
Groups and Group Actions, Sheet 2, HT2020
Pudding

I would really appreciate feedback on ways in which these comments and solutions could be
improved and made more helpful, so please let me know about typos (however trivial), mistakes,
alternative solutions, or additional comments that might be useful.

I’m not going to give full details/proofs for every question, but hopefully I’ll give something useful
against which you can compare your thinking.

Vicky Neale (vicky.neale@maths)

P1. What is the largest possible order of an element in S5? In S9? What is the smallest
n for which an element of largest order in Sn must have three cycles (in disjoint cycle
notation)?

We use disjoint cycle notation, because the order of a permutation written in disjoint cycle
notation is the least common multiple of the lengths of the cycles.

In S5, we can have an element of order 6, for example (1 2 3)(4 5). By thinking about the possible
cycle types, we find that this is the largest possible order.

In S9, we can have an element of order 20, for example (1 2 3 4 5)(6 7 8 9). This is the largest
possible.

In S9, an element of largest order can have two cycles. We can check values up to 8. It is clear
that if n 6 4 then an element of largest order in Sn does not have three cycles, and we have seen that
in S5 there is an element of largest order with two cycles, so we concentrate on checking 6 6 n 6 8.

n = 6: the largest possible order is 6, which can be obtained with (1 2 3 4 5 6).

n = 7: the largest possible order is 12, which can be obtained with (1 2 3 4)(5 6 7).

n = 8: the largest possible order is 15, which can be obtained with (1 2 3 4 5)(6 7 8).

So the smallest n for which an element of largest order in Sn must have three cycles is at least 10.
Checking n = 10, we find that the largest order of an element of S10 is 30, which is achieved only

with three cycles (for example (1 2 3 4 5)(6 7 8)(9 10)).
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P2. For each of the following sets Xi, determine whether every permutation in Sn can be
written as a product of elements of Xi.

(i) X1 = {(j j + 1) : 1 6 j < n}

(ii) X2 = {(1 k) : 1 < k 6 n}

(iii) X3 = {(1 2), (1 2 . . . n)}.

(i) Every permutation in Sn can be written as a product of elements of X1.

We already know that every permutation can be written as a product of transpositions, so it
suffices to show that every transposition can be written as a product of elements of X1.

We can build up, for example we can obtain transpositions of the form (j j + 2) via (j j +
1)(j + 1 j + 2)(j j + 1).

One nice way to think about this is as conjugation, see Q3 of the main course on this sheet.

(ii) Again, every permutation in Sn can be written as a product of elements of X2.

Again it is enough to show that every transposition can be written as a product of elements of
X2, and (j k) = (1 j)(1 k)(1 j). (This is another instance of conjugation as in Q3.)

(iii) Perhaps surprisingly, every permutation in Sn can be written as a product of elements of X3.

Conjugating (1 2) by a suitable power of (1 2 . . . n) allows us to write every element of X1 as
a product of elements of X3, and then we are done by (i).

P3.If we choose a permutation in Sn at random, with all permutations being equally likely,
what is the probability that our chosen permutation has exactly one 1-cycle?

To find the probability, we can find the number of permutations in Sn that have exactly one
1-cycle, and then divide by the number of permutations in Sn, that is, divide by n!.

There are n possible elements that could be in the 1-cycle. We then want permutations of the
remaining n− 1 elements that do not fix any elements. These are called derangements. One elegant
way to count derangements is called the inclusion-exclusion principle, which you might have seen on
Sheet 1 of the Probability course last term.
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