
Gödel Incompleteness Theorems: Solutions to sheet 0

1. (i) Show that the following is logically valid in any non-empty domain, where x is not
free in G.

((∀xF (x) → G) ↔ ∃x (F (x) → G)).

The implication (∀xF (x) → G) is false in a structure iff ∀xF (x) is true and G is
false, if and only if for all a in structure, F (a) is true, and G is false (recall that x does not
occur free in G), if and only if for all a, (F (a)∧¬G) is true, if and only if ∀x (F (x)∧¬G)
is true, if and only if ∃x (¬F (x) ∨G) is false, if and only if ∃x (F (x) → G) is false.

The foregoing quite informal argument may be carried out formally in terms of the val-
uations in a first-order structure; the precise details will depend on precisely how valuations
are defined, and will differ from textbook to textbook.

(ii) Show that the following is logically valid in any non-empty domain.

(∃x (F (x) ∨G(x)) ↔ (∃xF (x) ∨ ∃xG(x))).

If ∃x (F (x)∨G(x)) is true in a structure, then there will be some element a such that
(F (a) ∨ G(a)) is true; then F (a) is true or G(a) is true, and hence ∃xF (x) is true or
∃xG(x) is true, hence (∃xF (x) ∨ ∃xG(x)) is true.

In the opposite direction, if (∃xF (x) ∨ ∃xG(x)) holds in a structure, then one of
∃xF (x) and ∃xG(x) holds; in the first case (the second case is similar), there is an element
a of the structure such that F (a) holds, whence of course (F (a) ∨ G(a)) does too; then
∃x (F (x) ∨G(x)) holds.

(iii) Show that

(∀x (F (x) ∨G(x)) ↔ (∀xF (x) ∨ ∀xG(x)))

is not logically valid.
In the natural numbers N, interpret F (x) as “x is even” and G(x) as “x is odd”.

(iv) Show that

((∀xF (x) → G) ↔ ∀x (F (x) → G)),

is not logically valid, where x is not free in G.
In the natural numbers, let G stand for some false statement, such as “ 0 = 1”, and

let F (x) stand for “x is even”. Then ∀xF (x) is false, so that (∀xF (x) → G) is true; while
(F (x) → G) is not always true (if x is even it fails), so ∀x (F (x) → G) is false.

2. (i) Using the axiom schemata

(F → (G → F )) (A1)

and

((F → (G → H)) → ((F → G) → (F → H))) (A2)



and the rule of inference Modus Ponens, show that for Γ a set of formulae none of which
contain any free variables, and for F and G formulae containing no free variables, that if
Γ ∪ {F} ⊢ G, then Γ ⊢ (F → G).

The precise result we will prove is: assuming that ⊢ φ for all instances φ of schemes
(A1) and (A2), if the inference of G from Γ∪ {F} only uses the rule Modus Ponens, then
Γ ⊢ (F → G).

This is an induction on the complexity of the proof of G from Γ ∪ {F}.
If G is an element of Γ or a logical axiom, then Γ ⊢ G. Hence Γ ⊢ (G → (F → G)),

since this is an instance of (A1). Hence Γ ⊢ (F → G), by Modus Ponens.
If G = F , then (F → (F → F )) and (F → ((F → F ) → F )) are instances of (A1),

and ((F → ((F → F ) → F )) → ((F → (F → F )) → (F → F ))) is an instance of (A2).
Two applications of Modus Ponens gives us that ⊢ (F → F ), from which it easily follows
that Γ ⊢ (F → F ). (If you are familiar with the Thinning Rule, then this step appears
to be an application of it. But actually the validity of this step can be proved without an
appeal to the Thinning Rule.)

Now suppose that in the proof of G from Γ ∪ {F}, G is deduced using Modus Ponens
from H and (H → G).

Then ((F → (H → G)) → ((F → H) → (F → G))) is an instance of (A2).
Now using Modus Ponens, and the inductive hypothesis that Γ ⊢ (F → H) and Γ ⊢

(F → (H → G)), we have that Γ ⊢ (F → G).

(ii) Show that ∀xA(x) is a logical consequence of A(x) (that is, in any interpretation
in which A(x) is true, ∀xA(x) is true also), but that (A(x) → ∀xA(x)) is not logically
valid (that is, there is an interpretation in which it is not true).

