Supersymmetry and supergravity

Lecture 12



SUSY gauge theories with matter

* So far we have studied models with a collection of chiral multiplets,
and models constructed with vector multiplets only. We have to
combine the two to get a general SUSY gauge theory

e At the moment we are interested in renormalizable models. In
particular, all fields have canonical kinetic terms

« SUSY gauge theories are very rich on their own, and this formalism is
necessary to start to apply SUSY to questions related to the SM



The building blocks In isolation

Matter fields = chiral multiplets (X', 1//(3, FY)
X =2yt Gy =iV2(0" 0 X +V2FE, . SF =iN285
gkin —_— = a”)_(iaﬂXi -+ iaﬂl/_fiﬁﬂl//i + FiFi

i I i
Ly=FW—=W,y'y/+h.c.
Gauge fields = vector multiplet (A, 4,, D®)  a = adjoint index
0Af =if5,A"+h.c. , 84 =(c"&),F*, +iD*¢,, 6D*=E(dD,A"+h.c.
| a . " —= 1 a
gvec — _ZF ’MDFCWU'F lD,u/l U’M/Ia‘FED Da

Goal: Take a model with chirals that has global symmetry G and gauge the symmetry,
coupling to a vector multiplet



Chiral models with global continuous symm’s

Matter fields = chiral multiplets (Xi, Wé, Fi)

We identify the index 1 with the index of a representation of a global flavor symmetry group G. The generators
of G are T, and obey

[Tm Tb] =1 abc )

C

Adjoint indices are raised/lowered with 0 ,. Then f_, . is real and totally antisymmetric.

We consider a representation of G by hermitian matrices (ta)ij. For instance

5ﬂav0er — ZAS (ta)lj X/ ’ 5ﬂav0rX' - = 1A8X] (ta)lj
where Ag is a constant real parameter of the infinitesimal flavor transformation. All fields in (X i, Wé, I i) have

the same transformation law.

NB: our notation works for a simple non-Abelian group, but also for a U(1) factor. In the latter case the matrix
(ta)’j is the identity times the charge of the field,

foraU(1):  SgpyorX' = iASGIX'1X" . SgaverX; = — iAZqIX']1X;  (nosum on i)



Chiral models with global continuous symm’s

5ﬂavorXi — ZAg (ta)ij Xj ’ 5ﬂav0r i — lAg)_(] (ta)ij
Ly = FiWi—%lel//il//j+h.c.

The kinetic Lagrangian is automatically invariant. &£y, is invariant
provided that the superpotential is invariant under a flavor transformation:

0 = Spayor W) = W, B X' = i AGW; (1), X = W (1) X =0



Gauging the flavor symmetry

As usual, we gauge the flavor symmetry by promoting the transformation
parameter to be an arbitrary function of spacetime: we go from

SavorX' = 1 NG (ta)ij X, X = — i A )_(] (ta)ij
to

SoqugeX' = =18 A (1) X | SpueeX; = ig A X; (1), , 0,A#0

The coupling constant g is inserted for convenience. Ordinary derivatives of

X' must be replaced by gauge-covariant derivative. They are constructed
with a gauge vector A/j‘ in the adjoint of G:

DX =0X+igA (), X , DX, =0X —18A,X;(,);



SUSY variations after gauging

When the global flavor symmetry G is gauged, the fields (X, yfé, F") acquire a

gauge redundancy. This modifies their off-shell SUSY transformations. The full set of
off-shell SUSY variations is

=V2¢&y
&lj =1V2 (0 5) DMXi T \/zFi Sa Modifications:
Fi— i\/z 55/4 Dﬂl//i +2ig (é?/l_a) (ta)l:]' ) 1. par_tla_l derivatives in the chiral multiplet

variations are replaced by gauge-cov der’s
SAY=iE5 )%+ h.c 2. there is a new term in the variation of F
” P .C.

oA, = (6" ¢), F“W + 1D,
=¢(6'D,A"+h.c.



The new term in the variation of F+

The superspace formalism gives a derivation of the previous SUSY variations. Even
without superspace we can have an intuition for the origin of the new term in the

variation of F. It is needed to get the gauge-cov. version of off-shell closure of the
SUSY algebra:

51521415 — 525114;; =—21 (51 o” 32 — 52 c" 51) Fal///t
510, — 6,6, = —2i(E,6%E, — & 6% &) D,®

where @ stands for any field that transforms tensorially under a gauge

transformation (in the adjoint rep for fields in the vector multiplet; in the rep with 1
indices for the chiral multiplets)



The new term in the variation of F+

A sketch of the check:

5,6,F = i\/2 E, 5" 5Dy +2ig (&84 (1) X +2ig (&AM (1) 6,X

We get a novel term from the SUSY variation of the gauge field inside Dﬂl//i:

51Dﬂ1//é Dig 51A/j’ (ta)"j l//‘é =ig2( 4?1 G, A4 — i) C, 1) (ta)"j l//‘é

which gives

iV2E5 8Dy D —g\2@&EFYW) () (iE5,A—il5,E)

To cancel this 4-Fermi term we need the contribution from

2ig (& AN (1,)6, X =2+/2ig (&4 (1) (&)
5X'=/2 &y’ SA=iE5,)"+h.c.
Sy =i\2(c" &), DX +2F¢, 518 = (6" &) F,, +iDE,
SF' = i\2EF Dy’ +2ig (E1%) (1) X 5D =E3 D, +h.c.




The full SUSY Lagrangian

The full Lagrangian of a SUSY gauge theory is the sum of several pieces:
 YM term and supersymmetrization:

L e = ——F“””Faﬂy +iD, A15" 2, +5 D“D
* Kinetic terms for chirals, written with gauge-cov der’s
Zrin=—D'X;D X' +iD ;5" y' + F,F'
e Extra terms that are required after gauging:
Leoupt = 1V 2 8 [X; )0/ 29 = 2,(t,)' X] + gD X; (1), X
 Terms that come from the superpotential (if any' this part is optional)
« The superpotential must be gauge-invariant: Wl (ta)’j X' =0

* Optionally: Fayet-lliopoulos terms



Fayet-lliopoulos terms

There is one extra class of couplings that are compatible with SUSY:

Ly = p, D"
where p_'s are constants. |Is this term gauge invariant?
_ b
5gauge( Da) = Pa gaugeDa O<pafa CAch

In order for this term to be allowed, the constants p, must obey

fabcpc =0
The superspace analysis shows that if this is true, then £ is also supersymmetric.

The constant p, associated to a generator 1, can be non-zero only if 1 never appears in the
commutator of two other generators. In our setup 7, is either inside a simple non-Abelian factor of
the gauge group, or it is a U(1) factor. We find that

the FI constant p, can be non-zero only if T is the generator of a U(1) factor
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The full SUSY Lagrangian

The full Lagrangian of a SUSY gauge theory is the sum of several pieces:
 YM term and supersymmetrization:

1 a . "a —= 1 a
A =_ZFﬂVFa//tI/+lD,u;t Gﬂlla+5D Da

\Y &

» Kinetic terms for chirals, written with gauge-cov der’s
Zrin=—D"X;D X'+ iD,jy,c"y' + F, F'
e Extra terms that are required after gauging:
Lot = iV2 8 [Xi (097 24 = 127, (1,); XV + g DX, (1) X/
* Terms that come from a gauge-inv superpotential (if any)
fZW=FiW/i—%VVljl//il//j+h.C. W, (1) X =0

» Flterms for the U(1) factors of the gauge group: £ = p, D



Integrating out the auxiliary fields

Lree =—7 F*"F,, +iDJ"5" A+~ DD,
Lo = iV28 [X; )y 29— 22, (1,); X' + g DX, (t,)"; X'

Ly =F W= Wy'y/+h.c. ZLp = P, D°
The EOMs of the auxiliary fields are
FF=-WX), F=-WX) ., D,=-gX )X —-p,

These fields enter the Lagrangian algebraically and quadratically. They are
integrated out exactly via their classical EOMSs.




Integrating out the auxiliary fields

1 : T — 1
Lree =—7 F"F,,, +iDJ & \+- DD,
Leowp = 1V28 [X; ()47 24 = 207, (1), X' + g DX, (t,)"; X’

| Ly =F W= Wy'y/+h.c. ZLp = P, D°
We get the Lagrangian

< = (YM and kin terms) + i\/z g [)_(l- (ta)l:]- W A4 — )¢ W, (ta)’:]- Xf]
—5 Wyw' =5 Wi, — VX, X)
where the scalar potential is the sum of an “F-term” and a “D-term”:
V(X,X) = F(X) Fi(X)+~ D,(X.X) DX, X)
FF=-WX), F=-WX) , D,=-gXt);X —p,




SUSY vacua

The scalar potential is the sum of an “F-term” and a “D-term”:
V(X,X) = F(X) Fi(X)+~ D,(X.X) DX, X)
FiF=-WX), F=-WX), D,=-gX;);X —p,

As expected in a SUSY theory, V is non-negative.
* In a generic vacuum the scalars X"s have (covariantly) constant VEVs that are at a stationary point of V

e In a SUSY vacuum, we must have V = 0 and therefore we must set to zero all F-terms and all D-terms:

" o X, (). X +p,=0
E — y g l(ta)] + pa —
e \We can see that SUSY is unbroken from the variations of the fermions:
Syl =i\/2(0"&), DX +V2F¢, | 534 = (6" &), F*,, +iD¢&,

* Depending on the model, SUSY vacua might not exist! Spontaneous SUSY breaking



Example: SQED

Our first example is the supersymmetric version of QED with a massive electron. To
construct it we start from a model with two chiral superfields (X, y.", F") and

(X, , F~) with canonical kinetic terms and superpotential

W=mX" X"
This model is invariant under a global flavor U(1) symmetry, under which
(X", y, F7)and (X,y,, F~) have opposite charges * 1.

We gauge this global symmetry with a U(1) vector multiplet. Since the gauge group
Is Abelian, we can add an Fl term.

In our general notation, a takes only one value, while 1 = £ and
_|_
) ',=+1,@),=—-1, @) -=0



Example: SQED

The full Lagrangian reads (after eliminating the aux fields)
< = (YM and kin terms)

+i\/§g [)Fl//”/l—/l_?)ﬁ] +i\/§g [—T{/f‘j/1+/I_TX_]
—mytyT —mytyT -V
where

_ 2
V=1mPIXHP 4 Im P 1 X P4 lg(X+X+—X‘X_)+p]
The F-term and D-term equations are
Ff=—-mX¥=0, Ffr=—-mX*=0, D=—-g[XTXt-X"X]1-p=0

If the FI parameter p is non-zero, we cannot have a SUSY vacuum. Let’s set p = 0.



Example: SQED

% = (YM and kin terms) — mytw~ —myty- =V

+i\/§g [)Fl//Jrj/I—/l_?XJ“: +i\/§g [—Tl//_j/1+/l_FX_]
V= mPIXt P+ mP X Pt g (XX -X X))

Suppose m = |m| e'?_ With the redefinitions
(X"‘, l//;—, F"‘) — (X+, l/jo_cl_’ F+) e—ia/Z | (X_, l//;, F—) N (X_, 1/10?9 F_) e—ia/Z

we can get rid of the phase of m. We can then assume m is real and positive. We collect the two Wey!
spinor into a 4-component Dirac spinor and we find a standard mass term

Va
()

The 4-component Dirac spinor W plays the role of the electron. The coupling g is the electron charge.

Y = Y=Y =(yr wh,), PY=yyt+yty



Intermezzo: fermion masses

If we take a generic SUSY gauge theory and we expand around some VEV for the scalars,
we will generically originate mass terms of the fermions, of the form

LD - My — My,

The symmetric matrix ;i can receive contributions from explicit mass couplings from the
superpotential, as well as contributions from the VEVs of scalars.

