, is provably equivalent in PA to ConPA, the formal consistency statement
for PA, ∼ PrPA(p0 = 0′q).
Theorem 137 PA + Π1-uniform reflection ⊢∼ PrPA(p0 = 0′q).
Proof. The following argument is in PA. Take the instance of Π1-uniform reflection
for the Π1-formula ∀v1(0 = 0′ ∧ v1 = v1), i.e.
(∀v1Pr[p∀v1(0 = 0′ ∧ v1 = v1)q](v1) ⊃ ∀v1(0 = 0′ ∧ v1 = v1)). This is provably
equivalent to (Pr(p0 = 0′q) ⊃ 0 = 0′), which implies ∼ Pr(p0 = 0′q). N

LECTURE 12 113

Theorem 138 (Π1-uniform reflection provable from consistency) For a Π1-
formula ∀v2R(v1, v2), i.e. R(v1, v2) a Σ0-formula, and v1 the only free variable in
F (v1), PA ∪{ConPA} ⊢ (∀v1Pr[p∀v2R(v1, v2)q](v1) ⊃ ∀v1∀v2R(v1, v2)).

Proof. The following deduction shows the existence of a formal proof in PA.

(1) (1) ∀v1Pr[p∀v2R(v1, v2)q](v1) Assumption
(2) (2) ∼∀v2R(v1, v2) Assumption

(3) (∼∀v2R(v1, v2) ≡ ∃v2∼R(v1, v2)) logic
(2) (4) ∃v2∼R(v1, v2) (2)(3) prop logic

(5) (∃v2∼R(v1, v2) ⊃ Pr[p∃v2∼R(v1, v2)q](v1)) Corollary 131 (∗)
(2) (6) Pr[p∃v2∼R(v1, v2)q](v1) (4)(5) ⊃-Elimination

(7) (Pr[∼∀v2R(v1, v2)](v1) ≡ Pr[∃v2∼R(v1, v2)](v1)) (3) P ∗
1 P

∗
2

(2) (8) Pr[p∼∀v2R(v1, v2)q](v1) (6)(7) ⊃-Elim

(1) (9) Pr[p∀v2R(v1, v2)q](v1) (1) ∀-elim
(1)(2) (10) Pr[p(∀v2R(v1, v2)∧ ∼ ∀v2R(v1, v2))q](v1) (8)(9) Lemma 125

(11) ((∀v2R(v1, v2)∧ ∼ ∀v2R(v1, v2)) ⊃ 0 = 0′) propositional logic

(12) (Pr[p(∀v2R(v1, v2)∧ ∼ ∀v2R(v1, v2))q](v1) ⊃
Pr[p0 = 0′q]) (11) P ∗

1 P
∗
2

(13) (∼ Pr[p0 = 0′q] ⊃
∼ Pr[(p(∀v2R(v1, v2)∧ ∼ ∀v2R(v1, v2))q](v1))) (12) contraposition

(14) (14) ∼ Pr(p0 = 0′q) Assumption

(14) (15) ∼ Pr[p0 = 0′q] (14) Proposition 122

(14) (16) ∼ Pr[(p(∀v2R(v1, v2)∧ ∼ ∀v2R(v1, v2)))q](v1) (15) (13) ⊃-Elimination

(14)(1)(2) (17) (Pr[p(∀v2R(v1, v2)∧ ∼ ∀v2R(v1, v2))q](v1)∧
∼ Pr[p(∀v2R(v1, v2)∧ ∼ ∀v2R(v1, v2))q](v1)) (10) (16) ∧-Introduction

(14)(1) (18) ∼∼∀v2R(v1, v2) (2) (17) ∼-Introduction
(14)(1) (19) ∀v2R(v1, v2) (18) propositional logic
(14)(1) (20) ∀v1∀v2R(v1, v2) (19) ∀-Introduction (∗∗)
(14) (21) (∀v1Pr[p∀v2R(v1, v2)q](v1) ⊃ ∀v1∀v2R(v1, v2)) (1) (20) ⊃-intro N

(∗) This is the one point in this proof at which the hypothesis that ∀v2R(v1, v2) is
Π1 is needed.

(∗∗) v1 not free in (13)(1).

Theorem 139 (Σ1-uniform reflection provable from consistency) For a Σ1-
formula ∃v2R(v1, v2), i.e. R(v1, v2) a Σ0-formula, and v1 the only free variable in
∃v2R(v1, v2), PA ∪{ConPA} ⊢ (∀v1Pr[p∃v2R(v1, v2)q](v1) ⊃ ∀v1∃v2R(v1, v2))

Proof. The following deduction shows the existence of a formal proof in PA.

LECTURE 12 114

(1) (1) ∀v1Pr[pF (v1)q](v1) Assumption
(2) (2) ∼F (v1) Assumption

(3) (∼F (v1) ≡ ∃v2∼R(v1, v2)) F (v1) = ∀v2R(v1, v2)
(4) (∃v2∼R(v1, v2) ⊃ Pr[p∃v2∼R(v1, v2)q](v1) Corollary 131

(2) (5) Pr[p∃v2∼R(v1, v2)q](v1) (2)(3)(4) ⊃-Elimination

(6) (Pr[∼F (v1)](v1) ≡ Pr[p∃v2∼R(v1, v2)q](v1)) (3) P ∗
1 P

∗
2

(2) (7) Pr[∼F (v1)](v1) (5) (6)

(1) (8) Pr[pF (v1)q](v1) (1) ∀-elim
(1)(2) (9) Pr[p(F (v1)∧ ∼ F (v1))q](v1) (7)(8) Lemma 125

(10) ((F (v1)∧ ∼ F (v1)) ⊃ 0 = 0′) propositional logic

(11) Pr[p(F (v1)∧ ∼ F (v1))q](v1) ⊃ Pr[p0 = 0′q] (10) P ∗
1 P

∗
2

(12) ∼ Pr[p0 = 0′q] ⊃∼ Pr[(p(F (v1)∧ ∼ F (v1))q](v1) (11) contraposition

(13) (13) ∼ Pr(p0 = 0′q) Assumption

(13) (14) ∼ Pr[p0 = 0′q] (14) Proposition 122

(13) (15) ∼ Pr[(p(F (v1)∧ ∼ F (v1))q](v1) (14) (12) ⊃-Elimination
(13)(1)(2) (16) ((9) ∧ (15)) (9) (15) ∧-Introduction
(13)(1) (17) ∼∼F (v1) (2) (16) ∼-Introduction
(13)(1) (18) F (v1) (17) propositional logic
(13)(1) (19) ∀v1F (v1) (18) ∀-Introduction

v1 not free in (13)(1)

(13) (20) (∀v1Pr[pF (v1)q](v1) ⊃ ∀viF (v1)) (1) (19) ⊃-intro N

12.5 PA is Π1-conservative over PAΠ2 ∪ {ConPA}

In the 1920s David Hilbert adumbrated a research programme which had at its
heart the project of giving proofs of the consistency of formal systems of infini-
tary mathematics in finitary mathematics. The motivation for this programme was
foundational and philosophical but Hilbert came to see that it also promised math-
ematical application in terms of establishing “conservative extension” results.

Definition 79 (S2 an extension of S1) For theories S1 and S2 formulated in the
same language, or such that the language of S2 is an extension of the language of
S1, S2 is an extension of S1 if for each formula X in the language of S1, if S1 ⊢ X,
then S2 ⊢ X.

Remark. The notion of extension of one theory by another can be generalized to
the situation where the language of the first theory is interpreted in the language of
the second theory, rather than being the same or part of the language of the second

LECTURE 12 115

theory, but we have no need here for this more general notion.

Definition 80 (S2 a conservative extension of S1) An extension S2 of S1 is con-
servative over S1 if whenever S2 ⊢ X, already S1 ⊢ X.

We also define conservativeness of one system over another with respect to a re-
stricted class of formulas, e.g. Π1 or Σ1, or some other class of formulas in the
arithmetical hierarchy.

Definition 81 (S2 conservative over S1 with respect to formulas in Γ) An ex-
tension S2 of S1 is conservative over S1 with respect to a class of formulas Γ if for
each formula X in Γ, if S2 ⊢ X, then S1 ⊢ X.

A fundamental insight of Hilbert’s that lies at the heart of his programme of proof
theory is that if finitary mathematics can prove the consistency of infinitary math-
ematics, then infinitary mathematics is a conservative extension of finitary mathe-
matics with respect to finitary mathematics. Hilbert sketches an argument for this
claim in a lecture in 1927, “Die Grundlagen der Mathematik”, published in 1928,
English translation as “The Foundations of Mathematics” in the van Heijenoort
Source Book [9], p. 474.

Gödel’s Second Incompleteness Theorem shows that, insofar as infinitary mathemat-
ics is an extension of finitary mathematics, the consistency of infinitary mathematics
cannot be proved within finitary mathematics. Nonetheless Hilbert’s argument ad-
umbrates a correct mathematical theorem the main content of which is the proof
of Theorem 138 that consistency implies the uniform reflection principle for Π1-
sentences. Hilbert formulates his argument in terms of a particular Π1-sentence,
Fermat’s last theorem: “Let us suppose, for example, that we had found, for Fer-
mat’s great theorem, a proof in which the [infinitary] logical function ϵ was used.
We could then make a finitary proof out of it in the following way.”

Leaving aside the question in what minimal system can the consistency of PA be
proved (which is beyond the scope of this course—the answer is, very roughly, con-
structive principles of abstract mathematics, rather than finitary principles of con-
crete mathematics), a precise working out of the argument Hilbert sketched requires
that the proof of Theorem 138 be carried out in finitary mathematics. Hilbert never
formulated clearly what he meant by finitary mathematics, i.e. he never gave a
formal system of finitary mathematics, and I won’t enter here the debate over what
formal system should be taken to capture the intended notion of finitary arithmetic.
Rather, I will address the question, in how weak a subsystem of PA can the argument
for Theorem 138 be carried out?

The key point is that such a system must be strong enough to prove provable Σ0-
completeness of PA. Hilbert did not explicitly formulate provable Σ0-completeness,

LECTURE 12 116

but it is implicit in his argument, and implicitly he takes it to be a fact of finitary
mathematics. “Let us assume that numerals p, a, b, c (p > 2) satisfying Fermat’s
equation ap+bp = cp are given; then we could also obtain this equation as a provable
formula by giving the form of a proof to the procedure by which we ascertain that
the numbers ap + bp and cp coincide.”

Proving provable Σ0-completeness requires mathematical induction, so we may take
the question to be, how much induction, measured by complexity in the arithmetical
hierarchy of the induction formula, is needed for this proof?

Definition 82 (subsystems of PA with restricted induction) For Γ a class
of formulas in LA (e.g. Σ1 or Π1), PAΓ is the subsystem of PA determined by
restricting the instances of the scheme of mathematical induction N12 to formulas
in Γ.

The minimum is Σ1-induction, i.e. axioms N12 for Σ1-formulas, as in the step of the
proof in Lecture 11 in which we proved that
((∀v1 ≤ v2)G ⊃ ∀v3(S(p(∀v1 ≤ v2)Gq, v2, 0′′, v3) ⊃ P (v3)) by induction on the free
variable v2. However, we also used Π2-induction in our proof in PA showing that
e.g. (v1+v2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2, v3)), since we proved this by induction
on the formula ∀v3(v1 + v2 = v3 ⊃ Pr[pv1 + v2 = v3q](v1, v2, v3)), which is Π2 since
Pr[pF (v1)q](v1) is Σ1. It might be that there is some clever way to reconstruct that
proof so that the universal quantification of the induction formula is not needed.
In any case, from what has been established, we have the following theorem corre-
sponding to Hilbert’s argument claiming that infinitary mathematics is conservative
over finitary mathematics with respect to Π1-theorems.

Theorem 140 For X any Π1-sentence in the language of PA, if PA ⊢ X, then
PAΠ2 ∪ {ConPA} ⊢ X.

Proof. By Theorem 138 and analysis of the proof of Theorem 130. N

Lecture 13

Provability logic: the system GL

Monday 25 February 2019

13.1 The system GL for the logic of provability

A proof predicate Pr(v1) for a system S can be thought of as an operator on sen-
tences in the language of S, i.e. it generates a sentence from a sentence. To signify
this viewpoint, we write �A for Pr(pAq). In this notation, the arithmetization of
Löb’s theorem (exercise) is expressed as (�(�A ⊃ A) ⊃ �A). As we shall see, this
formula axiomatizes the logic of provability.