This is a technicality concerning the way in which formulae containing free variables
are interpreted. We say that A(x) is true in a structure provided that it is true under
every possible valuation of the variable letter x, that is, if A(a) is true for every individual
a in the structure. This means that A(x) and ∀xA(x) are true under precisely the same
circumstances. However, in (A(x) → ∀xA(x)), the first x is free whereas the remaining
ones are bound; so this formula is true provided (A(a) → ∀xA(x)) is true for every element
a of the structure.

So, in N, let A(x) be “x is equal to zero”. Then (A(x) → ∀xA(x)) is false when the
free occurrence of x is thought of as referring to 0.

(iii) Show that if F is a sentence (that is, a formula with no free variables) and M

is a structure, then either M � F or M � ¬F . Give an example of a formula F (x) with
a free variable, and a structure M, such that it is not true either that M � F (x) or that
M � ¬F (x).

Let M be N, and let F (x) express “x is even”.
Variable letters in formal languages are a little like pronouns in natural languages.

We might say that the pronoun “its” is bound in the sentence “Every unhappy family is
unhappy in its own way”, and we can say whether we consider the sentence to be true
or false; but “it” is free in “it was written by Tolstoy”, where we cannot say whether the
sentence is true or false, because no definite meaning has been assigned to “it” (is it Anna
Karenina, or The Brothers Karamazov, or my shopping list?).

3. (i) Write down a set of axioms and rules of inference for first order predicate calculus.



There are many, many ways of doing this; I will give one in the lectures in due course.

They each have (i) a (possibly empty) set of logical axioms, and (ii) a set of rules of
inference which enable one to build more complicated proofs out of simple ones.

(ii) State the Completeness Theorem for your system, and sketch a proof of it.

There are several ways to state this. One is: “If Γ is a set of sentences, and φ is a
sentence, then Γ ⊢ φ (that is, φ may be proved from Γ) if and only if Γ � φ (that is, in any
structure in which Γ is true, φ is true as well).

An informal version of the Completeness Theorem is, “φ may be proved from Γ if and
only if φ is true whenever Γ is”.

But note the condition “in any structure”. Some of the structures we may find our-
selves looking at may be quite strange.

The Completeness Theorem has two parts. The first, the Soundness Theorem, is the
statement that if Γ ⊢ φ, then Γ � φ, or informally, anything you can prove is always true.
This is done by induction on the complexity of the deduction of φ from Γ, and boils down to
checking that all logical axioms are always true, and that all rules of inference are sound.

The second part, the Adequacy Theorem, states the converse: that if Γ � φ, then Γ ⊢ φ.
This is now generally done by an argument due to Henkin, which goes thus.

Add to the language a constant symbol cφ for every formula φ(x) with just one free
variable x. (This will need to done in an infinite recursion, since we want to do this even
if the formula φ(x) contains some of these new constant symbols.) Let ∆ be the set of all
formulae (∃xφ(x) → φ(cφ)).

Suppose that Γ 6 ⊢ φ. Then Γ ∪ {¬φ} is consistent, and in fact so is Γ ∪∆ ∪ {¬φ}.

Extend to a complete consistent set Σ.

Let M be the set of all the constant symbols cφ, and let M be the set of equivalence
classes on M under the equivalence relation ∼ defined so that cφ ∼ cψ iff (cφ = cψ) ∈ Σ,
turned into an L-structure in the obvious way (consulting the formulae in Σ). Then M � Σ.

It follows at once that Γ ∪ {¬φ} is satisfiable, so Γ 6 � φ.

You may have only seen this argument for when L is a countable language. But it
works for languages of any size, assuming the Axiom of Choice.

(iii) State the Compactness Theorem, and deduce it from the Completeness Theorem.

The Compactness Theorem states: “A set of formulae Γ is satisfiable (that is, there
is a structure and a valuation making all formulae in Γ simultaneously true) if and only if
every finite subset of Γ is satisfiable”.

This bizarre theorem may be deduced from the Completeness Theorem very quickly: Γ
is unsatisfiable if and only if Γ � (φ ∧ ¬φ) if and only if Γ ⊢ (φ ∧ ¬φ). But any deduction
of (φ ∧ ¬φ) from Γ mentions only a finite set Γ0 of elements of Γ. So Γ0 ⊢ (φ ∧ ¬φ), so
Γ0 � (φ ∧ ¬φ), so Γ0 is unsatisfiable.

