
Supersymmetry and supergravity
Lecture 12



SUSY gauge theories with matter

• So far we have studied models with a collection of chiral multiplets, 
and models constructed with vector multiplets only. We have to 
combine the two to get a general SUSY gauge theory


• At the moment we are interested in renormalizable models. In 
particular, all fields have canonical kinetic terms


• SUSY gauge theories are very rich on their own, and this formalism is 
necessary to start to apply SUSY to questions related to the SM



The building blocks in isolation
Matter fields = chiral multiplets 


  ,            ,           








Gauge fields = vector multiplet       = adjoint index


   ,    ,     





Goal: Take a model with chirals that has global symmetry  and gauge the symmetry, 
coupling to a vector multiplet

(Xi, ψ i
α, Fi)

δXi = 2 ξ ψ i δψ i = i 2 (σμ ξ)α ∂μXi + 2 Fi ξα δFi = i 2 ξ σμ ∂μψ i

ℒkin = − ∂μXi ∂μXi + i ∂μψi σμ ψ i + Fi Fi

ℒW = Fi Wi−
1
2 Wij ψ i ψ j + h . c .

(Aa
μ, λa

α, Da) a

δAa
μ = i ξ σμ λa + h . c . δλa

α = (σμν ξ)α Fa
μν + i Da ξα δDa = ξ σμ Dμλa + h . c .

ℒvec = − 1
4 Faμν Faμν + i Dμλa σμ λa+

1
2 Da Da

G



Chiral models with global continuous symm’s

Matter fields = chiral multiplets 


We identify the index  with the index of a representation of a global flavor symmetry group . The generators 
of  are  and obey


  


Adjoint indices are raised/lowered with . Then  is real and totally antisymmetric.


We consider a representation of  by hermitian matrices . For instance


   ,        


where  is a constant real parameter of the infinitesimal flavor transformation. All fields in  have 
the same transformation law.


NB: our notation works for a simple non-Abelian group, but also for a  factor. In the latter case the matrix 
 is the identity times the charge of the field,


for a :          ,              (no sum on )

(Xi, ψ i
α, Fi)

i G
G Ta

[Ta, Tb] = i fab
c Tc

δab fabc

G (ta)i
j

δflavorXi = i Λa
0 (ta)i

j Xj δflavorXi = − i Λa
0 Xj (ta)i

j

Λa
0 (Xi, ψ i

α, Fi)

U(1)
(ta)i

j

U(1) δflavorXi = i Λa
0 q[Xi] Xi δflavorXi = − i Λa

0 q[Xi] Xi i



Chiral models with global continuous symm’s

   ,        








The kinetic Lagrangian is automatically invariant.  is invariant 
provided that the superpotential is invariant under a flavor transformation:


         

δflavorXi = i Λa
0 (ta)i

j Xj δflavorXi = − i Λa
0 Xj (ta)i

j

ℒkin = − ∂μXi ∂μXi + i ∂μψi σμ ψ i + Fi Fi

ℒW = Fi Wi−
1
2 Wij ψ i ψ j + h . c .

ℒW

0 = δflavorW(X) = Wi δflavorXi = i Λa
0 Wi (ta)i

j Xj ⇒ Wi (ta)i
j Xj = 0



Gauging the flavor symmetry
As usual, we gauge the flavor symmetry by promoting the transformation 
parameter to be an arbitrary function of spacetime: we go from


   ,        


to 


   ,        ,     


The coupling constant  is inserted for convenience. Ordinary derivatives of 
 must be replaced by gauge-covariant derivative. They are constructed 

with a gauge vector  in the adjoint of :


    ,     

δflavorXi = i Λa
0 (ta)i

j Xj δflavorXi = − i Λa
0 Xj (ta)i

j

δgaugeXi = − i g Λa (ta)i
j Xj δgaugeXi = i g Λa Xj (ta)i

j ∂μΛ ≠ 0

g
Xi

Aa
μ G

DμXi = ∂μXi + i g Aa
μ (ta)i

j Xj DμXi = ∂μXi − i g Aa
μ Xj (ta)j

i



SUSY variations after gauging
When the global flavor symmetry  is gauged, the fields  acquire a 
gauge redundancy. This modifies their off-shell SUSY transformations. The full set of 
off-shell SUSY variations is