When provability logic first began to be developed, in the 1970s, there existed al-
ready, for more than fifty years, systems of logic for a sentence operator �A with
the intended meaning, “A is necessarily true”. Such systems are called modal logic
since necessity concerns not only the truth of sentences but also the kind, or mode
of their truth. In a brief note published in 1933, Gödel obtained results about in-
tuitionistic logic by interpreting the � operator of modal logic as provability, which
was the beginning of provability logic. Modal logic provided a framework for setting
up systems for provability logic, and also a semantics of possible worlds with an
accessibility relation between worlds by which to study properties of such systems,
which has been exploited in the study of provability logic, but we will establish the
results that concern us here purely syntactically, i.e. not using these semantic tech-
niques. It is important to realize that provability logic is not an extension of the
logic of necessity, for which (�X ⊃ X) is valid, in contrast to which Löb’s theorem
shows that if S 0 X, then S 0 (Pr(pXq) ⊃ X).

117

LECTURE 13 118

The system of provability logic was named GL by George Boolos, after Gödel and
Löb. It consists of propositional logic plus the provability operator.

13.1.1 The language of GL

The primitive symbols of GL:

A sentence ⊥ (This symbol stands for a generic false sentence, and when we consider
interpretations of GL in PA, we will interpret⊥ as some particular sentence refutable
in PA, e.g. 0 = 0′.)

Infinitely many sentence letters generated from the symbol ‘p’ and iteration of the
subscript symbol ‘′’, i.e. p′, p′′, p′′′, . . . , which we abbreviate as p1, p2, p3,

The sentential connective ⊃.

The sentential operator �.

Definition 83 (sentences of GL) By recursion:

base: ⊥ and all pi are sentences.

recursion: If X and Y are sentences, (X ⊃ Y) is a sentence.

If X is a sentence, �X is a sentence.

We shall write sentences in the language of GL using the following abbreviations
which, on the intended meaning for ⊃ and ⊥, express negation, conjunction, dis-
junction, and equivalence:

Definition 84 ∼ X =df (X ⊃⊥),

(X ∧ Y) =df ((X ⊃ (Y ⊃⊥)) ⊃⊥),

(X ∨ Y) =df ((X ⊃⊥) ⊃ Y)

(X ≡ Y) =df (((X ⊃ Y) ⊃ ((Y ⊃ X) ⊃⊥)) ⊃⊥)

13.1.2 The axioms and inference rules of GL

Definition 85 (axioms of GL) A1. (Tautologies) Every sentence in the language
of GL that is a truth functional tautology when ⊥ is assigned the truth value F
(falsity) and ⊃ is interpreted as the truth function ‘if . . . then . . . ’ is an axiom.

A2. (Distribution) For X and Y any sentences in the language of GL, (�(X ⊃ Y) ⊃
(�X ⊃ �Y)) is an axiom of GL. (Corresponds to P2 for a provability predicate.)

LECTURE 13 119

A3. (Arithmetized Löb’s Theorem) For each sentence X in the language of GL,
(�(�X ⊃ X) ⊃ �X) is an axiom of GL.

Definition 86 (rules of inference of GL) R1. From sentences X and (X ⊃ Y),
infer Y . (Modus ponens)

R2. From sentence X infer �X. (Corresponds to property P1 of provability predi-
cates. In modal logic, this rule is known as Necessitation.)

There is no axiom schema corresponding to property P3 for provability predicates
since, as we shall see by Theorem 152, (�X ⊃ � �X) is derivable from the axioms
and rules of inference specified for GL.

13.2 Soundness and completeness of GL

The axioms and inference rules of GL arise by abstraction from the arithmetized
proof predicate for PA. Conversely, the axioms and inference rules, and hence all
theorems of GL, translate into theorems of PA. This result means that GL is sound
with respect to interpretation in PA.

Definition 87 (interpretations of GL in PA) Let Pr(v1) be a provability pred-
icate in the language of PA and let i be a mapping from {⊥, p′ , . . . , p′...′

. . .} to sen-
tences in the language of PA such that for X = i(⊥), PA ⊢∼ X. An interpretation
Ii of GL in PA with respect to i and Pr(v1) is specified by the following inductive
definition:

Base:

(i) Ii(⊥) = i(⊥);

(ii) Ii(pn) = i(pn), for n any string of subscript symbols.

Induction:

(iii) Ii((X ⊃ Y)) = (Ii(X) ⊃ Ii(Y));

(iv) Ii(�X) = Pr(pIi(X)q).
Note that in clause (iii) of this definition the occurrence of ⊃ on the left is as a
symbol in the language of GL and the occurrence of ⊃ on the right is as a symbol
in the language of PA.

Theorem 141 (soundness of GL with respect to interpretation in PA) For
every assignment i of sentences in the language of PA to the atomic sentences in
the language of GL, if GL ⊢ X, then PA ⊢ Ii(X), for Ii as in Definition 87.

LECTURE 13 120

Proof. By induction on the length of proofs in GL.

Basis step, for X an axiom of GL:

(i) If X is an A1 axiom, i.e. a truth functional tautology when ⊥ is assigned the
truth value F , then if i(⊥) = Z, (∼Z ⊃ Ii(X)) is a truth functional tautology in
the language of PA, as follows: For Z assigned the value T , (∼Z ⊃ Ii(X)) takes the
value T , and for Z assigned the value F , since X is a tautology when ⊥ is assigned
the value F , Ii(X)) takes the value T when Z takes the value F , so (∼Z ⊃ Ii(X))
takes the value T , so (∼Z ⊃ Ii(X)) is a tautology, and hence PA ⊢ (∼Z ⊃ Ii(X)).
Then since PA ⊢ ∼Z, by modus ponens, PA ⊢ Ii(X)).

(ii) If X is an A2 distribution axioms, then Ii(X) is an instance of P2 and hence
provable in PA.

(iii) If X is an A3 arithmetized Löb’s Theorem axiom, then Ii(X) is an instance of
arithmetized Löb’s Theorem, which is provable in PA (exercise).

Induction step:

R1: From GL ⊢ (X ⊃ Y) and GL ⊢ X, GL ⊢ Y . Then by Induction Hypothesis,
PA ⊢ (Ii(X) ⊃ Ii(Y)) and PA ⊢ Ii(X). Then by Modus ponens in PA, PA ⊢
Ii(Y).

R2: From GL ⊢ X, GL ⊢ �X. By Induction Hypothesis, PA ⊢ Ii(X). Then by P1

for PA, PA ⊢ Pr(pIi(X)q). N

There is also a completeness theorem, due to Robert Solovay, for GL with respect
to interpretation in PA.

Theorem 142 (Solovay completeness theorem for GL) For X any sentence
in the language of GL, if for every interpretation Ii(X) (as in Definition 87), PA ⊢
Ii(X), then GL ⊢ X; or equivalently, for X any sentence in the language of GL, if
GL 0 X, then there is an interpretation Ii(X) such that PA 0 Ii(X).

Proof. Beyond the scope of this course.

13.3 Some derivations in GL

Unarithmetized Löb’s Theorem holds for GL, i.e.

Lemma 143 If GL ⊢ (�X ⊃ X), then GL ⊢ X.

LECTURE 13 121

Proof. Suppose GL ⊢ (�X ⊃ X). Then by R2, GL ⊢ �(�X ⊃ X). By A3,
GL ⊢ (�(�X ⊃ X) ⊃ �X), so by R1, GL ⊢ �X. Then by the initial supposition
and R1, GL ⊢ X. N
Lemma 144 If GL ⊢ (A ⊃ B), then GL ⊢ (�A ⊃ �B).

Proof. This is a notational variant of P4 and the proof of P4 in Lemma 108 proves
this result. N

Next we note that GL is closed under truth functional consequence, i.e.

Theorem 145 If Y is a truth functional consequence of finitely many formulas
which are each provable in GL, then GL ⊢ Y .

Proof. If Y follows truth functionally from the finitely many formulas X1, . . . , Xr,
then (X1 ⊃ (X2 ⊃ (. . . ⊃ (Xr ⊃ Y) . . .))) is a tautology and hence an axiom of GL,
and GL ⊢ Y by r-many applications of Modus ponens starting with this axiom. N

Remarks. In proofs that depend on this theorem I will say “by propositional
logic in GL” or just “by propositional logic”, rather than citing Theorem 145. By
the compactness theorem for truth functional logic, the above result holds for Y a
truth functional consequence of any set of provable formulas, not just finite sets of
formulas, but we have no need for this generalization.

Theorem 146 GL ⊢ (�(X ∧ Y) ≡ (�X ∧ �Y))

Proof. (i) Both ((X∧Y) ⊃ X) and ((X∧Y) ⊃ Y) are tautologies and hence axioms
of GL. By Lemma 144, GL ⊢ (�(X ∧ Y) ⊃ �X) and GL ⊢ (�(X ∧ Y) ⊃ �Y).
Then by propositional logic in GL, GL ⊢ (�(X ∧ Y) ⊃ (�X ∧ �Y))

(ii) Since (X ⊃ (Y ⊃ (X ∧ Y))) is a tautology, GL ⊢ (X ⊃ (Y ⊃ (X ∧ Y))).
Hence by Lemma 144, GL ⊢ (�X ⊃ �(Y ⊃ (X ∧ Y))). By A2, GL ⊢ (�(Y ⊃
(X ∧ Y) ⊃ (�Y ⊃ �(X ∧ Y)))). Then by propositional logic in GL, GL ⊢ (�X ⊃
(�Y ⊃ �(X ∧ Y))). The formulas ((�X ∧ �Y) ⊃ �X) and ((�X ∧ �Y) ⊃ �Y)
are tautologies and hence axioms of GL, so by propositional logic in GL, GL ⊢
((�X ∧ �Y) ⊃ �(X ∧ Y)). N
Proposition 147 GL ⊢ (�(X ≡ Y) ⊃ (�X ≡ �Y))

Proof. By Definition 84, (X ≡ Y) =df ((X ⊃ Y) ∧ (Y ⊃ X)), so by Theorem 146,
GL ⊢ (�(X ≡ Y) ≡ (�(X ⊃ Y) ∧ �(Y ⊃ X))). By A2 and Theorem 145,
GL ⊢ ((�(X ⊃ Y) ∧ �(Y ⊃ X)) ⊃ ((�X ⊃ �Y) ∧ (�Y ⊃ �X))). Then by
propositional logic in GL, GL ⊢ (�(X ≡ Y) ⊃ ((�X ⊃ �Y) ∧ (�Y ⊃ �X))),
which by Definition 84 is GL ⊢ (�(X ≡ Y) ⊃ (�X ≡ �Y)). N
The converse of Proposition 147 does not hold:

LECTURE 13 122

Proposition 148 If PA is 1-consistent, GL 0 ((�X ≡ �Y) ⊃ �(X ≡ Y)).

Proof. PA 0 ((Pr(pGq) ≡ Pr(p0 = 0′q)) ⊃ (Pr(pG ≡ 0 = 0′q))), since
PA ⊢ (Pr(pGq) ≡ Pr(p0 = 0′q)), by propositional logic from Corollary 113, and
PA 0 (Pr(pG ≡ 0 = 0′q)), if PA is 1-consistent, which we see as follows. Suppose
PA ⊢ Pr(pG ≡ 0 = 0′q)). Then by P2, PA ⊢ Pr(p∼Gq). Since we are given
that PA is 1-consistent, PA is Σ1-sound, and so since Pr(v1) is Σ1 and expresses
{n : PA ⊢ En}, PA ⊢ ∼G. But if PA is 1-consistent, PA 0 ∼G. Hence by
Theorem 141, if PA is 1-consistent, GL 0 ((�X ≡ �Y) ⊃ �(X ≡ Y)). N

13.4 Closure of GL under substitution by prov-

ably equivalent formulas

The result of substituting a sentence A for a sentence letter p in formula F , Fp(A),
is defined by the following recursion.

Definition 88 (Fp(A)) 1. If F = p, then Fp(A) = A.

2. If F = q where q ̸= p, then Fp(A) = q.

3. If F =⊥, then Fp(A) =⊥.

4. If F = (G ⊃ H), then Fp(A) = (Gp(A) ⊃ Hp(A)).

5. If F = �G, then Fp(A) = �(Gp(A)).

Proposition 149 (closure of GL under substitution) For X any formula in
the language of GL, and F (p) any formula in the language of GL in which the
sentence letter p occurs, if GL ⊢ F (p), then GL ⊢ Fp(X).

Proof. By induction on the length of a proof of F (p) in GL.

Base case: The proof is of length 1, i.e. F (p) is an axiom, in which case it is of the
form A1 (tautology), A2 (distribution), or A3 (arithmetized Löb’s Theorem). Then
Fp(X) is an axiom, of the same form as F (p) is, so GL ⊢ Fp(X).

Induction steps: (i) The proof of F (p) ends with an application of R1, i.e. GL ⊢ Y
and GL ⊢ (Y ⊃ F (p)). By Induction Hypothesis, GL ⊢ Yp(X) and GL ⊢ (Y ⊃
F (p))p(X). Then by clause 4 of Definition 88, GL ⊢ (Yp(X) ⊃ Fp(X)), so by R1,
GL ⊢ Fp(X).