Fact of life: for any complex symmetric matrix .#, a unitary matrix % exists such that
ﬂA — %Tﬂ CZ[

is diagonal with real non-negative entries, ./ , = diag(m,, m,, ...). The eigenvalues m;,

m,, ..., are the physical masses of the fermions in the model. It is worth noting that m12 mz2

..., are the eigenvalues of ./ /4 (which is a positive hermitian matrix). This observation is
often useful in comparing the masses of fermions and bosons.



Example: SQCD

Our next example is the supersymmetric version of QCD with a generic number N, of colors and ]\Qof

flavors. We consider a model with massless quarks. Ordinary QCD is non-chiral. A given flavor of quark

Is usually described by a 4-component Dirac spinor P! where I is a fund index of SU(N,). In 2-
component language, we find two independent Weyl spinors, one in the fund, the other in the antifund,

',
eV (Wlﬁ)*

This observation motivates the content of SQCD:

P =

» a vector superfield in the adjoint of SU(NV.,.)
» Nyidentical copies of a chiral supermultiplet in the fund rep of SU(N,)

» Nyidentical copies of a chiral supermultiplet in the antifund rep of SU(N,)

We consider a model with W = 0. We cannot turn on any Fl terms.



Example: SQCD

The scalars in the chiral multiplets are usually called “squarks” and often
denoted Q instead of X. Our notation is as follows:

chiral multiplets in the fund of SU(N..) : Q'+, w7, F'+)
chiral multiplets in the antifund of SUN,) :  (Q ' iz, 1w F 1))

where

[ =1,...,N, is afund/antifund index of SU(N..)

N

I =1,..., N; labels the copies of the chirals in the fund of SU(N,.)

\

["=1,..., N, labels the copies of the chirals in the antifund of SU(/N,)



Example: SQCD

It IS convenient to introduce an index-free matrix notation:

[Q],7 = Qlf , [E] Py = 51’1 , and similarly for all other fields

A finite SU(N.) gauge transf in this notation is
gauge: Q—>UQ , "= Q'U™', Q- QU™
It turns out that all terms in the Lagrangian are invariant under a chiral SU(N;) X SU(N;) global

—

0> UQ", UeSUW.)

symmetry. The first factor acts on the O's only (f indices):

~—~O — —

globalonQs: Q0 —-QV™' , Q"->VQ", 0—-0, Q0'- Q" , VeSUW)

The first factor acts on the 5‘5 only (f’ indices):

—

gobalon 0's: Q0 —Q , 0'=0f, 0—-VQ, Q- Q'V! | VesSun,)
This § U(]\Q) X SU(NVy) is the analog of the chiral symmetry of ordinary QCD with massless quarks.



Example: SQCD

It is customary to collect the content of the model in a table with representations

SU(Nc) SU(Ny) SU(Ny)

Q'+ O o
Q'; O :

@IIA O ¢
3 . 0

There Is also a pictorial way based on “quiver diagrams”

0 0
SUWN;) |—»—| SUN,) —»— SUW))




Example: SQCD

01> =0" , [0]l;,=0",
The D-term in a general model is —D, = X (ta)l:]- X’. This term splits into two because X
stands both for the O’s and the QO'’’s:

from the Q’s: X, (ta)’:]- X' D Qlf (ta)lj ij = tr(Q" t, Q)
fromthe Q's: X, (1,); X/ D E},’ @ty SOl =01 (~t ) ,Ef,’ = —tw(Qt O
To see the relation between (tfl‘nﬁ) to (¢,)' ; we can use for example

5gauge’é’ f’l — _jAC ’é’ f'] (ta)J — i \d (tgnti)lf ’Q’ f’J

Notice that tr(Q" t, ) and tr(ata féﬁf) are manifestly invariant under SU(N;) X SU(Ny)

— —

Q-QV', 0-VQ



Example: SQCD

The D-term relations are

SUSY vacua: tr(Q" t, Q) — tr(ata ET) =0

These equations can have a non-trivial space of solutions (the “moduli

space” of the model). NB: this is a classical analysis, which receives
Interesting quantum corrections.
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Superspace: the idea

SUSY variations and actions can in principle be found by trial-and-error, but it
can be cumbersome and computationally demanding

We would like a formalism in which SUSY is manifest
Superspace is such a formalism

Ordinary space with ordinary bosonic coordinates x* is enlarged with

fictitious “fermionic coordinates” @, 0.. These are Grassmann numbers

We will interpret a SUSY transformation as the effect of a translation along the

fermionic coordinates @, 0.,

Using a suitable notion of integration in superspace, we will construct actions
that are manifestly invariant under “translations in the fermionic directions”



Warm-up: ordinary space as a coset

* Let us consider the ordinary Poincaré Lie algebra:
[]/w’ Jp(,] = inﬂp J s — ir]w J/w — in/w Jyp +1in,, ]ﬂp
s ol = 111y Py = 100, Py [P, P =0
» We use the notation /SO(1,3) for the Poincaré group, while SO(1,3) denotes its Lorentz subgroup

(no translations). The respective Lie algebras are denoted t80(1,3) and 80(1,3)

* The exponential map take an arbitrary element of the Lie algebra to an element of the
corresponding Lie group:

—xH Pﬂ+% ) lad Juw € t30(1,3) , exp( — 1 x¥ P/fl'% 1 J/w) e 150(1,3)

~w' ], €80(13),  exp(yio"],) € SO(13)

. The quantities x*, w'#*! are real parameters. Our conventions are motivated by thinking of P,J,

as Hermitian operators, which are taken by exp(i...) to unitary operators



Warm-up: ordinary space as a coset

 In general, given a group G and a subgroup H of G, we can define the coset G/H by

taking equivalence classes in G under the equiv. relation defined by action of H from the
right:

g~gh, geG, heH
» We apply this construction to G = ISO(1,3), H = SO(1,3). The coset is Minkowski space
R~ 1SO(1,3)/S0(1,3)
1

« We will not give a formal proof. Intuitively, the quotient makes the > 1) J/w part “pure

gauge”, so that we can parametrize an element of the coset using a standard
representative

G(x) = exp(—ix"P),)

» The parameters x* are coordinates in Minkowski space



Left action on the coset

Let us choose a fixed element g, € G and let us consider the action of g, on the
standard representative G(x), g, LG(x) (the inverse is for later convenience)

The element go_l G(x) € G belongs to a unique equivalence class in G/H, which has
a unique standard representative G(x") for some coordinates x’. Explicitly:

g G(x) = G(x) h(x,gy) . h(x,g) € H

We can think of /(x, gy) as a “compensating gauge transformation” that restores the
standard form of G(x) after we act with g,

Each g, determines a “motion” in the space with coordinates x, going from x to x’

If g Is the identity plus and infinitesimal piece, it determines an infinitesimal variation
ox (we can think of it as a vector field on the coset)



Example: g, Is a translation

g, G(x) = G h(x,g)) , h(x,g) € H
We can write
gy = exp(—ia” P))
and therefore
2o LG(x) = exp(i a* P,)) exp(—ix"P) =exp(—i(x —a)" P)
This case is simple: we do not need any compensating /(x, g,) € H. The
Induced motion is simply a translation

gy =exp(—iatP) : x*=x"-a"



Example: g, Is a Lorentz transf

& G(x)=GW)h(x,g) , hix,g) €H
We can write g, = exp(é A" J,,) and therefore g LG(x) = exp(—% A J,) exp(—ix“ P) .
For simplicity we work to linear order in the parameters A**. Recall the Baker-Campbell-Hausdorff formula
exp(A) exp(B) = exp(A + B+~[A, Bl+—[A, [A, Bl + ...)
Using the JP commutator, we find
go_1 G(x) = exp(—% AP Sy —1X° Py+% Ax)P,+...)

This quantity should be cast in the form G(x') h(x, g3), so we compare it

exp(—ix™ P) exp(—% JH JW) = exp(—% A S —1X" Py+% (A XY P,+...)

Here A** are params of the compensating H transformation, and x# are the coordinates of the transformed
point on the coset. Comparing the arguments of the exp’s at leading order in A** we discover

M = (X = xW = — (A x)



Scalar fields

In the “active transformation” perspective, the transformation law of a scalar field on the coset is
P(x)=dx) , g ' Gx) =GK) mod H

For an infinitesimal transformation, this gives

O(x +0) + 0D(x) = O(x) , oP(x) = — ox" 9, P (x)
In the example of a translation:

g0 = exp(—ia”Pﬂ) ,oxt=—a¥ , O0®=a" dﬂCD =ia" (—iaﬂ)(I)
In the example of a Lorentz transformation:
o =exp(z A*1J,) , oxf=—i x| 8D ="x,0,0=—=1"2ix,0,)d
We read off a set of differential operators that satisfy the same algebra as the Poincarée generators:
P=-i0,, J,=—-1(x,0,—x,0)
[Juv’Jpa] = inﬂpr+ e [J/w’Pp] = inﬂpPy+



Superspace

We define (flat) superspace as (super-Poincare)/(Lorentz). Since the J;w
generators are “pure gauge”, our standard form of a coset representative is

G(x, 0,0) = exp(—ix* P,+ 1070, + i@d 0%)

The motion in superspace generated by an element g, of the super-
Poincaré group is defined according to the general formula

g G(x,0,0) = G(x',0,6) mod SO(1,3)
An ordinary translation is easy because [P,P] =0, [P,0] =0, [P,0] =0

g =exp(—ia"P) , xX'=x—a , =0, 0 =0



Supertranslations

g G(x,0,0) = G(x',0',0") mod SO(1,3)
Let us now consider g, = exp(i& Q + i ¢ Q). We use BCH
exp(A) exp(B) = exp(A + B+ [A, Bl+— [A,[A,B]] + ...)
to simplify

exp(—ic Q —i¢ Q) exp(—ix"P,+100+100)

Only the first commutator term is non-zero, all the nested commutators vanish. The
above quantity is exactly equal to

exp(—ifQ—iEQ —ix'P,+i0Q+i00+-[-iEQ—iE0,i00+i0Q))
The SUSY algebra gives [E D, 0 O] = 2 & o §PM




Supertranslations

In the end we find the quantity
exp(—ix* P, +160'0 + i0'0)

where

Remarks:
» We do not need any compensating H transformation

« We have not assumed that the &, f params are infinitesimal

. A translation in @ or @ induces a translation in regular space: this is the
superspace version of the fundamental relation {Q, 0} ~ P



Superfields

By definition, a superfield is a function ®(x, O, é) that transforms under the action of
super-Poincare according to the scalar transformation law

®'(x',0,0") = ®(x, 0, 0)
For an infinitesimal transformation x’ = x 4+ ox, @' = 9 + 560, @' = 6 + 66 we have

®'(x,0,0) = O(x, 0, 0) + 5D(x, 9, 6)
0D = — ox" 9, ® — 00"

0 _ 0
00% 00,

04

For an ordinary translation:
g = exp(—wa”P) : oxF=—-a" , 00=0, 50 =0
50 = a0, =ia(—iP )P



Differential op’s implementing SUSY

0 _ 0

5P = — 60,0 — 60" — —

For a supertranslation:

g, =exp(iEQ+iEQ): 80°=—¢% | 80, =-E. , oxh=—(i0c"E—iEctD)

We plug this into 0® and we cast the result in the form

00 = (—ié%Q, —if, QYD  where Qa=i<aza i(o'”g)aﬁﬂ> , Qd:i(ﬁgd | i(@a”)ddﬂ)

Remarks:

» we have used (6 "), E4 = — E% (0 c"), = + E% (0 6t)?

e to compare tq Wess-Bagger, notice ’Fhat our Qa, GO‘ have an extra | compared to WB, and use
(06")* = (O0ct); = — (00");€™

. wealso have (=i E%Q, — i &, Q). = (20, + E. O%)wg so our 5D is the same as theirs




Differential op’s implementing SUSY

00

The coset formalism guarantees that the differential operators Pﬂ, Q. Qa satisfy the same SUSY
algebra as the abstract generators:

[P,,Q,]1=0, [P,,Q;] =0
{Qp Qs =0, {Q: Qs =0 {Q,.Q;) =2(c"),;P,

One can also check these relations explicitly.