   


       





  


  


G (Xi, ψ i
α, Fi)

δXi = 2 ξ ψ i

δψ i = i 2 (σμ ξ)α DμXi + 2 Fi ξα

δFi = i 2 ξ σμ Dμψ i + 2 i g (ξ λa) (ta)i
j Xj

δAa
μ = i ξ σμ λa + h . c .

δλa
α = (σμν ξ)α Fa

μν + i Da ξα

δDa = ξ σμ Dμλa + h . c .

Modifications:

1. partial derivatives in the chiral multiplet 

variations are replaced by gauge-cov der’s

2. there is a new term in the variation of F



The new term in the variation of F
The superspace formalism gives a derivation of the previous SUSY variations. Even 
without superspace we can have an intuition for the origin of the new term in the 
variation of . It is needed to get the gauge-cov. version of off-shell closure of the 
SUSY algebra:


 


 


where  stands for any field that transforms tensorially under a gauge 
transformation (in the adjoint rep for fields in the vector multiplet; in the rep with  
indices for the chiral multiplets)


F

δ1δ2Aa
μ − δ2δ1Aa

μ = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Fa
νμ

δ1δ2Φ − δ2δ1Φ = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) DνΦ
Φ

i



The new term in the variation of F
A sketch of the check:





We get a novel term from the SUSY variation of the gauge field inside :





which gives





To cancel this 4-Fermi term we need the contribution from





δ1δ2Fi = i 2 ξ2 σμ δ1Dμψ i + 2 i g (ξ2 δ1λa) (ta)i
j Xj + 2 i g (ξ2 λa) (ta)i

j δ1Xj

Dμψ i

δ1Dμψ i
α ⊃ i g δ1Aa

μ (ta)i
j ψ j

α = i g (i ξ1 σμ λa − i λa σμ ξ1) (ta)i
j ψ j

α

i 2 ξ2 σμ δ1Dμψ i ⊃ − g 2 (ξ2 σμ ψ j) (ta)i
j (i ξ1 σμ λa − i λa σμ ξ1)

2 i g (ξ2 λa) (ta)i
j δ1Xj = 2 2 i g (ξ2 λa) (ta)i

j (ξ1 ψ j)

   


       


δXi = 2 ξ ψ i

δψ i = i 2 (σμ ξ)α DμXi + 2 Fi ξα

δFi = i 2 ξ σμ Dμψ i + 2 i g (ξ λa) (ta)i
j Xj

  


  


δAa
μ = i ξ σμ λa + h . c .

δλa
α = (σμν ξ)α Fa

μν + i Da ξα

δDa = ξ σμ Dμλa + h . c .



The full SUSY Lagrangian
The full Lagrangian of a SUSY gauge theory is the sum of several pieces:

• YM term and supersymmetrization:


 


• Kinetic terms for chirals, written with gauge-cov der’s


 


• Extra terms that are required after gauging:


 


• Terms that come from the superpotential (if any: this part is optional)


 


• The superpotential must be gauge-invariant:  


• Optionally: Fayet-Iliopoulos terms

ℒvec = − 1
4 Faμν Faμν + i Dμλa σμ λa+

1
2 Da Da

ℒkin = − DμXi DμXi + i Dμψi σμ ψ i + Fi Fi

ℒcoupl = i 2 g [Xi (ta)i
j ψ j λa − λa ψi (ta)i

j Xj] + g Da Xi (ta)i
j Xj

ℒW = Fi Wi−
1
2 Wij ψ i ψ j + h . c .

Wi (ta)i
j Xj = 0



Fayet-Iliopoulos terms
There is one extra class of couplings that are compatible with SUSY:


 


where ’s are constants. Is this term gauge invariant?


 


In order for this term to be allowed, the constants  must obey


  


The superspace analysis shows that if this is true, then  is also supersymmetric.