(ii) The proof of F (p) ends with an application of R2, i.e. F (p) is of the form �G(p)
and GL ⊢ G(p). By Induction Hypothesis, GL ⊢ Gp(X). By R2, GL ⊢ �(Gp(X)).
Then by clause 5 of Definition 88, GL ⊢ Fp(X). N

LECTURE 13 123

Theorem 150 (provable equivalence of substitution of provable equivalents)
For all formulas A, B, and F and any sentence letter p, if GL ⊢ (A ≡ B), then GL
⊢ (Fp(A) ≡ Fp(B)).

Proof. We argue by induction over the inductive definition of formulas F .

If F = p, what is to be proved is that if GL ⊢ (A ≡ B), then GL ⊢ (A ≡ B), which
holds trivially.

If F = q for p ̸= q, what is to be proved is that if GL ⊢ (A ≡ B), then GL ⊢ (q ≡ q).
The consequent is provable outright, so the implication holds.

If F =⊥, what is to be proved is GL ⊢ (A ≡ B), then GL ⊢ (⊥≡⊥), for which again
the consequent is provable outright.

If F = (G ⊃ H), then we have as induction hypotheses, if GL ⊢ (A ≡ B), then
GL ⊢ (Gp(A) ≡ Gp(B)), and GL ⊢ (Hp(A) ≡ Hp(B)). By Definition 88(4), what is
to be proved is if GL ⊢ (A ≡ B), then
GL ⊢ ((Gp(A) ⊃ Hp(A)) ≡ (Gp(B) ⊃ Hp(B))), which follows by propositional logic
from the induction hypotheses.

If F = �G, then we have by induction hypothesis that if GL ⊢ (A ≡ B), then
GL ⊢ (Gp(A) ≡ Gp(B)). Then by Lemma 144 and propositional logic in GL, GL
⊢ (�(Gp(A)) ≡ �(Gp(B))), so by Definition 88(5), GL ⊢ ((�G)p(A) ≡ (�G)p(B)),
which is to say, GL ⊢ (Fp(A) ≡ Fp(B)). N
Theorem 150 immediately establishes that GL is closed under substitution of prov-
able equivalents.

Corollary 151 If GL ⊢ Fp(A) and GL ⊢ (A ≡ B), then GL ⊢ Fp(B).

Proof. From GL ⊢ (A ≡ B) and Theorem 150, we have by ∧-elimination, GL ⊢
(Fp(A) ⊃ Fp(B)), so by Modus ponens from GL ⊢ Fp(A), we have GL ⊢ Fp(B). N
From Corollary 151 and results from the previous section, we are able to establish
that GL proves P3.

Theorem 152 GL ⊢ (�X ⊃ � �X)

Proof. The formula (X ⊃ ((� � X ∧ �X) ⊃ (�X ∧ X)) is a tautology and
hence GL ⊢ (X ⊃ ((� � X ∧ �X) ⊃ (�X ∧ X)). Since, by Theorem 146, GL
⊢ ((� �X ∧ �X) ≡ �(�X ∧X))), by Corollary 151, taking Fp as
(X ⊃ (p ⊃ (�X∧X)), GL ⊢ (X ⊃ (�(�X∧X) ⊃ (�X∧X)). Then by Lemma 144
(P4), GL ⊢ (�X ⊃ �(�(�X ∧X) ⊃ (�X ∧X)). The formula (�(�(�X ∧X) ⊃
(�X ∧ X)) ⊃ �(�X ∧ X)) is an A3 axiom of GL. Then by propositional logic in
GL, GL ⊢ (�X ⊃ �(�X ∧X)). Then by Theorems 146 and propositional logic in

LECTURE 13 124

GL, GL ⊢ (�X ⊃ (� �X ∧ �X). Since ((� �X ∧ �X) ⊃ � �X) is a tautology,
by propositional logic in GL, GL ⊢ (�X ⊃ � �X). N
The proof of Theorem 150 generalizes to establish provable equivalence of substitu-
tion on more than one sentence letter.

Theorem 153 (substitution on more than one sentence letter) For F any
formula with sentence letters pk1 , . . . , pkn, and for pairs of formulas Ai, Bi, i =
1, . . . , n, such that GL ⊢ (Ai ≡ Bi), GL ⊢ (F (A1, . . . , An) ≡ F (B1, . . . , Bn)), where
F (A1, . . . , An) is the result of substituting Ai for pki in F , and F (B1, . . . , Bn) is the
result of substituting Bi for pki in F .

Proof. Exactly the same proof structure as for Theorem 150, with just reformulation
of the induction hypothesis so that it’s for multiple substitutions, establishes this
result. N

13.5 Closure of GL under substitution of provably

equivalent formulas is provable in GL

We now show that the closure of GL under substitution of provably equivalent
formulas, Theorem 150, can be formalized in GL.

Theorem 154 (arithmetized substitution theorem) For all formulas A, B,
and F and sentence letter p, GL ⊢ (�(A ≡ B) ⊃ �(Fp(A) ≡ Fp(B))).

Proof. The proof is by induction over the recursion that generates the formula F .

If F = p, what is to be proved is GL ⊢ (�(A ≡ B) ⊃ �(A ≡ B)), which is a
tautology and hence provable in GL.

If F = q for p ̸= q, what is to be proved is GL ⊢ (�(A ≡ B) ⊃ �(q ≡ q)). Since
(q ≡ q) is a tautology, GL ⊢ (q ≡ q), so by R2, GL ⊢ �(q ≡ q). The result follows
by propositional logic in GL.

If F =⊥, what is to be proved is GL ⊢ (�(A ≡ B) ⊃ �(⊥≡⊥)). The argument is
as for the preceding case.

If F = (G ⊃ H), we have as induction hypotheses, GL ⊢ (�(A ≡ B) ⊃ �(Gp(A) ≡
Gp(B))), and GL ⊢ (�(A ≡ B) ⊃ �(Hp(A) ≡ Hp(B))). By propositional logic
in GL, GL ⊢ (�(A ≡ B) ⊃ (�(Gp(A) ≡ Gp(B)) ∧ �(Hp(A) ≡ Hp(B)))). Then
by Theorem 146 and propositional logic in GL, GL ⊢ (�(A ≡ B) ⊃ �((Gp(A) ≡
Gp(B))∧(Hp(A) ≡ Hp(B)))). The following formula is a tautology and so provable in
GL (as an axiom): (((Gp(A) ≡ Gp(B))∧ (Hp(A) ≡ Hp(B))) ⊃ ((Gp(A) ⊃ Hp(A)) ≡

LECTURE 13 125

(Gp(B) ⊃ Hp(B)))). Then by Lemma 144 (P4), GL ⊢ (�((Gp(A) ≡ Gp(B)) ∧
(Hp(A) ≡ Hp(B))) ⊃ �((Gp(A) ⊃ Hp(A)) ≡ (Gp(B) ⊃ Hp(B)))). From this result
and the two steps earlier we have, by propositional logic in GL, GL ⊢ (�(A ≡
B) ⊃ �((Gp(A) ⊃ Hp(A)) ≡ (Gp(B) ⊃ Hp(B)))), which by Definition 88(4), is
GL ⊢ (�(A ≡ B) ⊃ �(Fp(A) ≡ Fp(B))).

If F = �G, we have as induction hypothesis that GL ⊢ (�(A ≡ B) ⊃ �(Gp(A) ≡
Gp(B))). Then by Proposition 147 and propositional logic in GL, GL ⊢ (�(A ≡
B) ⊃ (�(Gp(A)) ≡ �(Gp(B)))). Then by Definition 88 (5.), GL ⊢ (�(A ≡ B) ⊃
(Fp(A) ≡ Fp(B))). Then by Lemma 144 (P4), GL ⊢ (� � (A ≡ B) ⊃ �(Fp(A) ≡
Fp(B))). By Theorem 152, GL ⊢ (�(A ≡ B) ⊃ � � (A ≡ B)), so by propositional
logic in GL, GL ⊢ (�(A ≡ B) ⊃ �(Fp(A) ≡ Fp(B))). N

13.6 Strengthened proof that the closure of GL

under substitution of provably equivalent for-

mulas is provable in GL

This strengthened proof makes use of the following technical definition.

Definition 89 �X =df (�X ∧X)

Lemma 155 GL ⊢ (�X ⊃ X)

Proof. ⊢ (�X ⊃ X) is a tautology. N

Remark. Lemma 155 is a triviality but draws attention to a key property of � that
holds for all formulas and which, by Löb’s Theorem for GL (Lemma 143), holds for� only for formulas provable in GL. The constraint of Löb’s Theorem makes it very
difficult to derive an unboxed conclusion from a boxed premiss, i.e. of the form �X.
The situation is much more flexible if we are able to strengthen the premiss to �X.

Lemma 156 For each formula X in the language of GL, the formulas �X, ��X,
and � �X are provably equivalent in GL.

Proof. The provable equivalence of � � X and � � X is, by Definition 89, an
instance of Theorem 146, namely GL ⊢ (�(�X ∧X) ≡ (� �X ∧ �X)).

By Theorem 152 (P3) and propositional logic in GL, GL ⊢ (�X ≡ (� �X ∧�X)),
which by Definition 89 is GL ⊢ (�X ≡ � �X). N
Corollary 157 GL ⊢ (�X ⊃ � �X)

LECTURE 13 126

Proof. By ∧-Elimination, (�X ⊃ �X). By Lemma 156, (�X ≡ � � X), so by
∧-elimination, �X ⊃ � �X). N

Remark. The converse implication is not provable in GL, since
GL 0 (�X ⊃ X) unless GL ⊢ X (Lemma 143).

Lemma 158 If GL ⊢ (�X ⊃ Y), then GL ⊢ (�X ⊃ �Y).

Proof. Assume GL ⊢ (�X ⊃ Y). Then by Lemma 144, GL ⊢ (� � X ⊃ �Y).
Then by Lemma 156 and propositional logic in GL, GL ⊢ (�X ⊃ �Y). N
Lemma 159 GL ⊢ (�X ⊃ Y) if and only if GL ⊢ (�X ⊃ �Y).

Proof. (i) From Definition 89 by propositional logic in GL, GL ⊢ (�X ⊃ �X).
Assume GL ⊢ (�X ⊃ Y). Then by Lemma 158, GL ⊢ (�X ⊃ �Y). Then by
Theorem 145, GL ⊢ (�X ⊃ �Y). From the assumption and this last result by
propositional logic in GL, GL ⊢ (�X ⊃ (�Y ∧ Y)), i.e. GL ⊢ (�X ⊃ �Y).

(ii) Assume GL ⊢ (�X ⊃ �Y). By Lemma 155, GL ⊢ (�Y ⊃ Y) and hence by
propositional logic in GL, GL ⊢ (�X ⊃ Y). N
We now prove a version of Theorem 154 with strengthened consequent from a
strengthened antecedent. The consequent of Theorem 154, �(Fp(A) ≡ Fp(B)))
is strengthened to (Fp(A) ≡ Fp(B))), i.e. by dropping the �. That this is a
strengthening is down to Löb’s Theorem, which tells us that the only way to use an
antecedent �X in a chain of reasoning is if X itself is provable. The antecedent of
Theorem 154, �(A ≡ B) is strenghtened by adding the conjunct (A ≡ B), i.e. to
make it �(A ≡ B).

Theorem 160 (strengthened arithmetized substitution theorem) For all for-
mulas A, B, and F and propositional variable p,
GL ⊢ (�(A ≡ B) ⊃ (Fp(A) ≡ Fp(B))).

Proof. The proof is by induction over the recursion that generates the formula F .

If F = p, what is to be proved is GL ⊢ (�(A ≡ B) ⊃ (A ≡ B)), which holds by
Definition 89 and propositional logic in GL.

If F = q for p ̸= q, what is to be proved is GL ⊢ (�(A ≡ B) ⊃ (q ≡ q)). For any
formula H, (H ⊃ (q ⊃ q)) is a tautology and hence an axiom of GL, so in particular
GL ⊢ (�(A ≡ B) ⊃ (q ≡ q)).

If F =⊥, what is to be proved is GL ⊢ (�(A ≡ B) ⊃ (⊥≡⊥)). The argument is as
for the preceding case.

If F = (G ⊃ H), we have as induction hypotheses, GL ⊢ (�(A ≡ B) ⊃ (Gp(A) ≡
Gp(B))), and GL ⊢ (�(A ≡ B) ⊃ (Hp(A) ≡ Hp(B))). By Definition 88(4), what

LECTURE 13 127

is to be proved is GL ⊢ (�(A ≡ B) ⊃ ((Gp(A) ⊃ Hp(A)) ≡ (Gp(B) ⊃ Hp(B)))),
which follows from the induction hypotheses by propositional logic in GL.