P,=-i0,, Qa:i<aza—i(0”§)aaﬂ> , 6d=i<i+l(6’aﬂ)“ )

NB: when we lower the index on GO‘ we get

Q.=€.-Gﬁ=i< 0 +1(0c"),0 )=i< 0 +1(0c"),0 )
o “ﬁaeﬁ 00

We will see later in more detail how differentiation wrt Grassman variables works.




Extra: cosets and diff op’s In general

Let us consider a general coset G/H with a choice of standard
representatives (G(z) for a set of coordinates zM. The left action of G on
the coset determines a motion in G/H according to

g, G(z) = G(z) mod H
If gy Is Iinfinitesimal, we can write
go=l+ia’T, | M= My at VM)

In this way we associate to each generator T, of ¢ = Lie(G) a vector
field VAM(z) on G/H.



Extra: cosets and diff op’s In general

The Lie bracket of the vector fields VAM(z) gives a representation of the
abstract algebra: if iozg4 l'4 is the abstract commutator of iocfx 1’4 and

. A
L, 1,
iay Ty=[ial Ty, i, Tl
then the vector field 0534 VAM(z) associated to ia? T’ is the Lie bracket of
those of ioz‘l4 I’y and 1'05‘24 1,

a? VAM = a‘f‘ VAN aN(océ3 VBM) — a‘24 VAN 8N(alB VBM)



Extra: cosets and diff op’s In general

To see this: define g, = 1 + ia‘f‘z I’y and observe that

-1 -1 . A . B
Because of the inverse in our definition g L' G(z) = G(z)) mod H , acting with
go means considering the motion induced by gl_l, then gz_l, then g, finally g2,,

7=z-af V() , ' =7 = &) V(@)
Z/// — Z//_I_ a114 VA(Z//) | Z//// — Z///_I_ a124 VA(Z///)
Keep only terms at most linear in a; , and get

7" —z=a} V,Noy(af V") — ast VN o(al VM)



Extra: cosets and diff op’s In general

The transformation law of a scalar field (“active pov”) ®'(z") = ®(z) gives
00 =—-6"0,®0=—-a* VM0, d=—ia?T,® wherebydef T,=-iV,"9,,
These operators obey the same algebra as the abstract generators: if we have
iay Ty =[ial Ty, ias Tyl

then we have

i) Ty® =ialTy(ias Tg®) —iaf Ty(ial TpD)
This is easy to see using the fact that

a? VM = af v,y GN(af V") — a‘24 v,y 8N(alB V")

NB: we have given a “purely bosonic” argument, but if one is careful not to change the order
of generators/params this extends to cosets built with supergroups/Lie superalgebras.



Supersymmetry and supergravity

Lecture 15



Calculus with Grassmann variables

 We need to set our conventions about manipulating Grassmann variables to work
with superspace

« Let’s start with a single Grassmann variable 7

» Any function of 77 is understood as a power series. It truncates because nny = 0 :

Jm) = fo+nf

o |f fo IS Grassmann-even, then fl Is Grassmann-odd, and vice versa (so the order
1 f; is important when f; is Grassmann-odd)

 The differential operator d/(0n) acts from the left and satisfies

0

0
—n =1 for example: — f(7) :f1
on on




Calculus with Grassmann variables

. |f we have two Grassmann variables 8% = (9!, %) then we have

0

00
0 0

. For example does not act on 6’2, but we pick up a minus sign when moves past 6’2,

00! 00!

0 2 nly — Za 1 _ 2
(020 = - 070! = — 0

OF = 5aﬁ

0
00

a

, By definition, is defined by acting from the left and picking up 6, factors

0
00,

Hﬂ — 5ﬁa



Calculus with Grassmann variables

» How are 0/(d0%) and 0/(d0,) related? Let’s consider the quantity f(0) = 0“ y, where y, does not depend
on @’s. Our definitions give

0
057 O) = 0" X = Xp

» On the other hand we can also write f(0) = — 6, y”. Since we are not changing the order of & and y it
doesn’t matter if y is a boson or a fermion. We then have

2 )=
00,

e Since )(ﬂ = e’ X, we have verified the identity
0 0

0 00,

» For applications to superspace we need both @’s and &’s. The definitions for derivatives wrt @ follow the
same conventions

e




Calculus with Grassmann variables

e Integration over Grassmann variables is a formal operation (aka Berezin integral)
determined by linearity, translational invariance, integration by parts. In the case of
a single variable, we demand

Jdn[f(n) )+ 8g(n) ¢yl = (jdnf(n)) c; + (jdn g) ¢

0
Jdnf(n — 1) = Jdnf(n) , Jdr/ a_nf(”) =0
* One verifies that integration wrt to 7 is the same as differentiation wrt to 7
[dn n=1

o Similar remarks apply to the case of several variables



Calculus with Grassmann variables

* In superspace we have four Grassmann variables =12 and 8°=1? and we set by definition

1 _ 1 .,
[dzé’ = ,[5 do' do- | szﬁ = Jadﬁ do"

* This is useful because it implies

[dze 0%0)=1 |, szé @,09=1 , [cﬂe d*0(06,) (0;0;) = 1

- For example, 0“0, = 0%¢,, 0/ = —0'0°+0°0' =26%0" because €;, = — 1 and therefore
I% o' do*(26%9") = 1

. NB: we have d*0 €4 0" d9” which shows that this measure is Lorentz invariant; similarly

for the measure d%0



Taylor expansion of a generic superfield

 Let us consider an arbitrary function &'(x, 6, @) of regular spacetime and the four Grassmann variables

0°=12 and 8*=1* . The possible monomials that can appear in the Taylor expansion of S(x, 0, ) in the
odd coordinates are

0“,0,, 00=0"0,, 00=0,0°, 0°0’ x(@V*(00,0), (060)0, , @9) 6%, (00)(@0)
* |Inspired by the Wess-Bagger parametrization of a real superfield we write

Sx,0,0)=Cx)+i0% (x)—i0, ¥*(x)

+1(00) M(x)—= i (80) M(x) — (0" 0) v,(x)

+i(00) 0, [750)+ 1 (37 0, 4(x)] =i @ 8) 0% [4(0)+ 1 (6" 0,7 (0)]
- (00) (80) [D(x)+~ 0" 9,C()]

. The coeff of (0 0) 0, is written as /1_‘5‘+% i (6% d, ) rather than just A% for later convenience, and
similarly with the coeffs of (0 8) 8% and (6 6) (0 6)



Taylor expansion of a generic superfield

Sx,0,0)=Cx)+i0% (x)—i0, 74(x)
+1(00) M(x)—= i (08) M(x) — (06" 8) v,(x)
+i(00)0, [/l_é‘(x)+% i (@)% 0,x,(x)| —i(60)6° [/Ia(x)+% i (6"),30, yﬂ'(x)]
+=(00)(00) [Dx)+~ 0" 9,C(%)

Remarks:

. In the simplest case &'(x, 8, 0) does not carry any indices. Then the component fields C, M, M,

D are Lorentz scalars, y, ¥, A, A are spinors, and v, is a vector. C, M, M, D, v, have the same

statistics, and similarly for y, 7, 4, A

» |f there is no gauge-invariance, a generic &'(x, 0, @) without spinor indices describes 16 + 16 real
dof’s off-shell.



Taylor expansion of a generic superfield

Sx,0,0)=Cx)+i0%y (x) —i0, 7%x)
+=1(00) M(x)—~ i (0 8) M(x) — (06" O) v,(x)
+i(600)0, [/I_d(x)+% i ()% 0,x,(x)| —i(60)6° [/Ia(x)+% i (6"),30, yﬂ'(x)]
+-(00) (80) [D(x)++ 0" 9,C()]

Remarks:

* A generic &(x, 0, 9) Is complex, and all the component fields are complex, too. A real superfield
satisfies &'(x, 0, 0)* = &'(x, 6, 0) which translates to

C*=C, ()" =Zi » M =M, ) =v,, Q) =1, D =D
a(l(‘xﬂ 99 g) In

that case all the component fields carry the extra set of indices , ; and transform under the
Lorentz group accordingly

. We can use the above Taylor expansion also if §'(x, 8, 8) carries spinor indices, &



SUSY variations from Taylor expansion

» The function §'(x, 8, 0) is a superfield if it transforms under SUSY according to

5c§’=(—i§aQa_i§d6d)oS’ where Q“:i(aga i(gﬂg)adﬂ> | 60‘:1’(6; Ii(@gﬂ)d0ﬂ>

a

+ One computes (—i&é*Q, — i &, Q%) & and compares the result with
68(x,0,0) = 5C(x) +i0%8y,(x) —i0, Sy%(x) + ...
. For example, to read off the variation of C(x) we need the terms with no &'s or @’s. The terms (¢* g)a 0ﬂ

and (6 ¢*)* 6ﬂ inside Q,, Q“ don’t contribute, we only need

0 _ 0 _
i OF = [ E“ , —i0; 7 .y
¢ — 107 7p) =8 1, E 2 — (il ") =—i&7
to conclude
6C=ily—ily

* Finding the variations of all other component fields is tedious but straightforward.



SUSY variations from Taylor expnasion

Here is the result (from Cyril Closset’s note): Remarks:

0C =1 Ex —1EX, * This is a linear representation of the SUSY

algebra on a set of x-dependent fields

_ o '
0Xa = Xa M + (6" §)a (QMC' T Uﬂ) ’ * This rep is highly reducible

0Xe = Ea M+ (£0")a (BMC' — ivu) ; » The task: find constraints on &(x, 0, 6) that
SM — 24 EE” auX 9 EX | are supersymmetric and do .not Impose

o EOMs on the x-dependent fields (because
OM = 21& ot QLY +2&N, we want an off-shell formalism)

o Simplest example: the reality conditions

vy, =1 A+ 1T, AN+ D + DX
Ao =i Ea D +2(0" &) dyuy

Oy = —igd D —2 (Eﬁ’uy)@ @MUV ,
0D = (ot O\ + ETH O, N

cc=C, (y)*"=)y, , M*=M,

V)*=v,, U)* =44, D*=D

that define a real superfield



The D-component and invariant functionals

$x,0,0) = Cx)+i0% (x) —i0, 7*(x)
+1(00) M(x)—= i (08) M(x) — (0" 0) v,(x)
+i(00) 0, [7%0)+ 1 (@)% 0, 5x)] =i (08) 0% [4(0)+ 1 (6" 0,7 ()]
+-(00)(00) [Dx)+~ 0" 9,C(x)

The SUSY variation of the component field D in the (6 8) (8 8) component is important, because it
turns out to be a total spacetime derivative:

6D = 0,(— EotT+Ec" 1)

This is expected, because D has the largest mass dimension. The shift by % 0" 6MC does not
change the fact that

5(S(x, 60,0)

) =0,(...)

0000



The D-component and invariant functionals

This observation gives us a recipe to construct SUSY invariant actions:
« Take any real superfield V(x,0,0), V(x,6,0)* = V(x, 0, 0)
« Extract its (8 0) (0 6) component

Integrate it over ordinary spacetime: [d‘tx V(x, 6, 0)

0000

We need V(x, 6, 5) to be real because the action should be real.