The constant  associated to a generator  can be non-zero only if  never appears in the 
commutator of two other generators. In our setup  is either inside a simple non-Abelian factor of 
the gauge group, or it is a  factor. We find that


the FI constant  can be non-zero only if  is the generator of a  factor 

ℒFI = pa Da

pa

δgauge(pa Da) = pa δgaugeDa ∝ pa f abc Λb Dc

pa

fab
c pc = 0

ℒFI

pa Ta Ta
Ta

U(1)
pa Ta U(1)
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The full SUSY Lagrangian
The full Lagrangian of a SUSY gauge theory is the sum of several pieces:

• YM term and supersymmetrization:


 


• Kinetic terms for chirals, written with gauge-cov der’s


 


• Extra terms that are required after gauging:


 


• Terms that come from a gauge-inv superpotential (if any)


        


• FI terms for the  factors of the gauge group:     

ℒvec = − 1
4 Faμν Faμν + i Dμλa σμ λa+

1
2 Da Da

ℒkin = − DμXi DμXi + i Dμψi σμ ψ i + Fi Fi

ℒcoupl = i 2 g [Xi (ta)i
j ψ j λa − λa ψi (ta)i

j Xj] + g Da Xi (ta)i
j Xj

ℒW = Fi Wi−
1
2 Wij ψ i ψ j + h . c . Wi (ta)i

j Xj = 0

U(1) ℒFI = pa Da



Integrating out the auxiliary fields

The EOMs of the auxiliary fields are


  ,           ,      


These fields enter the Lagrangian algebraically and quadratically. They are 
integrated out exactly via their classical EOMs.


Fi = − Wi(X) Fi = − Wi(X) Da = − g Xi (ta)i
j Xj − pa




 



          

ℒvec = − 1
4 Faμν Faμν + i Dμλa σμ λa+

1
2 Da Da

ℒkin = − DμXi DμXi + i Dμψi σμ ψ i + Fi Fi

ℒcoupl = i 2 g [Xi (ta)i
j ψ j λa − λa ψi (ta)i

j Xj] + g Da Xi (ta)i
j Xj

ℒW = Fi Wi−
1
2 Wij ψ i ψ j + h . c . ℒFI = pa Da



Integrating out the auxiliary fields

We get the Lagrangian








where the scalar potential is the sum of an “F-term” and a “D-term”:


 


  ,           ,      

ℒ = (YM and kin terms) + i 2 g [Xi (ta)i
j ψ j λa − λa ψi (ta)i

j Xj]
− 1

2 Wij ψ i ψ j− 1
2 Wij ψi ψj − V(X, X)

V(X, X) = Fi(X) Fi(X)+ 1
2 Da(X, X) Da(X, X)

Fi = − Wi(X) Fi = − Wi(X) Da = − g Xi (ta)i
j Xj − pa




 



          

ℒvec = − 1
4 Faμν Faμν + i Dμλa σμ λa+

1
2 Da Da

ℒkin = − DμXi DμXi + i Dμψi σμ ψ i + Fi Fi

ℒcoupl = i 2 g [Xi (ta)i
j ψ j λa − λa ψi (ta)i

j Xj] + g Da Xi (ta)i
j Xj

ℒW = Fi Wi−
1
2 Wij ψ i ψ j + h . c . ℒFI = pa Da



SUSY vacua
The scalar potential is the sum of an “F-term” and a “D-term”:


 


  ,           ,      


As expected in a SUSY theory,  is non-negative.