If F = �G, we have as induction hypothesis that GL ⊢ (�(A ≡ B) ⊃ (Gp(A) ≡
Gp(B))). Then by Lemma 144, GL ⊢ (��(A ≡ B) ⊃ �(Gp(A) ≡ Gp(B))). By The-
orem 146, Axioms A2, and propositional logic in GL, GL ⊢ (�(Gp(A) ≡ Gp(B)) ⊃
(�(Gp(A)) ≡ �(Gp(B)))). From these two last results, by propositional logic in
GL and Defintion 88(5), GL ⊢ (� � (A ≡ B) ⊃ ((�Gp)(A) ≡ (�Gp)(B))). Then
by Corollary 157 and propositional logic in GL, GL ⊢ (�(A ≡ B) ⊃ ((�Gp)(A) ≡
(�Gp)(B))). N
Corollary 161 (variant proof of Theorem 154) For all formulas A, B, and F
and propositional variable p, GL ⊢ (�(A ≡ B) ⊃ �(Fp(A) ≡ Fp(B))).

Proof. By Theorem 160 and Lemma 158.

Theorem 162 (Theorem 160 generalized to multiple substitutions) Let F (pi1 , . . . , pim)
be a formula with sentence letters pi1 , . . . , pim. Then
GL ⊢ (�(A1 ≡ B1) ∧ . . . ∧ �(Am ≡ Bm)) ⊃ (F (A1, . . . , Am) ≡ F (B1, . . . , Bm))).

Proof. Exercise. N

Lecture 14

The fixed-point theorem for GL

Wednesday 27 February 2019

14.1 The notion of a sentence letter modalized

in a sentence, and arithmetized substitution

for modalized sentences

Definition 90 (Y is a subsentence of X) Y is a subsentence of X is defined re-
cursively by

Base case: X is a subsentence of X

Recursion clauses: If the sentence (Z ⊃ W) is a subsentence of X, then Z is a
subsentence of X and W is a subsentence of X.

If the sentence �Z is a subsentence of X, then Z is a subsentence of X.

If sentence Y is a subsentence of sentence X, we say that Y occurs in X.

Definition 91 (sentence letter p occurs modalized in sentence X) A sentence
letter p occurs modalized in a sentence X iff p is a subsentence of X and wherever
p occurs in X, it is a subsentence of a subsentence of X of the form �Y .

Examples of sentences in which the sentence letter p is modalized: (1) �p, (2) ∼ �p,
(3) � ∼ p, (4) ∼ � ∼ p, (5) (�p ⊃ q) (6) �(�p ⊃ p), (7) (�(�p ⊃ p) ⊃ �p), (8)�(p ≡ (�p ⊃ q)), (9) (�(�p ⊃ q)∧ ∼ �p).

128

LECTURE 14 129

Examples of sentences in which the occurrence of p is not modalized: (10) p, (11)
(p ⊃⊥), (12) (�p ⊃ p), (13) (p ≡ (�p ⊃ q).

Definition 92 (decomposition with respect to a modalized sentence letter)
For X a sentence in which the sentence letter p occurs modalized, a decompo-
sition of X with respect to p is a sentence D(pk1 , . . . , pkn) containing sentence
letters pk1 , . . . , pkn that do not occur in X with sentences �Ck1(p), . . . ,�Ckn(p)
such that X = D(�Ck1(p), . . . ,�Ckn(p)), i.e. X is the result of substituting the
sentence �Cki(p) for each occurrence of the sentence letter pki in the sentence
D(pk1 , . . . , pki , . . . , pkn). The sentences �Ck1(p), . . . ,�Ckn(p) are called compo-
nents of X with respect to the decomposition D(pk1 , . . . , pkn) with �Ck1(p), . . . ,�Ckn(p),
and D(pk1 , . . . , pkn) is called the decomposition sentence for this decomposition.
We will say that X is composed of the components �Ck1(p), . . . ,�Ckn(p) by sub-
stitution into the decomposition sentence D(pk1 , . . . , pkn).

Note that what are intrinsic for a given decomposition are its components and the
logical form of the decomposition sentence. The choice of sentence letters occurring
in the given decomposition is arbitrary, but the choice of numbering of the sentence
letters and of the components must be covariant, so that each component is substi-
tuted in the right place in the logical form of the decomposition sentence to result
in X.

Lemma 163 If a sentence letter p occurs modalized in sentence X, then there is a
decomposition of X with respect of p.

Proof. We give two methods which generate a decomposition of X with respect
to a sentence letter p modalized in X. As we shall see, for some sentences these
two methods generate the same decomposition, for other sentences they generate
two different decompositions, and also there are sentences that have decompositions
other than those generated by these two methods.

Method 1 (top down): The sentence X cannot consist just of the sentence letter p,
since p does not occur modalized in p. So there are two cases, either X is of the
form �Y for some sentence Y , or X is of the form (Y ⊃ Z) for sentences Y and Z.

(i) X is of the form �Y . Then we are done, with the decomposition sentence for X
any sentence letter pi distinct from p and component �Y .

(ii) X is of the form (Y ⊃ Z). Then p occurs in Y or in Z, or both, and wherever it
occurs it occurs modalized. If the sentence or sentences in which p occurs modalized
is/are of the form �W then by (i) we are done. If not then it is of the form (U ⊃ V)
and we repeat the argument. Since X is generated in finitely many steps, this
process comes to an end, and since p occurs modalized, it ends in components, i.e.
sentences of the form �Ci(p) in which p occurs modalized.

LECTURE 14 130

To obtain a decomposition of X, replace each of the different components �Ci(p)
by a distinct sentence letter pi that does not occur in X, while replacing each
occurrence of a given component, if it has more than one occurrence, by the same
sentence letter. The resulting formula is a decomposition of X with components�Ci(p).

Method 2 (bottom up): For each occurrence of p in X, find the innermost occurrence
of � in whose scope that occurrence of p occurs. For each such occurrence of �, let
Ci(p) be the sentence to which that occurrence of � is prefixed. From the resulting
set of sentences �Ci(p), discard those sentences that are a subsentence of any of
the other boxed sentences �F (p) in which p occurs unmodalized in F (p) (e.g. in�(�p ⊃ p), we discard �p which has the occurrence of � with minimum scope for
the occurrence of p first from the left, because it occurs within the scope of �(�p ⊃
p), which contains the minimum scope for the modalized occurrence of the second
occurrence of p). The sentences �Ci(p) that remain after discarding sentences with
minimum scope that occur within other sentences with minimum scope will be the
components of the decomposition of X. In X replace each component sentence of
distinct form by a distinct sentence letter not occurring in X, at each occurrence in
X of that component. Components of the same form should be replaced by the same
sentence letter. This gives the decomposition of sentence X with these components.
N
Examples of decompositions.

(i) (�(�(�p ⊃ p) ⊃ p) ⊃ �p)
Method 1: The sentence is an implication between boxed formulas, so the com-
ponents are those two boxed sentences, i.e. �(�(�p ⊃ p) ⊃ p) and �p, with
decomposition formula is (p1 ⊃ p2).

Method 2: When applied to the three occurrences of p in the antecedent sentence of
this implication, the procedure results in sentence �p for the first occurrence of p (go-
ing from the left), �(�p ⊃ p)) for the second occurrence of p, and �(�(�p ⊃ p) ⊃ p)
for the third occurrence of p, and for the single occurrence of p in the consequent
sentence, it results in �p. From the sentences resulting from the occurrences of p in
the antecedent sentence, we discard �p because �p with that occurrence of p occurs
in �(�p ⊃ p)) (and also in �(�(�p ⊃ p) ⊃ p)), and we discard �(�p ⊃ p)) since it
is a subsentence of �(�(�p ⊃ p) ⊃ p) and the two occurrences of p in �(�p ⊃ p))
occur in �(�(�p ⊃ p) ⊃ p). So the components are �(�(�p ⊃ p) ⊃ p) and �p,
and a decomposition sentence for these components is (p1 ⊃ p2).

In this example the two methods yield the same decomposition. An example of a
sentence in which a sentence letter occurs modalized for which the two methods

LECTURE 14 131

result in different decompositions is the following:

(ii) (�(�p ⊃ q)∧ ∼ �p)
By Method 1:

components �C1(p) = �(�p ⊃ q), and �C2(p) = �p, with decomposition
(p1∧ ∼ p2)

By Method 2:

component �C1(p) = �p, with decomposition (�(p1 ⊃ q)∧ ∼ p1)

Some sentences with a modalized sentence letter have more than two decompositions,
e.g.

(iii) � � �p has three decompositions:

(i) component �C1(p) = � � �p, with decomposition p1.

(ii) component �C1(p) = � � p, with decomposition �p1 .

(iii) component �C1(p) = �p, with decomposition � � p1

The decomposition of � � �p by Method 1 is (i). The decomposition of � � �p by
Method 2 is (iii).

Example (iii) generalizes to:

Proposition 164 For each n, there is a sentence, modalized in a sentence letter,
that has n-many decompositions.

Proof. For each n, � . . .�︸ ︷︷ ︸
n

p has decompositions

Di = � . . .�︸ ︷︷ ︸
n−i

p1 with component � . . .�︸ ︷︷ ︸
i

p, for each i such that 1 ≤ i ≤ n. N

For sentences in which a sentence letter occurs modalized, there is an arithmetized
substitution theorem which yields the conclusion of Theorem 160 on the hypothesis
of Theorem 154, i.e.

Theorem 165 (arithmetized substitution in modalized sentences) Let F (p)
be a sentence in which sentence letter p occurs modalized. Then
GL ⊢ (�(A ≡ B) ⊃ (Fp(A) ≡ Fp(B))).

LECTURE 14 132

Proof. By Lemma 163, there is a decomposition D(p1, . . . , pm), with sentence
letters p1, . . . , pm not in F (p) and components �C1(p), . . . ,�Cm(p). The following
is (a recipe for) a proof in GL.

(1) (�(A ≡ B) ⊃ �(Cip(A) ≡ Cip(B))) 1 ≤ i ≤ m Theorem 154 (∗)
(2) (�(A ≡ B) ⊃ (�Ci(A) ≡ �Ci(B))) (1) Proposition 147 prop logic
(3) (� � (A ≡ B) ⊃ �(�Ci(A) ≡ �Ci(B))) (2) Lemma 144
(4) (�(A ≡ B) ⊃ �(�Ci(A) ≡ �Ci(B))) (3) Theorem 152 prop logic (∗∗)
(5) (�(A ≡ B) ⊃ �(�Ci(A) ≡ �Ci(B))) (2)(4) ∧-Introduction
(6) (((�(�C1(A) ≡ �C1(B))) ∧ . . . ∧ �(�Cm(A) ≡ �Cm(B))) ⊃

(D(�C1(A), . . . ,�Cm(A)) ≡ D(�C1(B), . . . ,�Cm(B))))
Theorem 162 (∗ ∗ ∗)

(7) (�(A ≡ B) ⊃ (Fp(A) ≡ Fp(B))) (5)(6) prop logic N

(∗) Theorem 154 depends on Theorem 152, which depends on A3.

(∗∗) Theorem 152 depends on A3.

(∗ ∗ ∗) Theorem 162 is a generalization of Theorem 160, which depends on Corol-
lary 157 of Theorem 156, which uses Theorem 152, which depends on A3.

14.2 The fixed point theorem for GL

Definition 93 (fixed point) For X a sentence in the language of GL that contains
the sentence letter pi, a sentence F that contains only sentence letters contained in
X and does not contain pi such that GL ⊢ (F ≡ Xpi(F)) is a fixed point for X with
respect of pi.

We shall show that every sentence F modalized in a sentence letter pi has a fixed
point with respect to pi. The argument is by induction on the number of components
in a decomposition of F . We begin with a lemma which establishes the case where
F has a decomposition with a single component, i.e. F is of the form �Y (pi).

Lemma 166 (fixed point for �Y) For pi any sentence letter and Y (pi) any sen-
tence in the language of GL in which pi occurs, the result of substituting (⊥⊃⊥) for
each occurrence of pi in �Y (pi) is a fixed point for �Y (pi).

Proof. In this proof we abbreviate (⊥⊃⊥) as ⊤, and write �Y (⊤) for the result of
substituting (⊥⊃⊥) for each occurrence of pi in �Y (pi). The following derivation
is a proof in GL.

(1) (�Y (⊤) ⊃ (⊤ ≡ �Y (⊤)) tautology.