The D-component and invariant functionals

A more suggestive way of writing the same quantity is

Jd“x V(x, 6, 6) B
0000

— Jd“x d’0d*0V(x,0,0) because [dzé’ d’0(06)(060) =1

SUSY is manifest in this language. We can see it in two equivalent ways:

1. The integrand transforms as a scalar field and the measure is invariant
V(x,0,0)=V(x,0,0) and d*x' d*0' d*0' = d*x d*0d*0

2. An infinitesimal SUSY variation is implemented as a diff op and can be cast as a tot der

_ [ 0 _ _ 0
Jd4x d*0d*0Q,V = in4x d*0 d26’< Py i(6"0), aﬂ> V= in4x d*0d*0

00”

V+ Jd‘*x d*0d*00,[(c"0), V]

and similarly for GO‘



Aside: iInvariance of the volume form

For ordinary bosonic change of coordinates, the volume form transforms with the determinant of
the Jacobian

ox*
d*x' = d*x det
oxV
The analog notion in superspace involves the “superdeterminant” of the Jacobian
_ _ o(x'*, 9%, 6*
d*x' d*0' d*0' = d*x d*0 d*0 sdet ( _.)
o(xv, 6P, 6P)
The superdeterminant is defined in block-matrix notation as
A B det A det(A — BD~' C)
sdet = =
C D det(D — CA~! B) det D

Here the square matrix A maps bosons to bosons, the square matrix D maps fermions to
fermions, while the rectangular matrices B, C interchange them.



Aside: iInvariance of the volume form

We are interested in a supertranslation

gr=0"-¢* | 9.=0,—-E , xt=x'—(i0c'E—iEc"D)

We find
_ of —i(c"), & —i&(c"),;
I na na
ox™, 0 ’f) —1o0 5 0
o(xv, 6P, ) .
0 0 52‘

The A, B, C, D blocks are

L 0 % d
A=@) ., B=(-i(0y& —if(e"),), C= (()) P=\o 54

and thus

A B det A det(A — BD~' C)
sdet = =1

C D)~ dettD— CA-1B) det D



Supersymmetry and supergravity

Lecture 16



SUSY covariant derivatives

. A superfield is a function & (x, 6, 8) such that §'(x’, 0’,8") = S(x, 0, ) under the action of
super-Poincaré. Infinitesimally, the SUSY variation is generated by a differential operator

58 = (—i&"Q, —i&, QY S
Q,=1i (aga - i(a”g)aaﬂ> . Qi=g (8%{ + i(Ha”)ddﬂ)

. We know that P, = — 19, commutes with Q.. Q, and therefore the ordinary derivative of a
superfield is still a superfield,

5(0,8) = 0,(68) = 0, (=i £°Q, =i &, Q) S = (=i &*Q, — iE,QY) 0,8

» The partial derivatives 0/00* , d/06* do not anticommute with Q_, Q.., so the partial fermionic
derivative of a superfield is not a superfield,

5(=8) = —=(88) = = (=i £°Q, =i &, QY S # (—i£"Q, —i&, Q) -

00/ 00/




SUSY covariant derivatives

We want to construct suitable covariant derivatives D, D , that anticommute with Q _, Q,,

Recall that Q Ga were constructed by considering the left action of the super-Poincaré group on the
coset representative exp(—ix* P, + i00+i00) exp(—iEQ —i& Q) exp(—ix P, + 100 +i60)
induces the motion

The can also consider the right action of exp(—i& Q — if Q) on the coset representative. (This should
not be confused with the quotient by H from the right.)

In applying the BCH formula, the sign of the [A, B] term is flipped, so the right action induces the motion
0*=0*—¢* , 0.=0,—-E , x*=x'+(i06'E—ifc"0)

Collecting factors of £, £, we find the operators

. 0
o Hi@ 0,0, . — =00,

a



SUSY covariant derivatives

+i(c"0), 0, |, — —i(0c")%0
00~ o 00, g
* After lowering the index on the second expression, we find the differential operators
H D. = — — ] Hy
Dy=—+io 0),, 0 Dy=-— i (06,0,

» |eft actions and right actions commute, so we automatically have (or we check
brute-force that)

1Dy Q,B} = 1D, Gﬁ} — {Eaa Qﬁ} — {50'5, Gﬁ} =0
 The covariant derivative of a superfield is a superfield:

5(Dﬂ§) — Dﬁ(éé)) — Dﬁ(—ifaQa — lfa@)‘) S =(-1¢"Q,—1&; Qd)Dﬁé)




Comment: torsion in flat superspace

. While the partial derivatives 0/00% , d/d0* anticommute, the covariant
derivatives satisfy non-trivial anticommutation relations:

(DDs} =0 , {DD;} =0, {D,Ds}=~-2i(c"),;0,

* In ordinary geometry, the fact that two covariant derivatives do not
commute when acting on a scalar field is a signal that the space has
torsion (the familiar Levi-Civita connection is torsionless by definition)

[V, V, If=-1,"0d,f

 One can develop a notion of differential geometry for superspace and
show that the flat superspace (super-Poincaré)/(Lorentz) has no curvature
but non-zero torsion



Constraining superfields

Recall the expression of a generic complex scalar superfield
Sx,0,0)=Clx)+i0% (x) —i0, 7*(x)
+=1(00) M(x)—~ i (0 8) M(x) — (06" O) v,(x)

+i(00) 0, [140)+ 1 (@)% 0,150)| — i (00) 0 [A,(0)+ i (6,30, )]
+(00)(00) [D)+ 0" 9,C(x)

* |t has 16 + 16 dof’s. SUSY is manifest, but we have too many fields. More precisely, we
have a linear rep of SUSY, but it is highly reducible.

» We need to find suitable constraints on &'(x, O, @) that do not spoil manifest SUSY and
reduce the number of component fields in order to match known off-shell multiplets

 The constraints should not restrict the x-dependence of the component fields



Chiral superfields

A chiral superfield @(x, 8, 0) is defined by the condition

D.®=0
while its complex conjugate is an antichiral superfield, in the sense that
D® =0

A direct but tedious way of finding the most general chiral superfield
would be to start from the expansion of ®(x, @, 8), use it to compute

D ®, and set to zero all terms with different 8, @ structures. There is a

more illuminating approach using the abstract definition of Ea In terms of
the right action on the coset representative



Chiral superspace

Our standard representative of the element in the coset is
exp(—ix*P,+i600+1i6Q)
To study chiral superfie@ls it Is convenient to choose a different representative, parametrized
by coordinates (y#, J, ) as
exp(i d Q) exp(—1y* P,) exp(id Q)
Using BKH we can relate the two sets of coordinates:
yW=xt4+i0c"0 , 9=60, 9=0
NB: there IS also a notion antichiral superspace based on the coset representative

exp(l 8 Q) exp(—1 y”P ) exp(i 9 (). It is the natural set of coordinates for an antichiral

superfield. All remarks we make about chiral superspace/superfields have analogs for the
antichiral counterparts.




Chiral superspace

The advantage of the new representative is that ljd acts very simply. Recall that this diff op is

defined via the action of exp(—i g Q) from the right. This is immediate with the new coset
representative:

exp(i 9 Q) exp(—iy" P,) exp(id O) exp(—i& Q) = exp(i 9 Q) exp(—iy* P,) exp(i(d — &) O)

This relation implies

_ 0
D. =

v 094

The other cov der is found computing

exp(i 9 Q) exp(—iy* P,) exp(i 9 Q) exp(—i& Q)
With the help of BCH one finds

0 -0
D, = +2i(c"Y),—
09 OyH



Chiral superspace

One can also translate the diff op’s that implement a SUSY variation in the new coors.

Summary: in terms of the new coordinates (y,39,9) we have

Q=i |-—=+2i@a", 0 ] P 0
=] =I| — — 1 (Jot),—| , = —]—
! 09e OyH 4 OyH
0 — 0
D, = +2i(c"9),— | D,=——
0% oyH 09

A chiral superfield DdCI) = () is simply any superfield that does not depend on 9. If
the operators Qa, Qa act on a function of y and & only, the resulting quantity is also a
function of y and J only. A chiral superfield satisfies

D(y’, ) = D(y, d)



Chiral superfield expansion

In the new coordinates (v, 9, 9) a chiral superfield is simply any function of
y and 4, but not J. Its Taylor expansion is of the form

D(y, 9,8) = X() + /2 9%y, (y) + (8 9) F(y)
Recalling that

yW=xt4+i0c"0 , 9=60, 9=0
one can find the expansion in the original superspace coords:
D(x,0,0) = X(x) +1/2 6%y, (x) + (00) F(x)
+i00"00,X(x)+ (00)(00) 0" 9,X- -5 090,y (x) 0"



Chiral superfield expansion

NB: ®(y, 9, 9) is the same as

Sx,0,0)=Cx)+i0% (x)—i0, 74(x)
+=1(00) M(x)—~ i (0 8) M(x) — (06" 0) v,(x)
+i(00) 8, 750+ i (@)% 0,15x)] — i (00) 07 [1,(0)+ 1 (6")3 0,7 )]
+(00)(00) [D)+~ 0" 9,C(x)

specialized to:

C=X, v,=-i0X ., jgo=-i2w, . M=-2iF



Chiral superfield expansion

0C =i&x —i&EX , C=X, v,=-i0X
5on:onM_|_(0-'ug) (80+ivu)v =—l\/_l//a M=—=2iF
0Xg = Ea M + (EM) (0,C —ivy,) ¥=A=A=M=D=0
y  We have |dent|f|edaway to reduce the
OM =2i€7 auX‘|‘2§)‘ ) original SUSY reps on the full set of
SM = 2i & o 00X + 26N, component fields
X =12 &y

vy, =1&o AN+ 1T, AN+ EDux + DX
Ao =i&a D +2 (6" € Buvy |
5X@ — —ing—Q(fO"uy) aufUV :

Sy, = iV2 (0" 8),0,X +V2FE,
OF = i\/2E5" 0,

_ B  |f we impose the condition &* = &, we
0D = —§ 0" O\ + i OuA find that §'(x, 8, @) = const



F-type supersymmetric actions

The superspace analysis confirms that [ in a chiral superfield 170-[(1) = ()
transforms as a total spacetime derivative.

Chiral superfields give us a new way to generate supersymmetric actions:

00

Since a non-trivial chiral superfield is complex, in order to get a real action
we have to add the hermitian conjugate by hand.

Jd“x D(x, 0, 9)



F-type supersymmetric actions

We can write an F-term action as an integral over the slice at 0 =0

Jd“x D(x,0,0)| = Jd“x d*0 ®(x, 0, 6)

00 6=0
Equivalently, we integrate over the entire superspace with a delta function

[d“x D(x,0,0)| = [d“x d*0 d*0 6 (0) d(x, 6, 6)
60

For a single Grassman variable # we have 0(7) = 1 because

Idn o(m)f(n) =f(0) forany f(n) =jfy+nf

In a similar way

d20 = %d§2 do' 5@ =250)80% =20'0>=00



F-type supersymmetric actions

It Is instructive to write the same quantity in the chiral superspace coords

y”=x”+i6’0”§, 9=0 . 9=0

One can check that the superdacobian of the coord change has superdet equal to 1, so
Jd“x d’0d*05%(0) ®(x, 0,0) = Jd4y d*9 d*9 59(9) d(y, 9)

We can now verify manifest SUSY in two equivalent ways:

1. We know that ®'(y’, 9") = ®(y, 9) and also that d*y’ d*9’ d*9’ = d*y d*9 d*9 (we have
checked SUSY invariance of the measure in the original coords, but it is valid in the new
coords as well). As a result we can write

Jd‘*y' d*9' d*9' 6P @) d'(y', 9") = [d“y d’9d*9 5D — &) d(y, ) = Jd‘*y d*9 d*9 59(9) d(y, 9)

where we have used translational invariance of the Berezin integral in the §'s



F-type supersymmetric actions

2. Using —iQ, = 0/09 we have
—i Jd“y d*9d*959(9)Q, d(y, ) = [d‘*y d*9 d*9 % 62(9) D(y, 9)|

while using —iQ, = — 0/09% + 2i (9 6*),0/0y* = D, + 2i (9 6*), 0/ dy* we have

—1i [d“y d*9 d*969(9) Q, d(y, 9) = Jd‘*y d*9d*96PD Q) D, ® + 2i Jd‘*y d*9 d*9 % 64(9) (9 6"),, P

where the first term is zero because D is chiral.