• In a generic vacuum the scalars ’s have (covariantly) constant VEVs that are at a stationary point of 


• In a SUSY vacuum, we must have  and therefore we must set to zero all F-terms and all D-terms:


   ,          


• We can see that SUSY is unbroken from the variations of the fermions:


   ,             


• Depending on the model, SUSY vacua might not exist! Spontaneous SUSY breaking

V(X, X) = Fi(X) Fi(X)+ 1
2 Da(X, X) Da(X, X)

Fi = − Wi(X) Fi = − Wi(X) Da = − g Xi (ta)i
j Xj − pa

V
Xi V

V = 0
∂W
∂Xi

= 0 g Xi (ta)i
j Xj + pa = 0

δψ i = i 2 (σμ ξ)α DμXi + 2 Fi ξα δλa
α = (σμν ξ)α Fa

μν + i Da ξα



Example: SQED
Our first example is the supersymmetric version of QED with a massive electron. To 
construct it we start from a model with two chiral superfields  and 

 with canonical kinetic terms and superpotential


 


This model is invariant under a global flavor  symmetry, under which 
 and  have opposite charges .


We gauge this global symmetry with a  vector multiplet. Since the gauge group 
is Abelian, we can add an FI term.


In our general notation,  takes only one value, while  and


   ,     ,       

(X+, ψ+
α , F+)

(X−, ψ−
α , F−)

W = m X+ X−

U(1)
(X+, ψ+

α , F+) (X−, ψ−
α , F−) ±1

U(1)

a i = ±
(ta)+

+ = + 1 (ta)+
+ = − 1 (ta)

±
∓ = 0



Example: SQED
The full Lagrangian reads (after eliminating the aux fields)










where


 


The F-term and D-term equations are


  ,     ,      


If the FI parameter  is non-zero, we cannot have a SUSY vacuum. Let’s set .

ℒ = (YM and kin terms)
+ i 2 g [X+ ψ+ j λ − λ ψ+ X+] + i 2 g [ − X− ψ− j λ + λ ψ− X−]
− m ψ+ ψ− − m ψ+ ψ− − V

V = |m |2 |X+ |2 + |m |2 |X− |2 + 1
2 [g (X+ X+ − X− X−) + p]

2

F± = − m X∓ = 0 F± = − m X∓ = 0 D = − g [X+ X+ − X− X−] − p = 0
p p = 0



Example: SQED






 


Suppose . With the redefinitions


   ,       


we can get rid of the phase of . We can then assume  is real and positive.  We collect the two Weyl 
spinor into a 4-component Dirac spinor and we find a standard mass term


   ,          ,        


The 4-component Dirac spinor  plays the role of the electron. The coupling  is the electron charge.

ℒ = (YM and kin terms) − m ψ+ ψ− − m ψ+ ψ− − V
+ i 2 g [X+ ψ+ j λ − λ ψ+ X+] + i 2 g [ − X− ψ− j λ + λ ψ− X−]

V = |m |2 |X+ |2 + |m |2 |X− |2 + 1
2 g2 (X+ X+ − X− X−)2

m = |m | eiα

(X+, ψ+
α , F+) → (X+, ψ+

α , F+) e−iα/2 (X−, ψ−
α , F−) → (X−, ψ−

α , F−) e−iα/2

m m

Ψ = (
ψ+

α

(ψ−) ·α) Ψ = Ψ† i γ0 = (ψ−α (ψ+) ·α) Ψ Ψ = ψ− ψ+ + ψ+ ψ−

Ψ g



Intermezzo: fermion masses
If we take a generic SUSY gauge theory and we expand around some VEV for the scalars, 
we will generically originate mass terms of the fermions, of the form


 


The symmetric matrix  can receive contributions from explicit mass couplings from the 
superpotential, as well as contributions from the VEVs of scalars.


Fact of life: for any complex symmetric matrix , a unitary matrix  exists such that


 


is diagonal with real non-negative entries, . The eigenvalues , 
, …, are the physical masses of the fermions in the model. It is worth noting that , , 

…, are the eigenvalues of  (which is a positive hermitian matrix). This observation is 
often useful in comparing the masses of fermions and bosons. 