LECTURE 14 133

(2) �(�Y (⊤) ⊃ (⊤ ≡ �Y (⊤)) (1) R2.
(3) (� � Y (⊤) ⊃ �(⊤ ≡ �Y (⊤))) (2) A2 R1
(4) (�Y (⊤) ⊃ �(⊤ ≡ �Y (⊤))) (3) Theorem 152 prop logic.
(5) (�(⊤ ≡ �Y (⊤)) ⊃ �(Y (⊤) ≡ Y (�Y (⊤)))) Theorem 154.
(6) (�(Y (⊤) ≡ Y (�Y (⊤))) ⊃ (�Y (⊤) ≡ �Y (�Y (⊤)))) Proposition 147.
(7) (�Y (⊤) ⊃ (�Y (⊤) ≡ �Y (�Y (⊤)))) (4) (5) (6) transitivity of ⊃.
(8) (�Y (⊤) ⊃ �Y (�Y (⊤))) (7) prop logic.

(9) (�Y (⊤) ⊃ �(⊤ ≡ �Y (⊤))) (1) (4) prop logic
(10) (�Y (⊤) ⊃ (Y (⊤) ≡ Y (�Y (⊤)))) (9), Theorem 160, prop logic
(11) (Y (�Y (⊤)) ⊃ (�Y (⊤) ⊃ Y (⊤))) (10) prop logic.
(12) (�Y (�Y (⊤)) ⊃ �(�Y (⊤) ⊃ Y (⊤))) (11) R2 A2 R1
(13) (�Y (�Y (⊤)) ⊃ �Y (⊤)) (12) A3 prop logic.

(14) (�Y (⊤) ≡ �Y (�Y (⊤))) (8)(13)∧-Introduction. N

Before proceeding to the induction step in our proof of the Fixed Point Theorem,
we need another lemma and for that lemma we need a definition:

Definition 94 (solvable systems of simultaneous equivalences) For 1 ≤ i ≤
m, let Ai(pk1 , . . . , pkm), be m-many sentences all with the same sentence letters,
among which are them-many sentence letters pk1 , . . . , pkm. A system of simultaneous
equivalences of the form

(pki ≡ Ai(pk1 , . . . , pki , . . . , pkm))

is solvable in GL iff there are sentences F1, . . . , Fm not containing pk1 , . . . , pkm, but
containing the remaining sentence letters in each Ai, such that for 1 ≤ i ≤ m,

GL ⊢ (Fi ≡ Ai(pk1/F1, . . . , pki/Fi, . . . , pkm/Fm)).

Lemma 167 (solving systems of simultaneous equivalences) Every system of
m-many simultaneous equivalences of the form

(pki ≡ �Ci(pk1 , . . . , pki , . . . pkm)),

for 1 ≤ i ≤ m, is solvable in GL.

Proof. The proof is by induction on m.

m = 1. This case is Lemma 166.

LECTURE 14 134

Suppose the Lemma holds for m. Let �Ci(pk1 , . . . , pkm , pkm+1) be a set of (m +
1)-many sentences with m + 1-many sentence letters pk1 , . . . , pkm , pkm+1 . By the
Induction Hypothesis, there are sentences Fi(pkm+1), 1 ≤ i ≤ m, each of which does
not contain the sentence letters pk1 , . . . , pkm and does contain the sentence letter
pkm+1 , such that for 1 ≤ i ≤ m,

(1) GL ⊢ (Fi(pkm+1) ≡ �Ci(p1/F1(pkm+1), . . . , pm/Fm(pkm+1), pkm+1)).

Substitute Fi(pkm+1) for pki in �Cm+1(pk1 , . . . , pkm , pkm+1), for each i such that 1 ≤
i ≤ m. This results in the sentence �Cm+1(F1(pkm+1), . . . , Fm(pkm+1), pkm+1). By
Lemma 166 applied to �Cm+1(F1(pkm+1), . . . , Fm(pkm+1), pkm+1) with respect to the
sentence letter pkm+1, there is a sentence Fm+1 such that

(2) GL ⊢ Fm+1 ≡ �Cm+1(F1(Fm+1), . . . , Fm(Fm+1), Fm+1)).

Substituting Fm+1 for pkm+1 in each of the provable equivalences (1), the sentences

F1(pkm+1/Fm+1), . . . , Fm(pkm+1/Fm+1), Fm+1

are a set of solutions to m+ 1-many simultaneous equivalences. N

We are now in a position to prove the Fixed Point Theorem. There are a number
of different proofs of this theorem, most of which use Kripke models for the modal
operator (three such proofs are expounded by George Boolos in his book The Logic of
Provability, Cambridge University Press, 1993, pp. 104-123). The purely syntactic
proof given here follows Per Lindstrom, “Provability logic—a short introduction”,
Theoria 62 (1996), pp. 31-35; see also Craig Smorynski, Self-Reference and Modal
Logic, Springer, 1985, pp. 78-82.

Theorem 168 (Fixed Point Theorem) For every sentence Xp modalized in p,
there is a sentence F containing only sentence letters that occur in Xp other than p
such that GL ⊢ (F ≡ Xp(F)).

Proof. The proof we give establishes this result constructively, as follows. For
D(p1, . . . , pk) a decomposition of Xp with respect to modalized sentence letter p and
components �C1(p), . . . ,�Ck(p), we have F1, . . . , Fk in which p does not occur and
the sentence letters in each Fi are among those occurring in X, such that GL proves
the simultaneous equivalences (F1 ≡ �C1p(D(F1, . . . , Fi, . . . , Fk))), . . . ,
(Fi ≡ �Cip(D(F1, . . . , Fi, . . . , Fk))), . . . , (Fk ≡ �Ckp(D(F1, . . . , Fi, . . . , Fk))), from
which it follows that GL ⊢ (D(F1, . . . , Fk) ≡
D(�C1p(D(F1, . . . , Fk), . . . ,�Ckp(D(F1, . . . , Fk))), which is to say that
GL ⊢ (D(F1, . . . , Fk) ≡ Xp(D(F1, . . . , Fk))).

LECTURE 14 135

The argument is as follows. Let X be any sentence modalized in p. Then by
Lemma 163, Xp has a decomposition D(pk1 , . . . , pkn), with one or more sentence
letters pk1 , . . . , pkn distinct from the sentence letters occurring in X, and components�C1(p), . . . ,�Cn(p), i.e. there is a one-to-one correspondence between the sentence
letters pki and the components �Ci(p) so that Xp = D(pk1/ � C1(p), . . . , pkn/ �
Cn(p)).

We first consider the case where the decomposition Dq contains just one sentence
letter, call it q, and correspondingly there is a single component �Cp, such thatXp =
Dq(�Cp). Form the sentence �Cp(Dq) by substituting the decomposition sentence
Dq for the sentence letter p in the component �Cp. By Lemma 166, �Cp(Dq)(⊤)
is a fixed point for �Cp(Dq) with respect to q, i.e. for F = �Cp(Dq)(⊤), GL ⊢
(F ≡ �Cp(Dq)(F)). Then by Theorem 150 (provable equivalence of substitution
of provable equivalents in GL), GL ⊢ (Dq(F) ≡ Dq(�Cp(Dq)(F)). Since Xp =
Dq(�Cp), this provable equivalence tells us that Dq(F) is a fixed point for Xp.

This argument is generalizable to the case of a decomposition with more than one
component, as follows: Form the sentences �Ci(p/D(pk1 , . . . , pkn)) by substituting
D(pk1 , . . . , pkn) for p in each of the sentences �Ci(p). By Lemma 167, the set of
simultaneous equivalences (pki ≡ �Ci(p/D(pk1 , . . . , pki , . . . pkn))), indexed by i =
1, . . . , n, is solvable. Let F1, . . . , Fn be a set of solutions to these simultaneous
equivalences, i.e. for each i = 1, . . . , n, GL ⊢ (Fi ≡ �Ci(D(F1, . . . , Fi, . . . , Fn))).

Substitute the left sentences of these n equivalences into the sentence letters pk1 , . . . , pkn
in the sentence D(pk1 , . . . , pkn), and substitute the right sentences of these equiv-
alences into the sentence letters pk1 , . . . , pkn in the sentence D(pk1 , . . . , pkn). By
Theorem 153 in Lecture 13, the two sentences that result from these substitutions
are provably equivalent, i.e.

GL ⊢ (D(pk1/F1, . . . , pkn/Fn) ≡

D(pk1/� C1(D(pk1/F1, . . . , pkn/Fn), . . . , pk1/� Cn(D(pk1/F1, . . . , pkn/Fn))).

SinceD(pk1/�C1(p), . . . , pkn/�Cn(p)) = X(p), this equivalence means thatD(pk1/F1, . . . , pkn/Fn)
is a fixed point for X(p) with respect to p. N

Remark. The sentence F gives the explicit, i.e. non self-referential, content of a
self-referential sentence p such that (p ≡ X(p)), for X modalized in p.

Example 1: F (p) = ∼ � p. First note that p occurs modalized in ∼ � p, with
decomposition ∼q and component �p. Following through the proof of the Fixed
Point Theorem (Theorem 168), we substitute the decomposition sentence for p in
each component, which yields �∼q. By Lemma 166, �∼⊤ is a fixed point for �∼q,

LECTURE 14 136

and �∼⊤ is provably equivalent in GL to � ⊥, so we have GL ⊢ (� ⊥≡ �∼� ⊥).
Substituting this provable equivalence into the decomposition for ∼ � p, we obtain

GL ⊢ (∼� ⊥≡ ∼ � ∼� ⊥)

This result illustrates the power of the Fixed Point Theorem for GL, which gives
the intrinsic meaning of diagonal sentences to do with provability in PA, in this case
for the Gödel sentence. As constructed, the Gödel sentence has the meaning, “this
sentence is not provable”. Though there is no logical circularity in this construction,
there is a meaning circularity in this formulation of the meaning of G. What the
Fixed Point Theorem tells us is that the intrinsic meaning of G is that the system
in which it’s constructed is consistent.

Note also that left to right of this biconditional is the arithmetized Second Incom-
pleteness Theorem.

Example 2: F (p) = �(�(p ∧ q) ∧ �(p ∧ r))

We calculate the fixed point for F (p) with respect to p by two difference composi-
tions, one obtained by the ‘top down’ method, the other ‘bottom up’.

Decomposition 1 (top down): �(�(p ∧ q) ∧ �(p ∧ r)) is the component for decom-
position p1.

Substituting the decomposition p1 for p in the component �(�(p ∧ q) ∧ �(p1 ∧ r))
gives �(�(p1 ∧ q) ∧ �(p1 ∧ r)). Lemma 166 gives a solution to the equivalence
(p1 ≡ �(�(p1 ∧ q) ∧ �(p1 ∧ r))) as �(�(⊤ ∧ q) ∧ �(⊤ ∧ r)), which is provably
equivalent to �(�q ∧ �r).
Decomposition 2 (bottom up): The components are �(p ∧ q) and �(p ∧ r) for
decomposition �(p1 ∧ p2). Substituting the decomposition in place of p in the two
components yields the following simultaneous equivalences to be solved:

(1) (p1 ≡ �(�(p1 ∧ p2) ∧ q))

(2) (p2 ≡ �(�(p1 ∧ p2) ∧ r))

Lemma 166 solves for p1 in (1) in terms of p2 to yield

(3) p1 = �(�(⊤ ∧ p2) ∧ q), which simplifies by provable equivalences to

(4) p1 = �(�p2 ∧ q)
Substituting this solution for p1 in place of p1 in equivalence (2) yields

(5) (p2 ≡ �(�(�(�p2 ∧ q) ∧ p2) ∧ r))
Lemma 166 solves for p2 in (5) as

LECTURE 14 137

(6) p2 = �(�(�(�⊤ ∧ q) ∧ ⊤) ∧ r), which simplifies by provable equivalences to

(7) p2 = �(� � q ∧ r), which is provably equivalent to (� � �q ∧ �r)
Substituting the solution for p2 in (7) for the solution of p1 in terms of p2 in (4)
yields

(8) p1 = �(�� (�� q∧ r)∧ q), provably equivalent to (�����q∧���r∧�q)
Substituting the solutions (7) and (8) for p1 and p2 into the decomposition we obtain
the fixed point

(9) �((� � � � �q ∧ � � �r ∧ �q) ∧ (� � �q ∧ �r)), provably equivalent to�(� � � � �q ∧ � � �q ∧ �q ∧ � � �r ∧ �r)
(10) GL ⊢ ((�����q∧���q∧�q∧���r∧�r) ≡ (�q∧�r)). Left to right is
by ∧-Elimination, and right to left is by repeated application of Theorem 152 (P3),

which shows that the fixed points obtained by the two different decompositions are
provably equivalent.