F-type actions as D-type actions

» Observation: D;D;D.(...) =0and D,D;D,(...) = 0 because these quantities are
totally antisymmetric in 3 spinor indices.

. If S(x, 6, 0) is any generic superfield, then ® = D DS is automatically chiral. Conversely,
given a chiral superfield D ,® = 0, it can always be written as ® = D D& for some

superfield &
» We suppose @ = D DS and we use the identities 62(0) = 88 , DD (00) = — 4 to write

[d“x d’0d*0 5%(0) ® = Jd“x d’0d*0(00)DDS = — 4 [d“x d’0d*0 S
* With this trick we can convert F-type functionals onto D-type functionals

We get yet another argument for manifest SUSY of the integral Jd4x d?0 d*0 6%(0) @



Supersymmetry and supergravity

Lecture 17



(Gauge invariance In superspace

* Recall that a real superfield is a Grassmann-even superfield with no spinor indices and satisfying
V(x, 0,0) = V(x, 0, 0)*. Its expansion is

V(x,0,0) = C(x) +i0% (x) — i0, 7*x)
+i(00) M(x)—~ i (00) M(x) — (0" ) v,(x)
+i(60)0, [za(x)+— i (@)% 0, 40)| —i(60)0” | (x)+— i (6"),30, )(ﬁ(x)]
+=(00) (@ 0) [D(x)+~ 0" 9,C(x)]

with the reality conditions

Cx=C, (1" =4, » M¥=M, ()*=v,, A)*=1;, D¥*=D

« This superfield is also known as vector superfield because of the component field Vi which we want

to interpret as a gauge field, v, = Aﬂ

« In the simplest case the gauge group is U(1). We need the superspace analog of 5gaugeAﬂ = a A



(Gauge invariance In superspace

The correct recipe is as follows:

. promote the gauge parameter to be a chiral superfield A(x, 6, 0), D.A =0

» define the gauge transformation of a U(1) vector supermultiplet as
V= V4 (A=A)

If we write A(y, ) = X\(y) + \/5 Jy,(y) + 38 F\(y), this gauge transformation is the same as

C—-C —1Im XA « We get the expected shift of Aﬂ by a derivative
X = X WA
V2 « Re X, is the the standard gauge parameter
M= M+ Fy e 1 and D are gauge invariant
AM — Aﬂ T dﬂRe XA * The other fields are shifted by a gauge transformation
A— A

D—->D



Wess-Zumino gauge

Let us compare gauge variations and SUSY variations _ |
0Xa = Xa M + (6" &)a (0,C +ivy,) ,

(recallv, = A)

3 3 { 0Xa =& M +(§0")a (0,C —ivy) ,

C—>C—III1XA, )(_>)(+$WA 5M:2ifﬁﬂaﬂx+22X,

M—M+F,, A —A +dReX, oM =21807 X +2EX .
0v, =1, A+ io, A+ 0, x +E£0,X

A=A, D — D

0Aa =1 D +2 (0" &) Opvy
Since ImAy, WA F A are arbitrary, we can always use a

5X@ — —’igéé D —2 (gﬁ’uy)@ 5’ny ,

gauge transformation to impose _
0D = —&£o O N+ £ 0N

“Wess-Zumino gauge”. C=0, y=0, M=0
« Notice that we still have an arbitrary Re X, and gauge transf. for Aﬂ

 These conditions are not preserved under a SUSY variation!



Wess-Zumino gauge

Even though it is non-supersymmetric, the WZ gauge can be very useful
because it leads to a superfield V which is nilpotent:

V==006"0A,x) +i(00)0ix)—i(@0)0Ax)+ (00)@ ) D(x)
VV=—-(00)00)A,A*
Vvv=0



Compensating gauge transformation

Suppose we start in WZ gauge
C=0 y=0 M=90

If we perform a SUSY variation, we then have to perform a
compensating gauge transformation to restore the WZ

gauge: V — V+é(A — A) where A has component fields

WAa =—1 2A/,t (Gﬂ g)a

The variations for Aﬂ, A, D are those of an off-shell vector
multiplet as discussed earlier

5C =0 |

0Xa =1 (0" &)a A

0Xg = —1(0")a Au :
SM = 2€ N,

OM =2EN,

0A, =ifoy  N+ila, A\

Ao =1&a D+ (0" &) Fluv
0Aa = =i &4 D — (£T")a Flu |
6D = —E ot N+ E" 9\

1
C->C-ImX, , yv—=y+—
A XX \/EWA

M->M+F, A, —-A,+dReX,




SUSY variations and gauge covariance

 The SUSY variations realized geometrically in superspace always anticommute to an
ordinary derivative. For example, the SUSY variation of the gauge field is

6A, =ilo, A+ilG, A+ &0, 0+ E0,7
and because of the y terms it satisfies
515214” — 525114” =—21 (51 c” 52 — fz o” 51) aﬂAy
(even if we start with y = 0 we pick up terms from the iterated variation)

 When we use the WZ gauge and the compensating gauge transformation we obtain gauge-
Covarlant SUSY variations 5 which Close to the gauge-cov. “completion” of translations. EQ:

5A —156 /1+l§0 S 52A —5251A —2i( 0" =& 0" 51)

The variation 5 Is the one we encountered studying SUSY gauge theories before
superspace. It was simply denoted 0



Field strength superfield

Given a vector superfield V one defines
/A —% DDD,V and its complex conj. % , = —~ DDD,V

a o 4

Since V is bosonic and we act with an odd number of SUSY cov. der’s, the superfields #',, W |
are fermionic

Recall DdDﬁ-D}-,(. ..) = 0. We see that 7', is chiral, and similarly Wa is antichiral

They are also gauge invariant: under V. — V + i/2 (A — A) we have
W ,— W ,—+ DDD,A++ DDD,A\
The second term goes away because @ is antichiral. For the first term we first use

D;D’D,A = Dy{D’,D,}A — DyD,D’A = Dy{D’, D} A = {D’,D,} DA

where we used that the anticommutator gives a Pﬂ, which commutes with Eﬂ-



Field strength superfield

Since 7/, is a chiral superfield it is convenient to expand it in the (y, §) coordinates:
W=~ il + [6,, D) — i (6") S F,,)] 85+ (9 9) (6,30, 7 ()
As usual we have I, = 0, A, — 0, A,

This can be computed in any gauge, for example the WZ gauge

The expression for Wa INn terms of the natural coords in antichiral superspace is
similar

Notice that both 7, and Wd are built with the same component fields. Indeed they
obey a constraint in superspace:

D*W =D, W*"




U(1) charged matter in superspace

« We have defined the U(1) gauge transformation of the vector superfield as V — V 4+ i/2 (A — A).
What about a field that has a charge g? We set

O — e NP
* This gauge transformation is compatible with ® being chiral

- An infinitesimal variation is 04,,,.® = — i g A @. In component fields:

5gaugeXCI> - inCID XA ’ 5gaugeW(I> — = iq (WCI) XA T XCI) l//A)
Ogaugel'® = — 19 (Fp X5 + Xo Fp — Wx )

- Recall 0y,,,cA, = 0,(Re X, ). We see that Re X, is identified with the parameter of a standard gauge

transformation.

 The standard parameter Re X, is naturally combined with Im X, when acting on the matter superfield
®. We have a natural action of the complexified gauge group C* on matter chiral superfields.



Gauge-covariant SUSY variations

» Recall that if we have a U(1) vector superfield in WZ gauge and we act with a SUSY variation in
superspace, we need a compensating gauge transformation to restore the WZ gauge

XA:O, l//Aa:_l 2Aﬂ(6ﬂ§)a’ FA=—2E/1_

e The “non-covariant” SUSY variations of the matter field ® are those defined by supertranslations. We
combine them with the compensating gauge transformation

Op.c Xp = \/5 S Yo 5comp.gauge Xp =10
One Voo = 1V 2(0"8),0,Xp + V2E,Fo Ocomp.gauge Woa = — V2 4 Xp A, (6" &),
Onelo = i\/5 & 0 Yo Ocomp.gauge o = 214G Xg (E4) - \/5 q (& 7" yy) Ay
* The total variations are the gauge-cov. SUSY variations
chb:\/zfl/fcp , gl/fcb:i\/z(ﬁﬂé?)a(aﬂ*‘iCIAﬂ)XcD‘l‘\/ze&aFcp

6Fp=iV2E5" (0, +iqA) wo+2iqXe )




Gauge-covariant SUSY variations

5Xp = V2 Epg | Sy = iV2 (0" ), (0, +igA)Xep +1/2 &, Fo
6Fp = iV2E5" (0, +1qA) W +2iq Xy (D)

We have recovered the gauge-cov. SUSY variation of a charged chiral multiplet off-shell. Notice:

* ordinary derivatives are replaced by gauge cov. derivatives

« we find the extra term in the variation of F 4 of the form (EA) Xo

Recall that the gauge cov. SUSY variations close on the gauge cov. version of PM. In this
example

516, Xp — 0,0\ Xg = — 20 (£, 0 E, — &6 E) (0, +iqA) Xy etc.

NB: The gauge-cov variation was simply denoted ¢ in the previous lectures, before we
introduced superspace



Gauge transformations of ® and ® ¢7¥

Taking the complex conjugate of ® — e 4N D we get
D — N D
If @ were an ordinary field charged under a U(1) gauge group, @ and its complex conjugate would

transform in opposite ways, because the gauge parameter would be real

The gauge parameter is now a chiral superfield EdA = 0 and we know that if we demand A = A then
/\ is a constant in superspace

In order to get an object that transforms in the opposite way as ® we have to combine ® and the
vector superfield V. Recall: V — V+é (A — A). Then

EeZqV N eiqA (EeZqV)

If we take a function K(z, 7) of a complex variable z that in invariant under (z,2) — (e_iqAO Z, eiqAOZ)

for a constant A, then the quantity K(®, ® ¢%1") is a superfield that is invariant under gauge
transformations in superspace




Non-Abelilan gauge invariance

We consider a non-Abelian gauge group G; weuse a,b = 1,..., dim G for adjoint indices

Let us pick a collection of vector superfields V“ and let us choose a reference representation
R of G. The generators of G in this rep are denoted

R\ . .
(t, )’J- , ,j=1,...,dimR
We take them to be hermitian and normalized so that
’[I’R(ta tb) — T(R) 561]9
We can construct the matrix-valued superfield
VR — Va tcll{
In a similar way we use a collection of chiral superfields A“ to define
Ag =A% sothat Al =A%}



Non-Abelian matter chiral superfields

» \We want to write the transformation law for a chiral superfield @ in the
representation R of the gauge group. The natural expression to consider is

O’ = e @  or more explicity ®’" = exp(—iA? tclf)ij Y
* The expression for an infinitesimal gauge transformation is simple

I A a (+R\ '
Boane® = — i AV (1R

» We interpret Re X, as the standard gauge parameter. It is naturally

accompanied by Im X, leading to an action of the complexified gauge
group G on @



The transformation law for @'

Taking the T of the matrix equation @’ = ¢ ~*r @ we obtain
d"' = dT e ormore explicitly D! = 5]. exp(i ALY,
As in the Abelian case, ® and ®" do not transform in opposite (i.e. contragradient)

ways, because the gauge parameter is not a real quantity

It is natural to use a collection of vector superfields V* with an adjoint index and to
define their transformation law to be

’ N .
e R = ¢7!Mre?VRe! AR recall that Vi = VALY
In this way we have
((I)}” eZVR)/ — ((DT eZVR) eiAR

which does indeed transform in the opposite way as @



Transformation law for vector superfields

» We have picked a representation R and we have demanded

2VR — =i /] 2 VR piAR

€ Re

 This relation makes sense because it yields the same V'* irrespectively of

the reference representation R we choose. This is because on the RHS we
have to use the BCH formula, and we encounter the commutators

R Ry _ : R
[ta,tb] — lfabctc

which have the same functional form in any representation R. In the end,
V'® can be expressed as an infinite sum in which all terms are built with V¢,

Aa, Ka, fabc



Transformation law for vector superfields

02 VR — —iA;;ez VR pi AR

We can be more explicit if we work at linear order in A% and A“. To compute V'* we need the
following form of the BCH formula

1
log x
log(e? e®) = A + J dt y(e% etadB)]B , o w(x) = 1 5 1
0 —A
Using log(e” e) = — log(e_A e %) we also have a similar formula with the roles of A and B

exchanged. These formulas are useful in extracting expressions that are exact in A and linear in B.