ℒ ⊃ − ℳij ψ i ψ j − ℳij ψi ψj

ℳij

ℳ 𝒰
ℳΔ = 𝒰T ℳ 𝒰

ℳΔ = diag(m1, m2, …) m1
m2 m2

1 m2
2

ℳ† ℳ



Example: SQCD
Our next example is the supersymmetric version of QCD with a generic number  of colors and  of 
flavors. We consider a model with massless quarks. Ordinary QCD is non-chiral. A given flavor of quark 
is usually described by a 4-component Dirac spinor  where  is a fund index of . In 2-
component language, we find two independent Weyl spinors, one in the fund, the other in the antifund,


  


This observation motivates the content of SQCD:  


• a vector superfield in the adjoint of 


•  identical copies of a chiral supermultiplet in the fund rep of 


•  identical copies of a chiral supermultiplet in the antifund rep of 


We consider a model with . We cannot turn on any FI terms.

Nc Nf

ΨI I SU(Nc)

ΨI = (
ψ I

α

ϵ ·α ·β ( ψ̃ Iβ)*)
SU(Nc)

Nf SU(Nc)

Nf SU(Nc)

W = 0



Example: SQCD
The scalars in the chiral multiplets are usually called “squarks” and often 
denoted  instead of . Our notation is as follows:


chiral multiplets in the fund of  :           


chiral multiplets in the antifund of  :    

where 


  is a fund/antifund index of 


  labels the copies of the chirals in the fund of 


  labels the copies of the chirals in the antifund of 

Q X
SU(Nc) (QI ̂I , ψα

I ̂I , FI ̂I )

SU(Nc) ( Q̃ ̂I ′ 

I, ψα
̂I ′ 

I, F̃ ̂I ′ 

I)

I = 1,…, Nc SU(Nc)
̂I = 1,…, Nf SU(Nc)
̂I ′ = 1,…, Nf SU(Nc)



Example: SQCD
It is convenient to introduce an index-free matrix notation: 


    ,             ,    and similarly for all other fields


A finite  gauge transf in this notation is


gauge:       ,     ,       ,         ,   


It turns out that all terms in the Lagrangian are invariant under a chiral  global 
symmetry. The first factor acts on the 's only (  indices):


global on ’s:           ,      ,    ,         ,   


The  first factor acts on the 's only (  indices):


global on ’s:         ,      ,    ,         ,   


This  is the analog of the chiral symmetry of ordinary QCD with massless quarks.

[Q]I ̂I = QI ̂I [ Q̃ ] ̂I ′ I = Q̃ ̂I ′ 

I

SU(Nc)
Q → U Q Q† → Q† U−1 Q̃ → Q̃ U−1 Q̃ † → U Q̃ † U ∈ SU(Nc)

SU(Nf) × SU(Nf)
Q ̂I

Q Q → Q V−1 Q† → V Q† Q̃ → Q̃ Q̃ † → Q̃ † V ∈ SU(Nf)

Q̃ ̂I ′ 

Q̃ Q → Q Q† → Q† Q̃ → V′ Q̃ Q̃ † → Q̃ † V′ 
−1 V′ ∈ SU(Nf)

SU(Nf) × SU(Nf)



Example: SQCD
It is customary to collect the content of the model in a table with representations


There is also a pictorial way based on “quiver diagrams”

1 SQCD table: simple version

SU(Nc) SU(Nf ) SU(Nf )0

Q
I
bI ⇤ ⇤ •

eQbI0
I ⇤ • ⇤

QI
bI ⇤ ⇤ •

eQbI0
I ⇤ • ⇤

2 Some material for closure of SUSY algebra on the gaugino

⇠1 �
µ⌫
⇠2 = ⇠

↵
1 (�µ⌫)↵

�
⇠2� = �⇠2� (�

µ⌫)�↵ ⇠
↵
1 = �⇠2 �

µ⌫
⇠1 . (2.1)

3 WZ model: a curiosity

Since F = �mX � g X
2, we can either consider hXi = 0, or alternatively

hXi = �
m

g
. (3.1)

We then write

X = �
m

g
+ � . (3.2)

The Lagrangian becomes

L = �@
µ
�@µ�+ i @µ �

µ
 + (

1

2
m  � g �  + h.c.)� V ,

V = |�|
2 (m� g �) (m� g �) . (3.3)