(iv) Use the Compactness Theorem, or some other method, to construct a countably
infinite structure N of which the natural numbers N (equipped with a constant symbol to
refer to 0, a unary function to refer to the function n 7→ n + 1, and binary functions to
refer to additional and multiplication) is a proper subset and an elementary substructure.

Add a constant symbol c to the language we are using, let Θ be the set of all sentences
true in N (which will allow us to completely reconstruct N, since the language contains



terms referring to all elements of N and so Θ contains the complete addition and multi-
plication tables of N), and let Σ be the set of sentences {¬(c = n) : n ∈ N}, where n is
some term referring to n. Every finite subset of Θ∪Σ is satisfiable (in N, with c referring
to some large enough natural number), so by the Compactness Theorem Θ ∪ Σ has some
model N. Because Θ is true in N, and Θ includes the addition and multiplication tables
of N, N contains a substructure isomorphic to N. This is an elementary substructure as
well; but the interpretation of c in N is not in this copy of N, so the copy of N in N is a
proper elementary substructure.

Deduce that the theory of N is not `0-categorical, that is, that it has distinct, non-
isomorphic countable models.

Trivial.

(v) (Optional, and fiddly, but worth knowing): Let M be an infinite model of some
theory T in a countable language L of first order predicate calculus. Show that there is a
countably infinite substructure N of M such that N is an elementary substructure of M.
Deduce the Countable Downward Löwenheim-Skolem Theorem: that if T has an infinite
model, then it has a countable model.

Without loss of generality (expanding the language if necessary), suppose L and T

to contain Skolem functions: that is, for each formula φ(x, y1, . . . , yn) of L with just the
free variables x, y1, . . . , yn, suppose L to contain a function symbol fφ and T to contain
the sentence ∀y1, . . . , yn (∃xφ(x, y1, . . . , yn) → φ(fφ(y1, . . . , yn), y1, . . . , yn)). Let N be the
smallest subset of M closed under all the Skolem functions.

Note that the “without loss of generality” bit of the argument involves choosing inter-
pretations for an infinite number of symbols fφ, and this involves a use of the Axiom of
Choice. This is bound to be necessary since, for one thing, without the Axiom of Choice,
an infinite set need not have any countably infinite subsets at all.

(vi) (Optional, and only for those who know enough set theory): Assume that T is
a theory in a countable language L of first order predicate calculus, which has arbitrarily
large infinite models. Show that T has a model of every infinite size. (Your answer to the
previous part will have assumed the Axiom of Choice in some form. Your answer to this
one is likely to use it much more heavily.)

Similar to the above. Suppose L and T to be equipped with Skolem functions.

Let κ be an infinite cardinal, and let M be a model of T of size greater than or equal
to κ. Let A be some subset of M of size κ. Let N be the smallest subset of M closed under
all Skolem functions, such that A ⊆ N.

Then N is an elementary substructure of M and thus a model of T , and has size κ.

(vii) (Definitely optional, and requires set theory): Prove that a theory T in a count-
able first order language that has an infinite model has arbitrarily large infinite models.

Let κ be an infinite cardinal, and add to the language L a set C of size κ of constant
symbols, and consider the set T ∪ {¬(c = d) : c, d ∈ C, c 6= d}. Every finite subset of this
is satisfiable because T has an infinite model; thus by the Compactness Theorem the whole
set is; and the model in which all these formulae are true, must have size greater than or
equal to κ.

This may also be done economically using ultraproducts (if you are familiar with them).



(viii) (Optional: requires set theory) Deduce the Löwenheim-Skolem Theorem: if a
theory T in a countable first order language has an infinite model, then it has a model of
every infinite cardinality.

Now easy.

4. (Optional: uses set theory and model theory) (i) Let N be a countable model of the
theory of N which is not isomorphic to N. Prove that N is totally ordered, and that it has
an initial segment isomorphic to N.

The theory of N contains the axioms of a total order, and also contains the sentences
n ≤ n+ 1 for each n, where n is some term referring to n, and also the sentences

∀x (x = 0 ∨ x = 1 ∨ · · · ∨ x = n ∨ x ≥ n+ 1)

for each n.
Note that the theory of N does NOT contain the axioms of a well-ordering, since these

cannot be expressed in a first order language. Hence N will typically not be well-ordered.

