
M.Phys C6 Theoretical Physics Option
M.Math.Phys. Advanced Quantum Theory

Problem Sheet 1

Problems marked as (optional) will not be discussed in the problem classes, but written solutions will
be provided.

Question 1. Consider paths X = X(τ), where τ is a parameter, and the functional

l[X] =

∫ τ1

τ0

dτ n(X)

√
dX

dτ
· dX
dτ

,

where n = n(X) is a function. (The minima of this functional can be interpreted as light rays
propagating in a medium with refractive index n.)
a) Vary the above functional and derive the differential equation which has to be satisfied by
minimal paths X.
b) Consider a two-dimensional situation with paths X(τ) = (X(τ), Y (τ)) in the x, y plane and a
function n = n0 + (n1 − n0) θ(x). (The Heaviside function θ(x) is defined to be 0 for x < 0 and
1 for x ≥ 0. Recall that θ′(x) = δ(x).) Solve the differential equation in a) for this situation,
using the coordinate x as parameter τ along the path.
c) Show that the solution in b) leads to the standard law for refraction at the boundary between
two media with refractive indices n0 and n1.

Question 2. (optional)
a) Evaluate the Gaussian integral ∫ ∞

−∞
dx e−

1
2 zx

2

(1)

for a complex constant z. What is the requirement on z for the integral to exist?
b) The gamma function Γ is defined by

Γ(s+ 1) =

∫ ∞
0

dxxse−x .

c) Show that Γ(1) = 1 and Γ(s+ 1) = sΓ(s). (Hence Γ(n+ 1) = n!)
d) Take s to be real and positive. Evaluate Γ(s+ 1) in the steepest descent approximation: write
the integrand in the form ef(x) and argue that for large s � 1 the dominant contribution to
the integral arises from the minima of f(x). Expand the function to quadratic order around the
minimum, argue that you may extend the integration boundaries to ±∞, and then carry out the
resulting integral. Your result is known as Stirling’s approximation: it tells what n! is when n
becomes large.
e)∗ The following extension is for complex analysis afficionados, so simply omit it if you haven’t
taken the short option. Take s to be complex with positive real part. Deform the contour in a
suitable way, so that you can again apply a steepest descent approximation. Ponder the name
of the method. What is Stirling’s approximation for complex s?

Question 3. (optional) Consider a free QM particle moving in one dimension. The Hamiltonian
is

H = − ~2

2m

d2

dx2
. (2)
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We have shown in the lecture that the propagator can be represented in the form

〈xN |e−
i
~ tH |x0〉 = lim

N→∞

[ m

2πi~ε

]N
2

∫
dx1 . . . dxN−1 exp

(
iε

~

N−1∑
n=0

m

2

(
xn+1 − xn

ε

)2
)
. (3)

a) Change variables from xj to yj = xj − xN to bring it to the form

〈xN |e−
i
~ tH |x0〉 = lim

N→∞

[ m

2πi~ε

]N
2

∫
dy exp

(
−1

2
yTAy + JT · y

)
e
im
2~ε (x0−xN )2 . (4)

Give expressions for J and A.
b) Carry out the integrals over yj to get an expression for the propagator in terms of A and J.
c) Work out the eigenvalues λn and eigenvectors an of the matrix A. You may find helpful hints
in the lecture notes.
d) What is det(A)? A useful identity you may use is

N−1∏
j=1

2 sin(πj/2N) =
√
N. (5)

Now work out JTA−1J by working in the eigenbasis of A−1 (Hint: write this as JTA−1J =
JTOTOA−1OTOJ, where OTO = 1 and OA−1OT is a diagonal matrix you have already
calculated above.). A useful identity you may use is

N−1∑
j=1

cos2(πj/2N) =
N − 1

2
. (6)

e) Use the result you have obtained to write an explicit expression for the propagator.