Remarks about the Fixed Point Theorem in relation to these two examples. The
first example shows that the Fixed Point Theorem subsumes the Second Incomplete-
ness Theorem. Both examples show that the Fixed Point Theorem enables us to
obtain the intrinsic meaning of diagonal sentences that concern provability. Both
examples show that obtaining that intrinsic meaning is not something that can be
done ‘by inspection’. Do this in the case of the first example amounts to proving
the Second Incompleteness Theorem. The second example doesn’t connect up with
any results we’ve looked at before, but at the same time illustrates the the power of
this result by it’s wide applicability. A diagonal sentence for a sentence of the form�(�(p ∧ q) ∧ �(p ∧ r)), i.e. p such that (p ≡ �(�(p ∧ q) ∧ �(p ∧ r))) as ‘saying’
‘this sentence is such that it’s provably provable with sentences q and r. But what
is such a sentence (which by the Diagonal Lemma we know exists) actually ‘saying’,
i.e. what is it saying about q and r. The Fixed Point Theorem enables us to answer
these questions. In the case of example 2, the diagonal sentence is saying that it
provable that q and r are both provable. That this is telling us something not easy
to see on its own is evident if one works out a derivation in GL of the fixed point
equivalence (�(�q ∧�r) ≡ �(�(�(�q ∧�r)∧ q)∧�(�(�q ∧�r)∧ r))) (exercise).
The fixed points proved to exist by the Fixed Point Theorem are unique to within
provable equivalence, as follows.

Theorem 169 (provable equivalence of fixed points) Let X(p) be a sentence
in the language of GL in which the sentence letter p occurs modalized, and let q

LECTURE 14 138

be a sentence letter that does not occur in X(p). Abbreviating Xp(q) as X(q), GL
⊢ ((�(p ≡ X(p)) ∧ �(q ≡ X(q))) ⊃ �(p ≡ q)).

Proof. By Theorem 165 (arithmetized substitution into modalized sentences), tak-
ing A as p and B as q,

(�(p ≡ q) ⊃ (X(p) ≡ X(q))) is provable in GL. Then by propositional logic,

(((p ≡ X(p)) ∧ (q ≡ X(q))) ⊃ (�(p ≡ q) ⊃ (p ≡ q))). By Lemma 144 and
Theorem 146,

((�(p ≡ X(p)) ∧ �(q ≡ X(q))) ⊃ �(�(p ≡ q) ⊃ (p ≡ q))). Then by Axiom A3 and
propositional logic,

((�(p ≡ X(p)) ∧ �(q ≡ X(q))) ⊃ �(p ≡ q)). N
Proposition 170 (inequivalent fixed points for p non-modalized)

Proof. Any letterless sentence F is a fixed point for the formula p, since pp(F) = F
and GL ⊢ (F ≡ F), which is to say that F1 =⊥ and F2 = (⊥⊃⊥) are both fixed
points for the X = p, but GL 0 (⊥≡ (⊥⊃⊥)). N
The uniqueness of the fixed point to within provable equivalence turns essentially on
the sentence letter of the fixed point equivalence occurring modalized in the sentence
for which the existence of a fixed point follows. We can have fixed points for non-
modalized sentences that are not unique with respect to provable equivalence. For
example, take X(p) as ((r ⊃ r) ⊃ ((q ⊃ q) ⊃ p)). By Definition 93, a fixed point
for X(p) is a sentence X containing only sentence letters that occur in X and not
containing p such that GL ⊢ (F ≡ Xp(F)). By this criterion, since GL ⊢ (q ≡ ((r ⊃
r) ⊃ ((q ⊃ q) ⊃ q))) and GL ⊢ (r ≡ ((r ⊃ r) ⊃ ((q ⊃ q) ⊃ r))), q and r are both
fixed points of ((r ⊃ r) ⊃ ((q ⊃ q) ⊃ p)). By R2, GL ⊢ �(q ≡ ((r ⊃ r) ⊃ ((q ⊃ q) ⊃
q))) and GL ⊢ �(r ≡ ((r ⊃ r) ⊃ ((q ⊃ q) ⊃ r))). Suppose GL ⊢ �(q ≡ r). Then
by Proposition 149, GL ⊢ �(⊥≡ (⊥⊃⊥)), in which case GL ⊢ � ⊥. But assuming
the PA is Σ1-sound, by Theorem 141, GL 0 � ⊥. In which case GL 0 �(q ≡ r).

The previous example can be tweaked to give an example of sentence in which p
occurs not modalized that has a fixed point with respect to p which is unique to
within provable equivalence, e.g. ((q ⊃ q) ⊃ p). It is also worth noticing how
modalizing our original example to non-uniqueness to within provable equivalence
of a fixed point for a non-modalized sentence yield provable equivalence, e.g. ((r ⊃
r) ⊃ ((q ⊃ q) ⊃ �p)). This sentence is provably equivalent to �p, so all fixed points
for it are provably equivalent to the Henkin sentence.

Theorem 171 (Strengthened Fixed Point Theorem for GL) For every sen-
tence X in the language of GL modalized in p, there is a sentence F containing only

LECTURE 14 139

sentence letters that occur in X and not containing p such that
GL ⊢ (�(p ≡ X(p)) ≡ �(p ≡ F)).

Proof. Theorems 168 and 169 establish this result. N
Theorem 172 Theorem 171 implies Theorems 168 and 169.

Proof. Substituting F for p in Theorem 171 results in GL ⊢ (�(F ≡ X(F)) ≡�(F ≡ F)) Since (F ≡ F) is a tautology, GL ⊢ (F ≡ F), so GL ⊢ �(F ≡ F), so by
∧-Introduction, GL ⊢ �(F ≡ F). Hence GL ⊢ �(F ≡ X(F)), so by ∧-Elimination,
GL ⊢ (F ≡ X(F)). N

Lecture 15

The arithmetized completeness
theorem for first-order logic;
non-standard models of
arithmetic; the Kreisel
∆2-Incompleteness Theorem

Monday 4 March 2019

15.1 Introduction

As we have seen, first-order Peano Arithmetic, and indeed much weaker systems,
are Σ1-complete.

The sentence that Gödel showed how to construct in systems strong enough to arith-
metize formal syntax, such that if the system is sound the sentence is undecidable
in the given system, is Π1. Given Σ1-completeness, Gödel’s incompleteness theorem
is, in terms of the arithmetical hierarchy, best possible. However, as we have noted
before, Σ1-completeness implies that an irrefutable Π1-sentence is true:

∼ ∀v1A(v1) ≡ ∃v1 ∼ A(v1)

is Σ1, so if true is provable. So if not provable then false, which is to say that
∀v1A(v1) is true, as shown in Theorem 88 (Lecture 8).

140

LECTURE 15 141

In 1950 Kreisel published his first paper in mathematical logic, ‘Note on arithmetic
models for consistent formulae of the predicate calculus’, which included an incom-
pleteness theorem for a ∆2-sentence, i.e. one equivalent to formulas of both the
forms ∀v1∃v2A(v1, v2) and ∃v1∀v2B(v1, v2). The effect of the greater logical com-
plexity over the Gödel sentence is that independence no longer determines truth.
The negation of the ∆2-Kreisel sentence is itself ∆2, so there is symmetry where for
the Gödel sentence there is asymmetry. And indeed for almost all instances of the
Kreisel sentence, determining its truth value remains an open problem, as we shall
consider in Lecture 16.

15.2 Arithmetized completeness theorem for first-

order logic

The completeness of (a given system of) first-order logic is the condition that if a
sentence θ is a logical consequence of a set of sentences Γ, in the sense that θ is true
in every model of Γ, then there is a derivation of θ from Γ in (the given system of)
first-order logic.

By contraposition this condition is equivalent to:

Theorem 173 (Completeness of first-order logic) If a set of sentences S in a
first-order language is consistent (with respect to a given formal system of first-order
logic whose completeness is being established), then S has a model.

Proof sketch. Since Gödel’s original proof in [1930] a number of other proofs have
been given of which the one by Henkin [1949] is now standard. All proofs establish a
stronger result than stated above, namely that every consistent theory has a model
of at most the cardinality of the natural numbers.

The Henkin proof proceeds by adding to the language of the set of sentences S a
countable infinity of new individual constants c0, c1, . . . , ck, . . . and then establishing
that S has a model whose domain consists of the constant terms ci. This is done by
first adding to S formulas of the form (∃xϕ(x) ⊃ ϕ(c[ϕ])) for each formula ϕ, where
c[ϕ] is one of the ci chosen in such a way that to each formula ϕ there corresponds
a unique constant c[ϕ]. Clearly if S is consistent S+ = S ∪ {(∃xϕ(x) ⊃ ϕ(c[ϕ])} for
all ϕ is also consistent. One then enumerates all sentences ϕ0, ϕ1, . . . , ϕk, . . . of this
augmented language and defines a complete consistent theory starting with S+ and
adding ϕn at stage n if ϕn is consistent with S+ ∪ {earlier choices}, otherwise ∼ ϕn.
Every stage is consistent and so the union is consistent, and since for every sentence
ϕ, ϕ or ∼ ϕ has been chosen, the union is a complete consistent extension of S

LECTURE 15 142

(Lindenbaum’s Lemma)1. The added instantiation axioms are then used to show
that this complete consistent extension of S determines the complete diagram of a
model of S whose domain is the constant terms ci. Since the set of added constant
terms ci is countable, the model shown to exist is countable. N

If a model is countable, that means there’s a bijection between the elements of its
domain and the natural numbers. We can then wonder whether the model can
be defined in the language of arithmetic. Paul Bernays, in Hilbert and Bernays,
Grundlagen der Mathematik, volume II (1939), showed that this is the case. Georg
Kreisel, in his first published paper in logic, “Note on arithmetic models for consis-
tent formulae of the predicate calculus”, Fundamenta Mathematicae 37 (1950), pp.
265-285, showed that Bernays’ proof can itself be carried in a system of arithmetic.
Bernays and Kreisel were working from Gödel’s original proof of the completeness
theorem, but the result can also be formulated as an arithmetization of Henkin’s
proof of the completeness theorem. The proof is highly complicated. Here I just
sketch the result, for the particular case where S is the theorems of PA, in order to
draw from it a new incompleteness theorem for PA.

Theorem 174 (Bernays-Kreisel Arithemetized Completeness Theorem for PA)
Let Pr(v1) be a Σ1 arithmetized proof predicate for PA (as we have constructed),
and let ConPA be ∼Pr(p0 = 0′q). There exists a ∆2-formula with one free variable
Tr(v2) which arithmetizes the Henkin proof of the completeness theorem for first-
order logic applied to {φ : PA ⊢ φ}, and PA ∪ {ConPA} ⊢ ∀v1(Pr(v1) ⊃ Tr(v1)).

Proof sketch. Note first that this result is an expression in arithmetized syntax of
the completeness theorem applied to {φ : PA ⊢ φ}, i.e. it the set of theorems of
PA is consistent, then it has a complete consistent extension (which determines a
model of that set of sentences, i.e. a model of PA).

Each step of the proof of the completeness theorem can be expressed in arithmetized
syntax, in particular the condition that if Tn ∪ {ϕn} is consistent then Tn+1 =
Tn ∪ {ϕn} and otherwise Tn+1 = Tn ∪ {∼ ϕn}, where Tn is S+ ∪ {earlier choices} at
stage n.

How do we know that the resulting ‘truth’ predicate is ∆2? The simplest way to see
this is by appeal to Post’s Theorem on relative recursiveness.

A number-theoretic predicate R(v1) is recusive relative to a number-theoretic pred-
icate H(v1) just in case there is a recursive procedure for deciding if a given number

1This complete consistent extension is a set of sentences such that each sentence in the language
of S or its negation belongs to it, and not both. This extension is not axiomatic, which is to say
that the Gödel numbers of sentences in it is not Σ1, so there is no incompatibility with Gödel’s
First Incompleteness Theorem.

LECTURE 15 143

satisfies R(v1) that uses in its computation procedure the yes/no answers that an
oracle gives as to whether particular numbers satisfy H(v1). Post showed that
a predicate recursive in a Σn-predicate is ∆n+1 (see S.C. Kleene, Introduction to
Metamathematics (1952), p. 293, Theorem XI). Inspection of the arithmetization of
the construction of a complete consistent extension of the axiomatizable theory S
is recursive in the Σ1-proof predicate of S. Hence by Post’s Theorem, the resulting
predicate is ∆2. N

15.3 Non-standard models of arithmetic

The Gödel’s First Incompleteness Theorem, combined with the truth of the Gödel
sentence and Gödel’s Completeness Theorem for first-order logic, establishes the
existence of non-standard models of arithmetic. However, this result can be estab-
lished without appeal to the Incompleteness Theorem, just from the Completeness
Theorem via the Compactness Theorem, and indeed a stronger result can be estab-
lished in this way, namely that there exist countable non-standard models of true
arithmetic, i.e. all sentences true in the standard model (which we have encountered
before, as being the only complete ω-consistent theory of arithmetic).