Notice the flip in sign in the fermion mass term. This new Lagrangian still describes particles of

physical mass |m|, as expected for unbroken SUSY. Actually, the entire Lagrangian is the same up to

the flip in sign of m. The two VEVs hXi = 0 and hXi = �m/g are completely equivalent. Clearly we

need g 6= 0 for this analysis to make sense. A democratic reformulation is obtained setting

X = Y �
m

2 g
. (3.4)

We get

L = �@
µ
Y @µY + i @µ �

µ
 + (g Y   + h.c.)� V , V =

|2 g Y �m|
2
|2 g Y +m|

2

16 |g|2
. (3.5)

We see a Z2 symmetry of the Lagrangian under Y $ �Y , if we think of g as a spurion with g $ �g.

1

SU(Nc) SU(Nf)
QQ̃

SU(Nf)′ 



Example: SQCD
    ,         


The D-term in a general model is . This term splits into two because  
stands both for the ’s and the ’s:


from the ’s:    


from the ’s:    


To see the relation between  to  we can use for example


 


Notice that  and  are manifestly invariant under  :


   ,      

[Q]I ̂I = QI ̂I [ Q̃ ] ̂I ′ I = Q̃ ̂I ′ 

I

−Da = Xi (ta)i
j Xj X

Q Q̃

Q Xi (ta)i
j Xj ⊃ QI

̂I (ta)I
J QJ ̂I = tr(Q† ta Q)

Q̃ Xi (ta)i
j Xj ⊃ Q̃ ̂I ′ 

I (tanti
a )I

J Q̃ ̂I ′ 

J = Q̃ ̂I ′ 

J (−ta)J
I Q̃ ̂I ′ 

I = − tr( Q̃ ta Q̃ †)

(tanti
a )I

J (ta)I
J

δgauge Q̃ ̂I ′ 

I = − i Λa Q̃ ̂I ′ 

J (ta)J
I ≡ i Λa (tanti

a )I
J Q̃ ̂I ′ 

J

tr(Q† ta Q) tr( Q̃ ta Q̃ †) SU(Nf) × SU(Nf)

Q → Q V−1 Q̃ → V′ Q̃



Example: SQCD

The D-term relations are


SUSY vacua:           

These equations can have a non-trivial space of solutions (the “moduli 
space” of the model). NB: this is a classical analysis, which receives 
interesting quantum corrections. 

tr(Q† ta Q) − tr( Q̃ ta Q̃ †) = 0
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Superspace: the idea
• SUSY variations and actions can in principle be found by trial-and-error, but it 

can be cumbersome and computationally demanding

• We would like a formalism in which SUSY is manifest

• Superspace is such a formalism


• Ordinary space with ordinary bosonic coordinates  is enlarged with 
fictitious “fermionic coordinates” , . These are Grassmann numbers


• We will interpret a SUSY transformation as the effect of a translation along the 
fermionic coordinates , 


• Using a suitable notion of integration in superspace, we will construct actions 
that are manifestly invariant under “translations in the fermionic directions”

xμ

θα θ ·α

θα θ ·α



Warm-up: ordinary space as a coset
• Let us consider the ordinary Poincaré Lie algebra:


                  


   ,                                


• We use the notation  for the Poincaré group, while  denotes its Lorentz subgroup 
(no translations). The respective Lie algebras are denoted  and 


• The exponential map take an arbitrary element of the Lie algebra to an element of the 
corresponding Lie group:


     ,          


  ,          


• The quantities ,  are real parameters. Our conventions are motivated by thinking of ,  
as Hermitian operators, which are taken by  to unitary operators

[Jμν, Jρσ] = i ημρ Jνσ − i ηνρ Jμσ − i ημσ Jνρ + i ηνσ Jμρ

[Jμν, Pρ] = i ημρ Pν − i ηνρ Pμ [Pμ, Pν] = 0

ISO(1,3) SO(1,3)
𝔦𝔰𝔬(1,3) 𝔰𝔬(1,3)