Question 4. Denote the propagator by

K(t, x; t′x′) = 〈x|e− i
~H(t−t′)|x′〉. (7)

Show that the wave function ψ(t, x) = 〈x|Ψ(t)〉, where |Ψ(t)〉 is a solution to the time-dependent
Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉, (8)

fulfils the integral equation

ψ(t, x) =

∫ ∞
−∞

dx′ K(t, x; t′x′) ψ(t′, x′). (9)

Question 5. Diffraction through a slit. A free particle starting at x = 0 when t = 0 is determined
to pass between x0 − b and x0 + b at time T . We wish to calculate the probabilty of finding the
particle at position x at time t = T + τ .
a) Argue on the basis of Qu 5. that the (un-normalized) wave function can be written in the
form

ψ(T + τ, x) =

∫ b

−b
dy K(T + τ, x;T, x0 + y) K(T, x0 + y; 0, 0) , (10)

where
K(t, x; t′x′) = 〈x|e− i

~H(t−t′)|x′〉. (11)
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b) Using that the propagation for 0 ≤ t < T and T ≤ t < T + τ is that of a free particle, obtain
an explicit integral representation for the wave function.
c) Show that the wave function can be expressed in terms of the Fresnel integrals

C(x) =

∫ x

0

dy cos(πy2/2) , S(x) =

∫ x

0

dy sin(πy2/2) . (12)

Hint: make a substitution z = αy + β with suitably chosen α and β.
Derive an expression for the ratio P (T + τ, x)/P (T + τ, x0), where P (T + τ, x)dx is the

probability of finding the particle in the interval [x, x+ dx] at time T + τ .
d) (optional) If you can get hold of Mathematica (the default assumption is that you will not),
plot the result as a function of the dimensionless parameter x/[b(1+τ/T )] for x0 = 0 and different
values of the ratio

γ =
mb2(1 + τ/T )

~τ
. (13)

Discuss your findings.

Question 6. In this question the objective is to evaluate the Feynman path integral in one of
the relatively few cases, besides those treated in lectures, for which exact results can be obtained.
The system we consider consists of a particle of mass m moving on a circle of circumference L.
The quantum Hamiltonian is

H = − ~2

2m

d2

dx2

and wavefunctions obey ψ(x+L) = ψ(x). We want to determine the imaginary time propagator

〈x1| exp(−βH)|x2〉 .

a) What are the eigenstates and eigenvalues of H? As we are dealing with a free particle, we
can determine the propagator as in the lectures in a simple way by inserting resolutions of the
identity in terms of the eigenstates of H. Show that this leads to the following result

〈x1| exp(−βH)|x2〉 =

∞∑
n=−∞

1

L
exp

(
−β(2πn)2~2

2mL2
+ 2πin

[x1 − x2]

L

)
. (14)

b) Next, approach this using a path integral in which paths x(τ) for 0 ≤ τ ≤ β~ satisfy the
boundary conditions x(0) = x1 and x(β~) = x2. The special feature of a particle moving on a
circle is that such paths may wind any integer number l times around the circle. To build in this
feature, write

x(τ) = x1 +
τ

β~
[(x2 − x1) + lL] + s(τ),

where the contribution s(τ) obeys the simpler boundary conditions s(0) = s(β~) = 0 and does
not wrap around the circle. Show that the Euclidean action for the system on such a path is

S[x(τ)] = Sl+S[s(τ)] where Sl =
m

2β~
[(x2−x1)+lL]2 and S[s(τ)] =

∫ β~

0

dτ
m

2

(
ds

dτ

)2

.

c) using the results of b) show that

〈x1| exp(−βH)|x2〉 = Z0

∞∑
l=−∞

exp

(
− m

2β~2
[(x1 − x2) + lL]2

)
, (15)
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where Z0 is the diagonal matrix element 〈x|e−βH |x〉 for a free particle (i.e. without periodic
boundary conditions) moving in one dimension.
d) Argue on the basis of the result you obtained in Qu 3. for the propagator of a free particle
that

Z0 =

(
m

2πβ~2

)1/2

. (16)

e) Show that the expressions in Eq. (14) and Eq. (15) are indeed equal. To do so, you should
use the Poisson summation formula

∞∑
l=−∞

δ(y − l) =

∞∑
n=−∞

e−2πiny

(think about how to justify this). Introduce the left hand side of this expression into Eq. (15)
by using the relation, valid for any smooth function f(y),

∞∑
l=−∞

f(l) =

∫ ∞
−∞

dy

∞∑
l=−∞

δ(y − l)f(y) ,

substitute the right hand side of the summation formula, carry out the (Gaussian) integral on y,
and hence establish the required equality.