(ii) Show that every non-standard element of N belongs to an interval which is order-
isomorphic to Z.

The theory of N states that every non-zero element of N has an immediate predecessor
and an immediate successor. The result follows at once.

Note the corollary: if N is not isomorphic to N, then it is definitely not well-ordered.

(iii) Show that there is no final such interval order-isomorphic to Z, no initial one,
and that between any two such intervals, there is another.

If n is a non-standard element of N, then, since multiplication is defined in the theory
of N, there must be an element of N which N believes to be the product 2n of 2 with n.
Since in N, for all non-zero m, m < 2m, it follows that in N, n < 2n. And n and 2n must
belong to different copies of Z, or else there would exist a standard natural number m such
that N � 2n = n +m, and thus (since the usual laws of arithmetic on N are contained in
its theory and are thus true in N) N � n = m, contradicting the assumption that n was
non-standard.

Thus there is no final copy of Z in N.
The fact that there is no initial copy of Z uses a similar argument with either 1

2
n or

1

2
(n− 1), depending on which of n and n− 1 N believes to be even.

If m and n are non-standard natural numbers belonging to different copies of Z, then
we find another copy of Z in between by considering either 1

2
(m + n) or 1

2
(m + n − 1),

depending on which of m+ n and m+ n− 1 N believes to be even.

(iv) Deduce that N is order-isomorphic to N⊕ (Q⊗Z), where the operators ⊕ and ⊗
have the following meanings. If (P,≤P ) and (Q,≤Q) are total orders, with P and Q being
disjoint sets, then P ⊕Q is the set P ∪Q equipped with the order ≤P⊕Q in which Q comes
after P ; that is, x ≤ y iff x, y ∈ P and x ≤P y, or x, y ∈ Q and x ≤Q y, or x ∈ P and
y ∈ Q; and P ⊗Q is the cartesian product P ×Q equipped with the lexigraphic order, in
which (p, q) ≤ (p′, q′) iff either p < p′, or p = p′ and q ≤ q′.

This follows from the theorem that every countable dense linear order without end-
points is order-isomorphic to Q.



Deduce that all countable models of the theory of N which are not isomorphic to N,
are order-isomorphic to each other.

Now trivial.
Note that we have NOT proved that such models of the theory of N are isomorphic,

considered as models of the theory of N; we have proved a much weaker statement.

(v) Let A ⊆ N be the set of all primes. If f : A → {0, 1}, let Σf be the following set of
formulae of an appropriate first-order language of arithmetic, with an additional constant
symbol c:

Σf = {(p | c) : f(p) = 1} ∪ {(p 6 | c) : f(p) = 0},

where p is some term referring to p, and m | n means “m is a factor of n”.
Prove that there is a countable model Mf of the theory of N in which Σf is true.
This is an application of the Compactness Theorem.
Strictly speaking, because we have added a constant symbol c, we are now using a

different language.
In what follows, I will sometimes commit the abuse of thinking of Mf as a model of

the language of the natural numbers (without the constant symbol c).

(vi) Deduce that there are 2`0 different non-isomorphic countable models of the theory
of N.

It is a nuisance that (committing the abuse mentioned above, and forgetting the con-
stant symbol c) some of the models Mf may be isomorphic to each other; otherwise we
could just say “there are 2`0 different f , so there are 2`0 different Mf”.

We have to be a little bit careful.
So, suppose that κ is an infinite cardinal, and κ ≤ 2`0. Suppose that there are exactly

κ countable models of the theory of N. List them all as {Mα : α < κ}.
Now, for each α < κ, let Aα be the set of all f such that Mα is isomorphic to Mf .

The fact that M
α is countable means that Aα is countable. For if not, there must exist

f 6= g such that Mf and Mg are isomorphic, via an isomorphism π such that π sends the
interpretation of the new constant c in Mf , to the interpretation of c in Mg. But Σf and
Σg are inconsistent with each other, so this is impossible.

Now every f must belong to some Aα.
Hence |

⋃
α<κAα| ≥ 2`0 .

This is only possible if κ = 2`0 , as required.