There are as many countable non-standard models of PA as cardinality consider-
ations allow, namely continuum many. We can prove this by iteration of Rosser’s
Theorem.

Nonetheless, all countable non-standard models of PA have the same order type,
namely ω + (ω∗ + ω) · η (Henkin).

The truth predicate generated by the Bernays-Kreisel arithmetization of Gödel’s
completeness theorem must, by Tarski’s theorem on the undefinability of truth, be
the truth predicate of a non-standard model of PA.

15.4 The Kreisel Incompleteness Theorem

The Kreisel incompleteness theorem brings together the completeness theorem for
first-order predicate logic and the incompleteness of formal systems adequate for
arithmetization of syntax. It is based upon the Bernays-Kreisel arithmetized com-
pleteness theorem.

Theorem 175 (Kreisel Incompleteness Theorem) Let Tr(v1) be a ∆2-formula
that arithmetizes the Henkin proof of the completeness theorem for first-order logic.

LECTURE 15 144

Let K be a provably diagonal sentence for the formula ∼ Tr(v1), i.e. PA ⊢ (K ≡∼
Tr(pKq)). If PA is consistent, PA ̸⊢ K and PA ̸⊢∼ K.

Proof. For our purposes, the way to understand the Bernays-Kreisel Arithmetized
Completeness Theorem is as showing, on the assumption that PA is consistent,
how within a model of PA a model of PA is definable. The defined model cannot
be isomorphic to the model within which it’s defined, by Tarski’s theorem on the
undefinability of truth. For M any model of PA, let us denote by M∗ a model of
PA defined in M by Tr(v1).

Since PA ⊢ (K ≡∼ Tr(pKq)) and M is a model of PA,

M |= (K ≡∼ Tr(pKq)) (15.1)

Since Tr(v1) defines M
∗ by its interpretation in M,

M |= K iff M∗ |=∼ K (15.2)

as follows:

Suppose M � K. Then by PA ⊢ (K ≡ ∼Tr(pKq)), M � ∼Tr(pKq, i.e. K is not
true in M∗, so ∼K is true in M∗.

Suppose M∗ � ∼K. Then K is not true in M∗, which is to say that ∼Tr(pKq) is
true in M, and so by (15.1), K is true in M.

Suppose that

PA ⊢ K (15.3)

Let N be the standard model of PA. Then

N |= K (15.4)

But then by (15.2)

N∗ |=∼ K (15.5)

But N∗ is a model of PA, so by (15.3) we have

N∗ |= K (15.6)

LECTURE 15 145

But K cannot be both true and false in a model, so by reductio ad absurdum

PA ̸⊢ K (15.7)

Suppose that
PA ⊢∼ K (15.8)

Then since N∗ is a model of PA

N∗ |=∼ K (15.9)

But then by (15.2)
N |= K (15.10)

But also from (15.8)
N |=∼ K (15.11)

Again impossible. So
PA ̸⊢∼ K (15.12)

N

Lecture 16

Determining the truth or falsity of
undecidable Kreisel sentences

Wednesday 6 March 2019

Let us denote by H (for Henkin) the operator which generates M∗ from M. The
following results give information relevant to determining the truth value of K and
in some cases determine it. But in the general case this is an open problem.

Lemma 176 For every model M of PA, M ∈ dom(H) iff M |= Con(PA).

Proof. (i) Suppose M 2 Con(PA), in which case M � ∼Con(PA), which is to say
that M � PrPA(p0 = 0′q). But also, since PA ⊢ ∼0 = 0′, PA ⊢ PrPA(p∼0 = 0′q),
so M � PrPA(p∼0 = 0′q). Then by the proof of the Arithmetized Completeness
Theorem, we have, M � Tr(p0 = 0′q) and M � Tr(p∼0 = 0′q). This tells us that
H is not defined on M.

(ii) Suppose H is not defined onM, i.e. there is a sentenceX such thatM � Tr(pXq)
and M � Tr(p∼Xq), and let X be the first such sentence of the language of PA
for which this happens. The only way in which this can happen at that point is by
M � ∼Con(PA). N
Lemma 177 The process of defining successive models by H starting on N termi-
nates in a finite number of steps.

Lemma 178 For any model M of PA on which H is undefined M |=∼ K

Proof. We have that PA ⊢ (K ≡ ∼Tr(pKq)), so M � (K ≡ ∼Tr(pKq)). In a
model M on which H is not defined, for every X, M � Tr(pXq), so in particular
M � Tr(pKq). Then by the truth of the diagonal equivalence in M, M � ∼K. N

146

LECTURE 16 147

Remark. We might wonder why a version of the argument for this Lemma doesn’t
also establish that M � K? From the fact that in a model M on which H is not
defined, for every X, M � Tr(pXq), so for such an M, M � Tr(∼K). But to
conclude from this and the truth of the Diagonal Equivalence in M that M � K
requires that M � (Tr(∼K) ≡ ∼Tr(pKq)), and this does not hold in an arbitrary
model, in particular it does not hold in a model in which a sentence equivalent to
Pr(p0 = 0′q) is in the extension of Tr(v1).

Lemma 179 If H terminates in its successive generation of models starting with N
after an odd number of steps then K is true, and if after an even number of steps
then K is false.

Lemma 180 Whether the sequence stops after an even or an odd number n of steps
depends on the order in which the formulae are enumerated in the process of generat-
ing a complete consistent extension. For example, if the sequence begins Con(PA),
∼ Con(PA + Con(PA)) then n = 1 and so K is true. If the sequence begins
Con(PA), Con(PA+Con(PA)),∼ Con(PA+Con(PA) +Con(PA+Con(PA))),
then n = 2 and K is false.

Let Tr(x) be the ∆0
2-predicate which determines the model of a consistent theory

S. Given a model M of S, the model M∗ determined by Tr(x) cannot be isomor-
phic to M (by Tarski’s Theorem on undefinability of truth). Given a model M
of S, Tr(x) defines another model M∗ of S in terms of M. In [?] Kreisel noted
that the sequences of models determined by this construction is finite. Manevitz
and Stavi [12] (p.146) note that the length of this sequence depends on the or-
der in which the formulae of S are enumerated in the Henkin proof of completeness
claiming (without proof, left as an exercise to the reader) that if the enumeration be-
gins with the formula Con1(PA), Con2(PA), . . . , Conn−1(PA),∼ Conn(PA), where
Con1(PA) = Con(PA) and Conk+1(PA) = Con(PA+ Conk(PA)) that the length
of the sequence of models starting with N, the standard model of PA, is n.

We are dealing with the Henkin construction starting from the recursive set of axioms
of PA. The rule of construction is

Tn+1 = Tn ∪ {ϕn} if Tn ∪ {ϕn} is consistent,

Tn+1 = Tn ∪ {∼ ϕn} if Tn ∪ {ϕn} is inconsistent,

This construction is from the assumption that the set of formulae S with which the
sequence starts is consistent.

This condition is expressed uniformly by a ∆0
2-predicate.What set of (Gödel num-

bers of) formulae it picks out depends on the model of PA in which the formula is
interpreted.

LECTURE 16 148

Let us consider first what set of ‘true’ formulae is picked out if the ∆0
2 predicate

expresses this construction in N, the standard model. Each of these n formulae is
picked out, as shown by the following arguments. PA ∪ {Con(PA)} is consistent
since PA ̸⊢∼ Con(PA). This latter fact can be established proof theoretically on
the assumption that PA is ω-consistent and PA ⊢ (Con(PA) ⊃ G) (where G is the
Gödel sentence for PA).

It can also be established model theoretically from the fact that PA is consistent (has
a model, namely N), so that ∼ Con(PA) is false in N, that the ∆2-predicate picks
out Con(PA) as the first formula to add to PA, so T1 = PA∪{Con(PA)}. Since N
is a model for T1, Con(PA∪Con(PA)) is true, so T1 ̸⊢∼ Con(PA∪Con(PA)), i.e.
T1 ∪ {Con(PA ∪ {Con(PA}} is consistent, so T2 = T1 ∪ {Con(PA ∪ Con(PA)})}.
By the same argument we have that Tn−1 = Tn−2 ∪ {Conn−1(PA)}. By the Sec-
ond Incompleteness Theorem applied to Tn−1 we have Tn−1 ̸⊢ Con(Tn−1) if Tn−1 is
consistent. So if Tn−1 is consistent Tn−1 ∪ {∼ Con(Tn−1)} is consistent. Tn−1 =
PA∪{Con(PA)}∪Con(PA∪{Con(PA)})∪ · · · ∪ {Con(PA∪{Conn−2(PA)})} so
∼ Con(Tn−1) =∼ Conn(PA). So the nth formula of the sequence is ∼ Conn(PA).

Let N1 be the model of PA determined by the ∆2 truth predicate of the arthmetized
Henkin proof of completeness interpreted in N. I now want to consider which of the
first n formulae are true in N2, the model determined by Tr(x) interpreted in N1.

Lemma 181 PA,∼ Con(PA+ ϕ), Con(PA) |= PrPA(∼ ϕ)

Proof
∼ Con(PA+ ϕ) ≡df ∃xProvPA∪{ϕ}(x, p0 = 1q)

By arithmetized Deduction Theorem (which we can use since we are working in
PA),

∃xProvPA∪{ϕ}(x, p0 = 1q) ≡ ∃xProvPA(x, p(ϕ ⊃ 0 = 1)q)
PA ⊢ (∼ ϕ ≡ (ϕ ⊃ 0 = 1)), so by arithmetized syntax

PA ⊢ ∃xProvPA(x, p(ϕ ⊃ 0 = 1)q) ≡ ∃xProvPA(x, p∼ ϕq)
�

Remark: Let S be a first-order extension of Robinson’s system Q, i.e. a system
in which the syntax of the system can be arithmetized, such that S ⊢ ϕ and S ̸⊢∼
PrS(p∼ ϕq). Then S ′ = S ∪ {PrS(p∼ ϕq)} is consistent and S ′ ⊢ ϕ and S ′ ⊢
PrS(p∼ ϕq).
An example of this situation is PA′ = PA∪{∃xProvPA(x, p0 = 1q)}. Given the Σ0

predicate ProvPA(x, y) we can immediately modify it to obtain ProvPA′(x, y) (add
a disjunction to the condition for being an axiom) and we have

PA′ ⊢ (∃xProvPA(x, y) ⊃ ∃xProvPA′(x, y))

LECTURE 16 149

Therefore PA′ ⊢∼ 0 = 1. Then we have a consistent system PA′ such that PA′ ⊢∼
0 = 1 and PA′ ⊢ ∃xProvPA′(x, p0 = 1q).
We have that N1 |=∼ Conn(PA) ≡df∼ Con(PA + Conn−1(PA)). Also N1 |= PA.

Hence by the lemma N1 |= PrPA(p∼ Conn−1(PA)q). Then with Tr(x) interpreted
in N1, Tn−1 ∪ {ϕn−1} is inconsistent (as expressed in arithmetized syntax). So in
N2 the (n− 1)th formula is ∼ Conn−1(PA). By the absoluteness of Σ1-formulae the
nth formula is still ∼ Conn(PA).

Claim: N2 |= Con(PA), N2 |= Con(PA+ Con(PA)), . . . , N2 |= Conn−2(PA).

How do we know this? Let us look at the case where n = 3.

The initial segment of the enumeration of formulae is

ϕ0 ϕ1 ϕ2

Con(PA) Con(PA+ Con(PA)) ∼ Con(PA+ Con(PA+ Con(PA)))

How do we know that N2 |= Con(PA) (while N2 |=∼ Con(PA+Con(PA)))? Well,
N1 |= Con(PA + Con(PA)). Therefore in N1 the condition holds by which Tr(x)
chooses Con(PA) rather than ∼ Con(PA).

From N2 |=∼ Con(PA+ Con(PA)) we have N3 |=∼ Con(PA) by lemma 181.

The process of defining a new model in this an existing model (actually an end-
extension) comes to an end at this point from the lemma: ∼ Con(PA) ≡ ∃xProvPA(x, p0 = 1q)
So in the application of this process to N3, the formula 0 = 1 is picked. But also
∃xProvPA(x, p∼ 0 = 1q) (since PA ⊢∼ 0 = 1). So ∼ 0 = 1 is also picked. Therefore
there is no such model.

Now we need to look at how the parity of this sequence of models determines the
truth value of the diagonal sentence for Tr(x).

The diagonal sentence K is such that PA ⊢ K ≡∼ Tr(pKq).
Lemma 182 ([12] 1.3, p.145) If ϕ is an alternating sentence for O and dO(M) <
∞, then M |= ϕ iff dO is an odd number.