Question 7. Anharmonic Oscillator. Consider the anharmonic oscillator

H(λ1, λ2) =
p̂2

2m
+
κ

2
x̂2 +

λ1
3!
x̂3 +

λ2
4!
x̂4. (17)

where κ, λ1,2 > 0 and λ21 − 3κλ2 < 0. Define a generating functional by

Wλ1,λ2
[J ] = N

∫
Dx(τ) e

{∫ ~β
0

dτ[− 1
2x(τ)D̂x(τ)+J(τ)x(τ)]+U

(
x(τ)
)}

, (18)

where

U
(
x(τ)

)
= −1

~

∫ ~β

0

dτ

[
λ1
3!
x3(τ) +

λ2
4!
x4(τ)

]
, D̂ = −m

~
d2

dτ2
+
κ

~
. (19)

a) Show that the partition function is equal to

Zλ1,λ2
(β) = Wλ1,λ2

[0]. (20)

b) Show that the generating functional can be expressed in the form

Wλ1,λ2
[J ] = exp

(
U
( δ

δJ(τ)

))
W0,0[J ]. (21)

c) Determine the first order perturbative corrections in λ1 and λ2 to the partition function. Draw
the corresponding Feynman diagrams.
d) Determine the perturbative correction to the partition function proportional to λ21. Draw the
corresponding Feynman diagrams. Are there corrections of order λ1λ2?
e) (optional) Determine the first order corrections to the two-point function

〈Tτ x̄(τ1)x̄(τ2)〉β . (22)
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Draw the corresponding Feynman diagrams. What diagrams to you get in second order in
perturbation theory?

Question 8. A lattice model for non-ideal gas is defined as follows. The sites i of a lattice may
be empty or occupied by at most one atom, and the variable ni takes the values ni = 0 and
ni = 1 in the two cases. There is an attractive interaction energy J between atoms that occupy
neighbouring sites, and a chemical potential µ. The model Hamiltonian is

H = −J
∑
〈ij〉

ninj − µ
∑
i

ni , (23)

where
∑
〈ij〉 is a sum over neighbouring pairs of sites.

a) Describe briefly how the transfer matrix method may be used to calculate the statistical-
mechanical properties of one-dimensional lattice models with short range interactions. Illustrate
your answer by explaining how the partition function for a one-dimensional version of the lattice
gas, Eq. (1), defined on a lattice of N sites with periodic boundary conditions, may be evaluated
using the matrix

T =

(
1 eβµ/2

eβµ/2 eβ(J+µ)

)
.

b) Derive an expression for 〈ni〉 in the limit N →∞, in terms of elements of the eigenvectors of
this matrix.
c) Show that

〈ni〉 =
1

1 + e−2θ
,

where
sinh(θ) = exp(βJ/2) sinh(β[J + µ]/2) .

Sketch 〈ni〉 as a function of µ for βJ � 1, and comment on the physical significance of your
result.

Question 9. (optional) The one-dimensional 3-state Potts model is defined as follows. At lattice
sites i = 0, 1, . . . , L “spin” variables σi take integer values σi = 1, 2, 3. The Hamiltonian is then
given by

H = −J
L−1∑
i=0

δσi,σi+1
, (24)

where δa,b is the Kronecker delta, J > 0.
a) What are the ground states and first excited states for this model?
b) Write down the transfer matrix for (24). Derive an expression for the free energy per site f
in the limit of large L in terms of the transfer matrix eigenvalues. Show that vectors of the form
(1, z, z2) with z3 = 1 are eigenvectors, and hence find the corresponding eigenvalues. Show that
at temperature T (with β = 1/kBT ) and in the limit L→∞

f = −kBT ln
(
3 + eβJ − 1

)
. (25)

c) The boundary variable σ0 is fixed in the state σ0 = 1. Derive an expression (for large L), that
the variable at site ` � 1 is in the same state, in terms of the transfer matrix eigenvalues and
eigenvectors. Show that your result has the form

〈δσ`,1〉 =
1

3
+

2

3
e−`/ξ. (26)

5



How does ξ behave in the low and high temperature limits?

Question 10. Consider a one dimensional Ising model on an open chain with N sites, where N
is odd. On all even sites a magnetic field 2h is applied, see Fig. 1. The energy is

E = −J
N−1∑
j=1

σjσj+1 + 2h

(N−1)/2∑
j=1

σ2j . (27)

a) Show that the partition function can be written in the form

2h

1 NJ J J J J J J J

2h 2h 2h

Figure 1: Open Ising chain with magnetic field applied to all even sites.

Z = 〈u|T (N−1)/2|v〉 , (28)

where T is an appropriately constructed transfer matrix, and |u〉 and |v〉 two dimensional vectors.
Give explicit expressions for T , |u〉 and |v〉.
b) Calculate Z for the case h = 0.
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