Fun fact: w(x) is closely related to the generating function for Bernoulli numbers

= —Z(coth=—1) = Z -
et —1 2 2 p— n!




Transformation law for vector superfields

One finds
20V = iadVR (AR + AI{) + iadVR coth adVR (Ag — AI{)

To get some intuition, let us expand the RHS in powers of V (notice that the
expansion of coth x near 0 starts with a 1/x pole)

26V = i (Ag — AL) + i [V, Ag + AlJ+5 Vi, [Virs Ag — ARlT + O(V)
We can translate this matrix equation into a relation for o0 V¢,
25V =i (A" =AY = f, A VO (A + A) == fofal VEVE(AS = A0 + ..

We get an expression in V¢, A“, K“,fabc, as promised. Notice that we do not have
to raise/lower the adjoint indices in these equations.



Non-Abelian WZ gauge

25V =i (A =AY = f, VP (A“+ A) = fofal VEVE(AS = A0 + ..

The first term In the variation has the same structure as in the Abelian case. It implies
that it is still possible to choose the WZ gauge for non-Abelian vector superfields:

C'=0, y*=0, M*=0
In this gauge
Ve =—00"0A%x)+i(00)01x) — i (00) 0 1°(x)+~ (00)(@ ) D(x)

and in particular V¢ VP V¢ = (. This means that we can compute the gauge variation
away from WZ gauge exactly:

25V = i (A" =A%) — £, VP (A + A== £, 2.5 VP VA (AC — A°)
from WZ gauge 3




Non-Abelian gauge-cov SUSY variations

25V = i (A" — N — £, 2 VP (AC + KO)—< £, VP VA (AC = A)
from WZ gauge 3

With the above expression one can extract the SUSY variations of the component fields
(assuming the basepoint is in WZ gauge). Comparing with the SUSY variations away from
the basepoint, one can extract the compensating gauge transformation that restores the
WZ gauge after the SUSY variation. Combining the two transformations gives the gauge-
covariant version of the SUSY variations we have seen earlier,

0A, =i¢o,A"+h.c.

518 = (6" £), F,, +iDE, DA% = 0,0 — f, “ AL 2

5D =E5* D, +h.c.

NB: we have reabsorbed the gauge coupling constant in A/j‘.



Non-Abelian field strength superfields

* |n analogy with the Abelian case, let us define
2W g, = —% DDe *®D ¢*&  where W'y, := WtN
» This definition makes sense because 7 ¢, does not depend on the representation R. This
follows from the fact that e ~>"® DanVR can be computed with a version of the BCH formula,
eAde! = dA—-- [A,dA1+- [A, [A,dA]] + ...

 Since we only encounter Lie brackets, the result is independent of the representation R. For
example, iIn WZ gauge one has

_ 1 a £ da C
e Ve D,e?e = 2D, V=1 [2 V.2 D, Vgl = 2 (DaV —if, VDV ) R
which implies the formula

WZ gauge. %g — —% D D (DaVa _ ifl'?cd Vb DaV(;)




Non-Abelian field strength superfields

2W g, = —% DDe *"®D ¢*Y&  where W'y, = Wt}

« Just like its Abelian counterpart, Wg Is automatically a chiral superfield because it is
D D of something

» In the Abelian case 7, is gauge-invariant. In the non-Abelian case one can show that
/ AT . . . , o .

e "R = ¢TI Mre?VRe! AR implies Wi, = e PRW i, e MR

» Notice that the transformation law preserves the fact that 7, is chiral

+ Using the BCH formula e Be™ = ¢2%B one writes 7% in terms of #%, A%, f, ©
and verifies that it does not depend on the representation R

+ For an infinitesimal transf.: % g, = — i [Ag, W'r, |, W =Ff N W¢



Non-Abelian field strength superfields

2W g, = —% DDe*"®D e?®  where W'y, = W°tR

» The expression of 7/ is easier in WZ gauge, where it is the natural non-Abelian generalization of
the gauge-invariant 7, of the Abelian case

WZ gauge: ¢ = — i J3(y) + [8,/ D) — i ("), F&. ()] 85+ (9 9) (6) D, (y)
e We have introduced

a __ a a a Ab Ac a __ 1a a Ab 7c
FW — dﬂAy — dyAﬂ —fbc AM AD , Dﬂ/l — dﬂxl —fbc Aﬂ A

o Similar remarks apply to the hermitian conjugate %g which is antichiral

o There is a non-Abelian analog of the constraint D“ 7%, = D, W* but to write it down one needs

a suitable gauge covariant generalization of D _, D . We will not pursue this further



A remark on notation

« We are using the conventions of Wess-Bagger, up to a different normalization for V
and 7/ (both in the Abelian and non-Abelian cases)

VWB =2 Vhere and (Wa)WB =2 (Wa)here
e This factor of 2 in needed in order to get the gauge-cov derivatives
— b 10 1 b 7
F,=0A,—-0,A -, A A, , DA =04 —f, AL

o Cfr exercise (7) of Chapter VII of Wess-Bagger. Notice that we choose to work with
gauge-cov derivatives that do not contain explicitly the gauge coupling 2. If desired
one can make the rescaling A, - gA/, F,, — g F) , A“ = g A% D" - g D*



Supersymmetry and supergravity

Lecture 18



Elementary and composite superfields

Our goal is to use the superspace formalism to construct SUSY invariant actions for off-shell
chiral multiplets and vector multiplets

Our fundamental superfields are a collection of chiral fields ®' and of vector superfields V*

We have to construct composite superfields out of CDi, V¢ and integrate them in superspace
to get invariant actions

Recall that we have two types of contributions:
> type-D terms: full superspace integrals of a real superfield

Jd4x d*0d*0V

composite

> type-F terms: half superspace integrals of a chiral superfield (plus h.c.)

[d“xd%'cb +h.c.

composite



Elementary and composite superfields

Here some useful facts to keep in mind when constructing composite
superfields:

Any linear combination of superfields with constant coefficients is a
superfield

Any linear combination of chiral superfields with constant coefficients is
a chiral superfield

The product of two superfields is a superfield
The product of two chiral superfields is a chiral superfield
The product of two real supertfields is real superfield

If we act with d/0x*, D_or D, on a superfield we get a superfield



Elementary and composite superfields

e As a first task, let us discuss how to write a renormalizable QFT of chiral

superfields and vector superfields. We will generalize to non-
renormalizable models later

* Let us start considering a model with chiral superfields only and no
gauge invariance



Canonical kinetic terms for chiral superfields

» We start with the chiral superfields Edcbi = (0 with expansions

O = X'(3) + V29 + I IF()
» Their complex conjugates are antichiral: D ®' =

. The object /;; ®' @’ is a real superfield as soon as the constant matrix / is

hermitian. Its component expansion can be worked out starting from the
component expansion of ®'. When the dust settles, one finds

'O = ... + 0000 | F' Fl+1 X 09, X+ 0'0,X XI—1 0,7 '

L —j

+% 07 & w—= 7' & dy



Canonical kinetic terms for chiral superfields

O D = ... + 0000 |F' Fi+- X' 0"0, X'+ 00, X' X'—- 9, X" "X’

I —

l’ —l_— . l_— .
+S 07 o'y —-y o ()ﬂl/ff]

« We see that the real superfield hjl- ®’ @/ can be used to write down the canonical kinetic terms
for the chiral multiplets.

* |n order to have non-degenerate kinetic terms with the correct sign, the constant matrix 4 has to
be positive definite. After a unitary field redefinition we can set hl-]- = 0;; without loss of generality

o« It is customary to use the constant tensor 5]7 to convert upper barred indices into lower unbarred
Indices, and write

Jd“x d*0d*0 @, ' = Id“x F.F'—0,X;0"X'+i0,y, 5"y



Interaction terms for chiral superfields

e The monomials ®' ®’/, ®' &/ O O d/ PF CD’/”, etc. are all chiral
superfields. In fact, any function that depends on @' but not 51- or

derivatives of @' is again a chiral superfield. This can be seen formally
by thinking of the arbitrary function as a series expansion in @’

 \We can thus consider an arbitrary holomorphic function W(CI)i)

* This is the superspace origin of the superpotential for chiral multiplets

 Once W(CI)i) IS chosen, we can use it to build an F-type term

Jd“xdze W(®)+h.c.



Interaction terms for chiral superfields

 |If we want a renormalizable model, W should be a polynomial of degree at most 3

» Our task is to find the component expansion of the monomials ®' ®’ and ®' ®’ ®. This is most
conveniently done in the (y, &) coords:

O D/ = X'(y) X(y) + /2 8 [y X3 + v () X'()]
+ 99 [X' () F(y) + X(») F'(y) —y' M W ()]
O O O = X'(y) X/(y) X(v) + /2 8 [y'(») X () X () + v/ () X'() X)) + k() X'(0) X ()]
+ 9 I[F'(y) X'(») X"(y) + F(y) X'(0) X (») + F*(n) X'(») X/(y)
-y MY X0 - v My ) X () — v ) v () X'(0)]
. Auseful identity: (8 ,) (97,) = —= (9 9) (1, ,) which follows from the Fierz id (1} 72) 734 + ... = 0



Interaction terms for chiral superfields

« We collect the 34 components to arrive at
Jd“x d-OW = [d“x [(Ei + my; X' + gy X X5) Fj_%(mij + 28, Xy l/fj]
» We have used the fact that m;;, g, are symmetric in their indices

Ik
 The same expression is written more suggestively as
d*xd“OW = |d*x [W Fl—= W,/ f'] W, = oW W, = oW
- STV e T x0T XX
 We have used superspace to derive the superpotential terms we have
discussed In previous lectures




Maxwell term for Abelian vector superfields

* Next, let us use superspace to write a kinetic term for an Abelian vector superfield. Recall the gauge variation
of V and the definition of the field strength superfield

a

» For Abelian gauge fields 7', is chiral and gauge-invariant. Its expansion is
W,=—il)+ |6,/ Dy) —i(c"), F,,»| 9+ (99)(c"),;0, ()

» The composite object 77 % , is a chiral superfield and a Lorentz scalar and is thus a good candidate to
build an F-type term. Indeed, one finds

WWoy=..+99|-2ilc"d,J—= F*"F, +D*+=<e,,, F*"F"

» The F-term built from #* W , is the desired SUSY completion of the Maxwell term:

4. 20 1 opra N 7 T 1 o 1 2
ded e/ Wa——h.c.—de_ iAo" 0 =2 " F,, 2D_

« NB: the eF'F term is a total derivative. It does not affect the EOMs



F1 term for Abelian vector superfield

« A vector superfield V is itself a real superfield. What happens if we try to build a D-type term out of
it? Let us go back to the expression for V before WZ gauge fixing:

V(x,0,0) = C(x) +i0% (x) — i 0, 7*x)
+1(00) M(x)—= i (8 0) M(x) — (06" 0) v,(x)
+i(00)0, [0+ 9,7,0] —1(08) 07 [A,(0)+ i (6)50,7° (%)
+(00)(00) [D(x)+ 9" 9,C)]