Proof Clearly this result must turn crucially on the ‘normalization condition’: if
M /∈ dom(O) then M ̸|= ϕ (otherwise if ϕ is an alternating sentence then ∼ ϕ is
also an alternating sentence). With this condition the proof is indeed, as Manevitz
and Stavi say, ‘immediate from the definitions’. The obvious point is that, by
definition, the last model in the sequence of modelsM,O(M),O2(M), . . . ,On(M) is
such that O(On(M)) is not defined, so by the normalization condition, in particular
On(M) ̸|= ϕ.

By the alternating truth value condition on ϕ, M |= ϕ iff n is odd.

LECTURE 16 150

�
For this lemma to be relevant to determine the truth value of ϕ we must show that
condition (ii) holds for ϕ, i.e. if M /∈ dom(O) then M ̸|= ϕ, i.e. we must break the
symmetry between ϕ and ∼ ϕ.

Lemma 183 M /∈ dom(O) iff M �∼ Con(PA).

Proof (i) Assume M �∼ Con(PA), ∼ Con(PA) ≡ ∃xProvPA(x, p0 = 1q).
In this situation, for each n ‘Tn ∪ {ϕn} is inconsistent’ holds in the arithmetized
syntax of PA, so for each n Tn+1 = Tn ∪ {∼ ϕn}. So for every formula ϕ (so in
particular for some one such formula) Tr(∼ ϕ) and Tr(∼∼ ϕ). So Tr(x) does not
determine a model. N
How do we know that the operator, as a mapping from models of PA to models
of PA, is single-valued, i.e. is a model determined by A’s complete diagram? The
answer is that it is not, immediately by the Upward Löwenheim-Skolem Theorem.
But it does not hold even if we restrict ourselves to countable models of PA, since
by compactness the complete diagram of N does not determine N. For the results
of concern to us here, that this operator mapping models of PA to models of PA
is not univalent doesn’t matter. We are not really dealing with models but with
classes of elementarily equivalent models, i.e. with complete consistent extensions
of PA. What is crucial here is that this construction can only be iterated finitely
many times.

[Perhaps the construction of successive models is single-valued if we take the do-
main of the model to be exactly the countable infinity of terms added to the given
language in the Henkin construction. In this way we cut off the construction of an
elementary extension. (This corresponds to Richard Epstein’s idea for picking out
the standard model of arithmetic by specifying that each element is denoted by a
natural number.)]

(ii) The proof of the completeness theorem guarantees that so long as the original
set of sentences (e.g. the axioms of PA) is consistent, the construction will always
generate a complete consistent extension. The construction itself guarantees com-
pleteness. So if the above fails to be a complete consistent extension then it must
be that the failure is a failure of consistency. At every stage what guarantees con-
sistency is the consistency of the maximal theorem. So if the construction does not
yield a consistent theory it must be that ∼ Con(PA) is true.

�
The following simple result plays a key role in cases where the truth value of K can
be determined.

LECTURE 16 151

Lemma 184 In any model M for which O(M) is not defined, M �∼ K.

We have seen that when O(M) is not defined, the ∆2 construction gives Tr(∼ ϕ)
for all ϕ. So in particular, for ϕ =∼ K, we get Tr(∼∼ K).

Lemma 185 If PA ⊢ (ϕ ≡ ψ) then PA ⊢ (Tr(ϕ) ≡ Tr(ψ).

Proof By induction on the inductive definition of Tr(x).

�
Corollary 186 PA ⊢ (Tr(∼∼ K) ≡ Tr(K))

Proof From the lemma and the fact that PA ⊢ (∼∼ K ≡ K).

�
We have constructed K as the diagonal sentence of the predicate ∼ Tr(X), i.e.
PA ⊢ (K ≡∼ Tr(pKq).
Then by contraposition and ∼∼-elimination, PA ⊢ (∼ K ≡ Tr(pKq). By the above
M |= Tr(pKq). Since M is a model of PA, M |=∼ K.

By the alternation of the truth value of K in going from Ni to O(Ni) and the fact
that K is false in the final model of the sequence, which in being final is one such
that O is not defined on it, we have that N |= K iff the process has generated an
odd number of models beyond N, and N |=∼ K iff the process has generated an
even number of models beyond N.

In the above we have seen that if the enumeration of the formulae of PA begins with
Con(PA), . . . , Conn−1(PA),∼ Conn(PA) that the Henkin completeness theorem
operator generates a sequence of (non-standard) models of length n, starting from
the standard model N. I want now to go through the proof that the operator
generates a finite sequence of (non-standard) models under every enumeration of
the formulae of PA. This result is stated (without being packaged as a Lemma or
Theorem) by Manevitz and Stavi [?] p.146 lns 22-24. The result is attributed to
Kreisel [?] and Smorynski’s Handbook article [?] is cited for the published proof,
6.2.4(pp.862-3).]

This proof by Smorynski is not quite ideal as an exposition of the proof of this result
since, while this is what is in effect being proved, it is not being presented as that,
but rather as a model-theoretic proof of the Second Incompleteness Theorem.

Aritmetization of the Completeness Theorem for first order logic – for specificity we
take the Henkin proof of Completeness – results in a ∆0

2 formula which is a truth
predicate for a model of the original consistent theory. One way to think of this
construction is as follows: given a model of a (consistent) theory, we can, in this

LECTURE 16 152

the original model, define a (new) model. That the defined model is a new model
is established by diagonalization – Tarski’s undefinability of truth theorems.

Let K be the diagonal sentence for the formula with one free variable ∼ Tr(X),
i.e. PA ⊢ (K ≡∼ Tr(pKq). Thus the truth value of K in the given model must be
opposite to its truth value in the model whose truth definition is given by Tr(X).

Kreisel’s observation in [?] (sparked off, by his account there, by some work of
Harvey Friedman) is that the iteration of this process of generating a new model of
the consistent theory from a given model of the theory must come to an end after
a finite number of steps. The basis of this result is to analyze an initial segment of
the choice of truth values for formulae of PA made by Tr(X) in the enumeration of
formulas. Let k = pKq. We consider the sequence of sentences (formulae without
free variables) ϕ0, ϕ1, . . . , ϕk = K. A truth definition for PA (or whatever theory
we started from) is an infinite path through the binary truth tree:

ϕ0

ϕ1

ϕ2

...
ϕk
...

...
∼ ϕk
...

∼ ϕ2

...
ϕk
...

...
∼ ϕk
...

∼ ϕ1

ϕ2

...
ϕk
...

...
∼ ϕk
...

∼ ϕ2

...
ϕk
...

...
∼ ϕk
...

∼ ϕ0

ϕ1

ϕ2

...
ϕk
...

...
∼ ϕk
...

∼ ϕ2

...
ϕk
...

...
∼ ϕk
...

∼ ϕ1

ϕ2

...
ϕk
...

...
∼ ϕk
...

∼ ϕ2

...
ϕk
...

...
∼ ϕk
...

We have seen that there are continuum many complete consistent extensions of PA
[only one of which is ω-consistent]. Note that there are continuum many paths
through this binary fan, in total. I presume that continuum many of these paths
are inconsistent, so that what we have here is an example of the cardinal arith-
metic fact that 2ℵ0 + 2ℵ0 = 2ℵ0 . Thus each of the k-length initial segments of this
ω-length binary tree is the initial segment of infinitely (indeed continuum) many
complete consistent extensions of PA. However, in the case of the complete con-
sistent extensions defined by Tr(X) Kreisel observed that on the construction by
which the defined path is the left-most consistent path (which is the effect of the
specification on the construction that Tn+1 = Tn ∪ {ϕn} if Tn ∪ {ϕn} is consistent,
Tn+1 = Tn ∪ {∼ ϕn} if Tn ∪ {ϕn} is inconsistent), each successive k-length initial

LECTURE 16 153

segment must lie strictly to the right of the previous one. I will give the proof of
this fact below but note first that this result shows that this process stops after a
finite number of steps.

But before noting that, note that the above remark that there are continuum many
complete consistent extensions of PA is in the standard model, though perhaps
that does not make any difference since the standard part of the full binary tree is
absolute – i.e. it is the same in all models of PA.

The above fact shows that the sequence of complete consistent theories is finite. The
fact that the k-length initial segment of each successive model (complete consistent
theory) lies strictly to the right of the previous one (and the fact that lying strictly
to the right is a transitive relation) means that the initial k segments of each model
is pairwise distinct from all the previous initial k-segments. But there are only
2k+1, i.e. finitely, many possible initial k-sequences. So there are only finitely many
models (complete consistent theories) generated in this sequence.

Lemma 187 Each successive k-length initial segment lies strictly to the right of the
preceding k-initial segment.

Proof (Using Smorynski’s notation.) Given Ni, let ϕ
i =< ϕ

e0,i
0 , ϕ

e1,i
1 , . . . , ϕ

ek,i
k >

denote the portion of the path used in constructing Ni+1, where ej,i ∈ {0, 1} and
ϕ0
j =df ϕj, ϕ

1
j =df∼ ϕj. From the definition of Tr(x) via the proof of the completeness

theorem ϕi is the left-most consistent path, with PrPA(x) interpreted in Ni.

Bibliography

[1] Rasmus Blanck, “On Rosser sentences and proof predicates”, Department of
Philosophy, University of Göteborg, 2006.

[2] George Boolos, The Logic of Provability, Cambridge University Press, 1993.

[3] William B. Ewald, From Kant to Hilbert: a Source Book in the Foundations of
Mathematics Volume 2, Oxford University Press, 1996.

[4] Kurt Gödel, “Die Vollständigkeit der Axiome des logischen Funtionenkalküls,
Monatshefte für Mathematik und Physik 37 (1930), pp. 349-360; English trans-
lation by Stefan Bauer-Mengelberg, “The completeness of the axioms of the
functional calculus of logic”, Solomon Feferman et al eds, Kurt Gödel Collected
Works Volume I: Publications 1929-1936, Oxford University Press, 1986, pp.
102-123.

[5] Kurt Gödel, “Über formal unentscheidbare Sätze der Principia mathematica
und verwandter Systeme I”, Monatshefte für Mathematik und Physik 38 (1931),
pp. 173-198; English translation by Jean van Heijenoort “On formally undecid-
able propostions of Principia mathemataica and related systems I”, Solomon
Feferman et al eds, Kurt Gödel Collected Works Volume I: Publications 1929-
1936, Oxford University Press, 1986, pp. 144-195.

[6] David Hilbert, “Mathematische Probleme. Vortrag, gehalten auf dem interna-
tionalen Mathematiker-Kongress zu Paris, 1900”, Nachrichten der Königlichen
Gesellschaft der Wissenschaten zu Göttingen’, pp. 253-97; English translation
by Mary Winston Newson, “Mathematical problems: Lecture delivered before
the International Congress of Mathematiacian at Paris in 1900”, Bulletin of
the American Mathematical Society 8 (1902), pp. 437-479; partially reprinted
in Ewald.

[7] David Hilbert, “Axiomatische Denken”, Mathematische Annalen 78 (1918),
pp. 405-415; English translation by William B. Ewald, “Axiomatic thought”,

154

BIBLIOGRAPHY 155

William B. Ewald (ed,), From Kant to Hlbert: A Source Book in the Founda-
tions of Mathematics Volume 2, Oxford University Press, pp. 1107-1115.

[8] David Hilbert, “On the infinite” (1926); English translation in Jean van Hei-
jenoort (ed), (1927), p. 471.

[9] David Hilbert, “Die Grundlagen der Mathematik”, Abhandlungen aus dem
mathematischen Seminar der Hamburgeshcen Universität 6 (1928), English
translation by Stephan Bauer-Mengelberg, ‘The foundations of mathematics”
in Jean van Heijenoort (ed.) From Frege to Gödel; A Source Book in Mathe-
matical Logic 1879-1931, Harvard University Press, 1967.

[10] Donald Kalish and Richard Montague, “On Tarski’s formalization of predicate
logic with identity”, Archiv für mathematische Logik und Grundlagenforschung
7 (1965), pp. 81-101.

[11] Georg Kreisel, “A refinement of ω-consistency” (Abstract), The Journal of Sym-
bolic Logic 22 (1957), pp. 108-109.

[12] Larry Manevitz and Jonathan Stavi, “∆0
2 operators and alternating sentences

in arithmetic”, The Journal of Symbolic Logic 45 (1980), pp. 144-154.

[13] Y. Yu. Shavrukov, “On Rosser’s provability predicate”, Zeitschrift für Logk und
Grundlagen der Mathematik 37 (1991), pp. 317-330.

[14] Peter Smith, “Rosser’s Theorem”, Logic Matters blog, logicmatters.net, 26 June
2009.

[15] Craig Smorynski, “The incompleteness theorems”, Jon Barwise (ed.), Handbook
of Mathematical Logic, Horth-Holland Publishing Company, 1977, pp. 821-865.

[16] Raymond M. Smullyan, Gödel’s Incompleteness Theorems, Oxford University
Press, 1992.