 The above expression gives us

4. 2o 20v — | 4.1 1 _ 1 4
Jd xd*0d HV—[dx[ED - 0"9,C) —E[d xD

» While V is not gauge invariant, the component field D(x) is gauge invariant for a U(1) gauge field

* This is the superspace origin of the Fayet-lliopoulos term



Kinetic terms for matter charged under U(1)

* As a first example of a system with gauge interactions, let us consider
an elementary chiral superfield of charge g,

V=V+i(A=R) , @=e0D, B=eIND

* Since A is complex, ® and ® do not transform in opposite ways, but
we know how to fix this:

(6 eZqV)/ — eiq/\ (6 eZqV)
» The monomial @ ¢??" @ is a gauge-invariant real superfield. It contains
the appropriate gauge-cov version of the canonical kinetic term for ®



Kinetic terms for matter charged under U(1)

* Indeed, one can compute the 06006 component of D %4V O by direct expansion (for
convenience, in WZ gauge)

BV =...+0000 |FF+X0",X+i0,7c"y

+qA, W'y +iX0,X—-i0XX)—q° A A*XX
_iN2q(X Ty —Xy) + qD)_(X]

* This result does not look gauge covariant. After some partial integrations in x-space,
however, we can write

Jd4xd29d2§562qv¢ = Jd“x FF-D'XDX+iDye"y—i\2qXAy—Xiy)+qDXX

DX=0X+igA,X Dy=0X+iqgA,y



Kinetic terms for matter charged under U(1)

[d“x d?0d*0X e%1V X = Jd4x

_FF—D”CIDDMCI)+ iDyo"y—i\2qXAy—Xly) +qDXX_

DX=0X+i1qgA, X, Dy=0X+i1qA,y

H

* We have found the desired gauge-cov. kinetic terms

 We have also automatically generated the interaction terms
—i\V2qgXAy—XAw)+gDXX

* Those were first encountered without derivation in previous lectures



Non-Abelian gauge theory

 We can now turn to non-Abelian renormalizable models. The elementary
fields are a vector superfield V¢ in the adjoint rep of the gauge group G

and a collection of chiral superfields in a representation R. We take G to
be a simple non-Abelian group. The generalization to several simple

factors and U(1) factors is straightforward

» [he generators tclf are hermitian and satisty
(15, 085 = if,C . Trp(r,t,) = TR) S,



Short reminder

 Reminder of gauge transformations: Vi = V* tclf, Ag = A° tclf,
02 VR — —iA;QezVReiAR | D = ¢ M P |
(CI)T ezvR)/ _ (qﬁ ezvR) oIAR
* Non-Abelian field strength superfield
2W gy = —7 DDe >’ D% | W'y, = WK
e |ts gauge transformation:

WRGI _ e—lAR WRaelAR



YM term and SUSY completion

O = e—iAR(I) | ((I)?L eZVR)/ — (CI)T eZVR) eiAR | WR@(, — e—iAR %RaeiAR

The quantity Trg (#'“ % ) is a gauge-invariant chiral superfield. It is convenient to
compute it in WZ gauge. In the end, one finds

o : 1 % ! % 9
Trg (W W) = ... +z9z9TrRl—21/10”Dﬂ/1—5F” F,+Dte,  F* Fﬂ]

Let 7 be any complex constant. We can construct the F-type term

Ao —i7T v Arx
d*xd-0 Teq(W*W ,)+h.c. |, T=—+1—
167T(R) 21T 97
This F-term yields the Lagrangian
1 | _ |
P = Tr [— FWWF 4+—D*——ilo"Di+——0e FWFPG]
TR) "L 4g2 M2 g2 g2 SN A



YM term and SUSY completion

4. g, LT o 0 4z

d*xd-6 Teqg( "W ,)+h.c. | T=—+1—

162T(R) 27 g2
e e per v L L g pwpe
= r | iAo | YFP°
TR) "L 42 YT ) g2 g2 VPR L -

Remarks:

. Thetrace Trg (¢,1,) = T(R) 6, cancels the prefactor T(R) and yields £ = 4g Oty F l’jy

One can achieve canonical normalization with the rescaling A, — g A/, F}; — g F}; (and similarly for 4

and D). The presentation with 7 as an overall prefactor is better suited for a non-perturbative analysis.

« The OcFF term is a total derivative but has important non-perturbative effects related to instantons (cfr
to 6 angle in QCD). The real parameter @ is identified modulo 27

 Each factor in the gauge group can have a different 7



Gauge-cov. kinetic terms for matter

O =MD, (PTePr) = (@ 2R)eMr, W)= e MRP g e

* Gauge-cov kinetic term for matter fields
Jd4x d0d°0® e* "V ® |, D D=0, (ezqvatcl})ij oY

* Since this is gauge invariant, it can be computed in WZ gauge for convenience. This D-
type action yields the gauge-cov. kinetic terms for matter fields, plus additional
interactions

Zrin=—D'X;D X' +iD ;5 y' + F,F'
Lot = iV2 [X; @)y 2% = 2, (t,). X'| + DX, (t,)'; X’

 NB: compared to previous lectures, we have reabsorbed g in the vector multiplet fields



Superpotential interactions

 They work exactly as in the case without gauge symmetry

Jd“xd%’ W(®)+h.c.

* For this term to be allowed, however, W must be gauge invariant
. -2 a.R .
. NB: if W is invariant under a rigid transformation @' = (¢ 0 )’j ®/ where A
are real and constant, then W is automatically invariant under a complexified

rigid transformation where the Ag are complex and constants. It is also

invariant under a superspace gauge transformations @’ = ¢ ~“*r @, where

now A is a full chiral superfield. This is because W contains ® but no @' or
derivatives



Supersymmetry and supergravity

Lecture 19



Non-renormalizable SUSY models

* The superspace formalism allows us to construct non-renormalizable
SUSY models for chiral and vector superfields

* A non-renormalizable model should be regarded as a low-energy
effective theory that is valid up to a cut-off scale

* A natural way to organize terms in a low-energy effective action is by
derivative counting

* The leading-order terms are those with at most two derivatives



Models with chiral superfields

 We have seen that a renormalizable SUSY model of chiral superfields has action
5 = Jd‘*x *0d*0 5, D + ”d‘*x A5 B) W(®) +h.c.

where W is at most cubic
 The most general SUSY model at 2-derivative level is given by

S = Jd‘*x d*0 d*0 K(®, D) + ”d4x d*0d*0690) W(®)+h.c. ]

e |t is specified by two functions:
> an arbitrary holomorphic superpotential W(®dD)
> a real Kihler potential K(®, ®)



Superpotential terms

* We have verified explicitly that, when W is a cubic polynomial, the
Lagrangian can be written as

Jd“x d*0d*05P Q) W = Jd“x [aiWFf—% 0,0,W ' wf]

e We use the notation

0 0

ai — T 1 ——
0X! 0X!

 This relation remains valid when W(®) is an arbitrary holomorphic
function of ®°



Kahler potential terms

The component field expansion of the quantity
Jd“x d’0d*0 K(®, ©)

can be found by working monomial by monomial. In the end, one finds an expression in
terms of derivatives of K(X, X):

K(@®,®)=--+0000|8;0,KF'F —8;,0,K 8, X' "X’ — i 0; 0;K & 7" Dyal

_7; 7—k —11 4
— 20;0; 00K F' ' )" — 2 0;0; O, K F 47 9"

— 00,0, 0K 0" M 9, X7 + 10,0, 0 0K (W) (07 )




Kinetic terms and non-linear sigma-models

 The terms in the action that come from the Kaher potential have a
geometric interpretation

» Let us first consider a simpler situation: no SUSY, and a collection ¢M
of real scalar fields

* A non-linear sigma model is a theory defined by an action of the form
| 4 M N

» The quantity G,,(¢) is symmetric in its MN indices. In order to have a
well-behaved theory, it should be positive-definite



Kinetic terms and non-linear sigma-models

S = —% Jd4x GMN(Qb) a'uﬁbM a,u¢N

 Geometric interpretation:

> the scalar fields qu are local coordinates on a target space ./

~ the target space is equipped with a Riemannian metric Gy,

» The canonical kinetic terms are recovered if we choose .Z = flat space, we

identify ¢p" with Cartesian coordinates, and we choose the metric G,y = v
This is the only option if we want a renormalizable model

 In non-renormalizable models we can consider any target space .# and any
metric G,y



Kahler manifolds from SUSY

The superspace object K(®, @) gives among other terms
— _ L o5 K aEXT g X!
P =-L00KITIX + ...

We interpret the fields X' as complex coordinates on a target space .4

On the physics side, we are free to perform any field redefinition of the
form X" = X" (X), as long as X"(X) is a holomorphic function (to
preserve the fact that the X’s should be chiral superfields)

On the maths side, we say that the manifold .# can be covered by local

complex coordinates with holomorphic transition functions between
patches. This condition defines a complex manifold



Kahler manifolds from SUSY

The metric on ./ that we read off from the action is G;; = 9,0;K. Notice that it

does not have 17 or 1] components. Such a metric is usually referred to as hermitian

The metric G;; = 0,0;K is written locally as the derivative of a real function. Such a

metric is called a Kéhler metric, and the function K is known as Kéhler potential
(hence the name for the same object in superspace)

Lesson: SUSY constrains the allowed target spaces .# and the metric on them.
We must have a complex manifold endowed with a Kahler metric

NB: the canonical kinetic terms of a renormalizable model correspond to the choice
K(®,®) =5, D' @/



Geometric interpretation of the fermions

. If the scalar fields X' are complex coordinates on the target space ./,
what is the interpretation of the fermions y'?

* As anticipated by their index structure, they are interpreted as tangent
vector fields on .4

* This means that under a field redefinition (holom coord change)
X" = X"(X), the fermions transform as vectors
axi/ | ) a)_(l_/ )

i1 _ ] i _ —7
W X/ W, W _GXJ_ W




Geometric interpretation of the fermions

e The fact that 1// transform as a vector under coord changes suggests that it is
natural to replace 0/41//’ with a suitable covariant derivative, which is compatible

0 Xi /
0X/

* We can construct such covariant derivative using the Levi-Civita connection of
the Kahler metric

[t turns out that the only non-zero components of the Levi-Civita connection are
F;k = G" 0; Gy z = G 0,0,0zK  andits c.c.

with y' = Vi

e The covariant derivative of the fermions is

i — 3 yd o T ok
Dy =0y +1"0 Xy



The full action with auxiliary fields

* The full Lagrangian, including the auxiliary fields, can be written by
combining the terms that come from the Kahler potentials and those

that come from the superpotential. This final result is still rather
cumbersome:

L=GyF'F —Gy0'X' 0,X —iGyd o D
; T—F 7 ] k 7 —7 —k
+ 1 Ok0pGig (V' ") () = 3 G T FUp' " — § G U F 7 )
oW F + W — Lo,0,W i ¢ — L 80, W' ¢

* \We have made progress in elucidating the geometric meaning of the
action, but we still have Christoffel symbols and partial derivatives of W



Integrating out the auxiliary fields

 The EOM for the auxiliary fields is
1 k o, h, 0 7 -
G;; Fl_? G 1, vy +0;W=0 anditsc.c.

* Since the metric is non-degenerate, this can be solved for the F’s.
Plugging back in the action we get a form that is fully covariant

i A 7 : — ] — 2 () ¢
L=-Gi;o'X 9,X —iGiz" " D' + § Rizg (W' ") (W )
LD DWW A — L D Dy W — G W W




Integrating out the auxiliary fields

i 7 : —] 1 ) ]
L=-Gio"X" 0, X —iGi’ 7 Db + L R (W %) (7 4)

L2, D,W 'y — L 9 g W'Y — G W g, W

Comments:

« The quantities Ri]-k; are the components of the Riemann tensor computed from Gl-j

« The function W is a scalar field on the target space /. Its first derivative is already
a covariant derivative: 0,W = &.W. Its second derivative is not covariant, because

o.W = W has a contravariant index. We know how to fix this using the
Christoffel symbols:

— k



Scalar potential and SUSY vacua
L=—Guo'X 0, X —iGyd’ 7" Dyt + 1 Ry (' %) (0 §)
L 2, 9,W 'y — L 9 g W'Y — G W g, W

The scalar potential of this model is V = GiJ_QZiW@]-W. As usual in rigid SUSY

theories, it is non-negative. SUSY is unbroken iff V = 0, which is the same as
We can also see this from the SUSY variation of the fermions:
Sy’ =i20'EQX +2EF , Gy F'—= G} y'y” + oW =0

In the vacuum the fermions are zero and 0-W = 0, and thus the F’s are zero.
Moreover the X’s are constant.



Kahler transformations

On the maths side, a Kahler transformation is any shift of the Kahler potential of the form
KX, X) — KX, X) + f(X) + f(X)

Here f(X) is any holomorphic function. This shift does not change the geometry, because the extra
terms go away under 0,0;

Superspace knows about this! Indeed, the superspace version of a Kahler transformation is
K(®, @) > K(P, D) + f(D) + f(D)

The new terms vanish under [d4x d*0 d*0. To see this, we recall the x-expansion of a chiral superfield:

f(x,0,0) = X(x) + /2 0% y,(x) + (00) F(x)
+i00"00,X(x)++(00) (@) 0" 9,X, ﬁ (00) 0,y (x) 6" O

The 8000 component of f(®) + (D) is a total derivative in x-space.



R-symmetry

Our discussion of R-symmetry in renormalizable models with chiral superfields extends
immediately to general models

The Kahler potential K(®, @) = 517 X' XV for renormalizable models is automatically
invariant, but for a general Kéahler potential we have to require R| K] = 0

The problem is to ensure that the superpotential is compatible with R-symmetry. As we
have seen, the condition is

RIW] =2

There is an easy superspace argument to see this. When we integrate W in superspace

d’0 cancels against 62(0) and we are left with d*0. Recall R[@] = 1. The volume
form in a Berezin integral transforms in the opposite way as a nhormal bosonic integral

under coordinate transformations. Hence R[df] = — 1. This is way we must have
R[W] = 2 to have an invariant action



Remarks

SUSY non-linear sigma-models exist in various dimensions and with
various amounts of supersymmetry

The larger the number of real supercharges, the more constrained is the
geometry of the target space

For example, with 4d /4 = 2 SUSY the target space is a specific kind
of Kahler manifold, known as special-Kahler

With 4d 4 = 4 SUSY the target space is so severely restricted that it
can only be flat space with the flat metric
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Non-renormalizable models with gauge fields

 We have seen that the standard YM term for a non-Abelian gauge field in superspace
takes the form

Ao —17T . 0 Arx
d xd-6 Teqg ("W ,)+h.c. |, T=—+41—
162T(R) 27 g7
 The idea is to replace the complex constant 7 with an arbitrary chiral superfield

constructed from the elementary chiral matter fields ®. As usual, we must use a
holomorphic function in order to get a chiral composite



Non-renormalizable models with gauge fields

e This leads us to the notion of holomorphic gauge coupling function f_, (D)
[d“x d*0f, (DWW’ +h.c.

» The indices ab are adjoint indices. f_,(®) is symmetric in ab
» Recallthat 7' g, = e /% e'r_ For an infinitesimal gauge transformation
W, =—ilAg, Wg,] or W =f N W

» The gauge coupling function must transform as dictated by its lower ab
indices:

fup = — cad Acfdb _fcbd Acfad



Non-renormalizable models with gauge fields

e We recover the canonical SYM term with the choice
—I7T —I7T

Jap(P) = Trr(,1,) = Oub

. In this case the equation 8f,, = — f. C A°f,, — f.,9 A°f, ,is true because both sides are 0 (The
structure constants with their upper index lowered with the inverse of Trg(z 1) are totally

antisymmetric.)
* A simple generalization is for example

Jup(P) = A D) Trg(z,1,)

where f(®) is gauge-invariant
o If ab label U(1) factors in the gauge group (instead of generators of a simple non-Abelian factor),
then f_,(®) can be any gauge invariant holomorphic function, possibly with off-diagonal entries

that induce “kinetic mixing” among the U(1) gauge fields



Some models with gauged chiral superfields

* |n order to discuss the coupling between gauge fields and matter we have to
understand the relation between the Kahler potential and gauge symmetries

* The general story is quite complicated so we start with a simpler scenario

* We fix the gauge transformation of the scalars to be the same standard linear
variation that we have seen in renormalizable models

Ogauee® = — L A° tX®  or using indices 5gaugeCI>i = -1\ (tclf)l:]- oY

» “Linear” here means linear in X. Recall that A is a chiral superfield

e \We already know that the combination X" %" has a nice gauge variation that
contains A“ and not A“

Boauee(@' €°R) = i (D" e*R) A1



Some models with gauged chiral superfields

* Let us suppose that the Kahler potential of the model before introducing gauge
fields in invariant under a rigid transformation 0®' = — 1 A (t}})’j @’ for real and

constant params A

 With the replacement
K(®, d") - K(D, D' ¢29"r)

we are sure that the quantity K(®, @' ¢%9"®) is a gauge-invariant real superfield. It

gives the desired gauge-covariant completion of the couplings that we have seen
In the ungauged sigma-model

« Example: imagine that @ is in the fundamental representation of U(/N) and

consider K(®,®") = ®'® + a (P'®)?. This is a non-renormalizable model of the
Kind we are considering



Some models with gauged chiral superfields

To summarize: We take a collection of chiral superfields with linear gauge transformation

Ogauee® = — I A° tR ® and we couple them to vector superfields. The kinetic terms for the

vectors are inside

Jd4x d*0f, (@YW “ W’ +h.c.

where f_,(®) is symmetric, holomorphic, and transforms under gauge transformations
according to its ab adjoint indices. The Kahler and superpotential terms for matter fields are

Jd“x d*0 d*0 K(®, ®' ¢29Vr) + ”d“x d’OW(®)+h.c. ]

where we assume that K(®D, (DT) and W(®d) are invariant under the rigid variations
5O = — i ANi1' D.



Is this the most general story?

The models in the previous slide are appealing because the gauge transformation of the

matter superfields @ is simple and we can write an action in superspace with small
modifications from the ungauged case

The general story is richer. We have seen that in a model with chiral superfields only,

everything is covariant under arbitrary holomorphic field redefinitions @ = ®"(®"). This
covariance is lost if we fix only allow for linear gauge transformations

Rather than fixing the gauge transformations and demanding that the Kahler potential is
invariant, the natural thing to do is to pick a Kahler potential, find the isometries of the
Kahler metric, and determine the gauge variations accordingly

The superspace treatment of this most general case is considerably more involved than
the models we have considered so far (see e.g. Chapter XXIV of Wess-Bagger)

Let us just state a few facts about these general models, without derivations. We
abandon superspace and work in ordinary space, in component fields



Geometric point of view on gauging

 The isometries of a generic Riemannian manifolds can be described using Killing
vector fields, which preserve the metric

* A generic Killing field on a complex manifold with local coordinates X' has
components k'(X, X) and their complex conjugates k'(X, X)

 On a Kahler manifold, the natural notion is that of a holomorphic Killing vector. A
holomorphic Killing vector is a Killing vector that satisfies an extra condition: the

components k' must be a function of X but not X.

» A holomorphic Killing vector generates a symmetry that does not mix the X’s and
the X’s

X' > X+ kK X) , X - X +KX)
while at the same time preserving the Kahler metric



Moment maps

Let us take a holomorphic vector field k*(X) and let us demand that it is also a
Killing vector. It turns out that this is equivalent to demanding that there exists

locally a real function = (X, X) such that
Ki(X) = — i G793,

The function &£ is called moment map. It is only determined up by a shift by a
real constant

Since the LHS is holomorphic, we have a constraint on &: 0;(G" 0:9) =0

Finding all local solutions to d,;(GiJ_ 6j@) = () for a given K&hler metric is

equivalent to finding all local holomorphic Killing vectors (and is in general a
hard task)



Non-linear gauge transformations

* Recall that the Lie bracket of two Killing vector fields is also a Killing
vector field. This is why (infinitesimal) isometries form a Lie algebra.

* |t turns out that the Lie bracket of two holomorphic Killing vector fields
Is also a holomorphic Killing vector field, so (infinitesimal) holom. isom’s

also form a Lie algebra hol isom

- To build a gauged model, we gauge a subalgebra g,,,,4c OF Ghol.isom- V€
use the label a for the holom. killing vectors k'(X) that generate Goauge:

Thus a in interpreted as an adjoint index in the model. The moment
maps are labeled 2 (X, X)



Non-linear gauge transformations

e A vector field can be thought of as an infinitesimal displacement 65X In
a sigma-model, X' is a complex scalar field (we work in ordinary space,

not superspace). We identify the displacement 5X" induced by
holomorphic Killing vector as a gauge transformation

5gaugeXi = k' (X)

» Here £“ is a real x-dependent infinitesimal gauge parameter, carrying as
usual an adjoint index a

. Notice that now 5gaugeXi can be a non-linear function of the X’s



A summary on the conditions on &

. The real functions & (X, X) must solve d;(GY 0;:%,) = 0, in such a way that
kfl(X) = —iGY dj@a is indeed a holomorphic Killing vector

« At this stage we can freely shift 2 (X, X) by a real constant p,

» In order to “take seriously” the label a on & (X, )_() as an adjoint index of the
gauge group, the following “equivariance relation” has to hold

(k. 0; + ki, 0) Py, = fuf P,

o [t turns out that the equivariance relation fixes the ambiguity of shifts by p_ if a

labels a generator of a simple non-Abelian factor in the gauge group. If instead a
labels a U(1) factor, the ambiguity & (X, X) - £ (X, X) + p, remains

* This is the origin of Fl terms in the geometry of Kahler manifolds



The data of the most general gauged model

We can recap the data that defines the most general 2-derivative SUSY action for chiral
multiplets and vector multiplets:

o The Kahler potential K(X, X) (up to a Kahler transformation)

* The choice of subgroup of the holom. isom. group of the Kahler metric; this subgroup

becomes the gauge group of the physical model. The real moment maps & (X, X)

must be found for the generators of the gauge group, subject to the conditions
summarized before

* The holomorphic superpotential W(X), which must be invariant under the subgroup of
the holom. iIsom. group that we are gauging

» The holomorphic gauge coupling function f . (X), which is symmetric in ab, transforms

according to these adjoint indices, and is also such that Ref_,(X) is positive definite
(to get well-behaved kinetic terms)



The scalar potential of the most general model

* The full action of the most general SUSY model if quite involved. It can be found for
example in Chapter 14 of the “Supergravity” book by Freedman and van Proeyen. Let us
just record here the scalar potential. After eliminating the auxiliary fields, one finds

o— —_— 1 _
V= GY0,Wo,W+= (Ref)”' " P, P,
* This is the sigma-model generalization of the result for renormalizable models. We still find a

sum of “F-terms” GV @iWOJ-W and “D-terms” (Ref)~ 1% % P,

. As usual SUSY is unbroken iff V = 0 in the vacuum. Both G¥ and (Ref)~ %’ are non-

degenerate (otherwise the model would have ill-behaved kinetic terms). We conclude that a
SUSY vacuum must satisfy

OoW=0 and & =0 forallianda

» Conversely, as soon as any of the 0.W or &, are non-zero in the vacuum, SUSY is
spontaneously broken