−xμ Pμ+ 1
2 ωμν Jμν ∈ 𝔦𝔰𝔬(1,3) exp( − i xμ Pμ+ 1

2 i ωμν Jμν) ∈ ISO(1,3)
1
2 ωμν Jμν ∈ 𝔰𝔬(1,3) exp( 1

2 i ωμν Jμν) ∈ SO(1,3)

xμ ω[μν] Pμ Jμν
exp(i…)



Warm-up: ordinary space as a coset
• In general, given a group  and a subgroup  of , we can define the coset  by 

taking equivalence classes in  under the equiv. relation defined by action of  from the 
right:


  ,        ,       


• We apply this construction to , . The coset is Minkowski space  


  


• We will not give a formal proof. Intuitively, the quotient makes the  part “pure 
gauge”, so that we can parametrize an element of the coset using a standard 
representative 


 


• The parameters  are coordinates in Minkowski space

G H G G/H
G H

g ∼ g h g ∈ G h ∈ H
G = ISO(1,3) H = SO(1,3)
ℝ1,3 ≅ ISO(1,3)/SO(1,3)

1
2 ωμν Jμν

G(x) = exp(−i xμ Pμ)

xμ



Left action on the coset
• Let us choose a fixed element  and let us consider the action of  on the 

standard representative ,    (the inverse is for later convenience)


• The element  belongs to a unique equivalence class in , which has 
a unique standard representative  for some coordinates . Explicitly:


     ,   


• We can think of  as a “compensating gauge transformation” that restores the 
standard form of  after we act with 


• Each  determines a “motion” in the space with coordinates , going from  to 


• If  is the identity plus and infinitesimal piece, it determines an infinitesimal variation 
 (we can think of it as a vector field on the coset)

g0 ∈ G g0
G(x) g−1

0 G(x)
g−1

0 G(x) ∈ G G/H
G(x′ ) x′ 

g−1
0 G(x) = G(x′ ) h(x, g0) h(x, g0) ∈ H

h(x, g0)
G(x) g0

g0 x x x′ 

g0
δx



Example:  is a translationg0
     ,   


We can write 


 


and therefore


 


This case is simple: we do not need any compensating . The 
induced motion is simply a translation


  :       

g−1
0 G(x) = G(x′ ) h(x, g0) h(x, g0) ∈ H

g0 = exp(−i aμ Pμ)

g−1
0 G(x) = exp(i aμ Pμ) exp(−i xν Pν) = exp(−i (x − a)ν Pν)

h(x, g0) ∈ H

g0 = exp(−i aμ Pμ) x′ 

μ = xμ − aμ



Example:  is a Lorentz transfg0
     ,   


We can write   and therefore  .


For simplicity we work to linear order in the parameters . Recall the Baker-Campbell-Hausdorff formula


 


Using the JP commutator, we find


 


This quantity should be cast in the form , so we compare it


   


Here  are params of the compensating  transformation, and  are the coordinates of the transformed 
point on the coset. Comparing the arguments of the exp’s at leading order in  we discover


  ,          

g−1
0 G(x) = G(x′ ) h(x, g0) h(x, g0) ∈ H

g0 = exp( i
2 λμν Jμν) g−1

0 G(x) = exp(− i
2 λμν Jμν) exp(−i xν Pν)

λμν

exp(A) exp(B) = exp(A + B+ 1
2 [A, B]+ 1

12 [A, [A, B]] + …)

g−1
0 G(x) = exp(− i

2 λμν Jμν − i xν Pν+
i
2 (λ x)ν Pν + …)

G(x′ ) h(x, g0)
exp(−i x′ 

ν Pν) exp(− i
2 λ̃μν Jμν) = exp(− i

2 λ̃μν Jμν − i x′ 
ν Pν+

i
2 (λ̃ x′ )ν Pν + …)

λ̃μν H x′ 
μ

λμν

λ̃μν = λμν (x′ − x)μ = − (λ x)μ



Scalar fields
In the “active transformation” perspective, the transformation law of a scalar field on the coset is


   ,         


For an infinitesimal transformation, this gives


  ,        


In the example of a translation:


   ,     ,      


In the example of a Lorentz transformation:


   ,     ,      


We read off a set of differential operators that satisfy the same algebra as the Poincaré generators:


   ,        


  ,   

Φ′ (x′ ) = Φ(x) g−1
0 G(x) = G(x′ ) mod H

Φ(x + δ) + δΦ(x) = Φ(x) δΦ(x) = − δxμ ∂μΦ(x)

g0 = exp(−i aμ Pμ) δxμ = − aμ δΦ = aμ ∂μΦ = i aμ (−i ∂μ)Φ

g0 = exp( i
2 λμν Jμν) δxμ = − λμ

ν xν δΦ = λμν xν ∂μΦ = − i
2 λμν (2 i xν ∂μ)Φ

Pμ = − i ∂μ Jμν = − i (xμ ∂ν − xν ∂μ)

[Jμν, Jρσ] = i ημρ Jνσ + … [Jμν, Pρ] = i ημρ Pν + …



Superspace
We define (flat) superspace as (super-Poincaré)/(Lorentz). Since the  
generators are “pure gauge”, our standard form of a coset representative is


 


The motion in superspace generated by an element  of the super-
Poincaré group is defined according to the general formula


 


An ordinary translation is easy because , , 


    ,       ,     ,    

Jμν

G(x, θ, θ) = exp(−i xμ Pμ + i θα Qα + i θ ·α Q ·α)

g0

g−1
0 G(x, θ, θ) = G(x′ , θ′ , θ′ ) mod SO(1,3)

[P, P] = 0 [P, Q] = 0 [P, Q] = 0
g0 = exp(−iaμ Pμ) x′ = x − a θ′ = θ θ′ = θ



Supertranslations
 


Let us now consider . We use BCH 


 


to simplify


 


Only the first commutator term is non-zero, all the nested commutators vanish. The 
above quantity is exactly equal to


 


The SUSY algebra gives 

g−1
0 G(x, θ, θ) = G(x′ , θ′ , θ′ ) mod SO(1,3)
g0 = exp(iξ Q + i ξ Q)

exp(A) exp(B) = exp(A + B+ 1
2 [A, B]+ 1

12 [A, [A, B]] + …)

exp(−iξ Q − i ξ Q) exp(−i xμ Pμ + i θ Q + i θ Q)

exp(−iξ Q − i ξ Q − i xμ Pμ + i θ Q + i θ Q+ 1
2 [−iξ Q − i ξ Q, i θ Q + i θ Q])

[ξ Q, θ Q] = 2 ξ σμ θ Pμ



Supertranslations
In the end we find the quantity


 


where


   ,       ,       

Remarks:


• We do not need any compensating  transformation


• We have not assumed that the ,  params are infinitesimal


• A translation in  or  induces a translation in regular space: this is the 
superspace version of the fundamental relation 

exp(−i x′ 
μ Pμ + i θ′ Q + i θ′ Q)

θ′ 
α = θα − ξα θ′ ·α = θ ·α − ξ ·α x′ 

μ = xμ − (i θ σμ ξ − i ξ σμ θ)

H
ξ ξ

θ θ
{Q, Q} ∼ P



Superfields
By definition, a superfield is a function  that transforms under the action of 
super-Poincaré according to the scalar transformation law


  


For an infinitesimal transformation , ,  we have


  


 


For an ordinary translation:


  :        , ,          


 

Φ(x, θ, θ)

Φ′ (x′ , θ′ , θ′ ) = Φ(x, θ, θ)
x′ = x + δx θ′ = θ + δθ θ′ = θ + δθ

Φ′ (x, θ, θ) = Φ(x, θ, θ) + δΦ(x, θ, θ)

δΦ = − δxμ ∂μΦ − δθα ∂
∂θα

Φ − δθ ·α
∂

∂θ ·α
Φ

g0 = exp(−iaμ Pμ) δxμ = − aμ δθ = 0 δθ = 0

δΦ = aμ ∂μΦ = i aμ (−i Pμ)Φ



Differential op’s implementing SUSY
 


For a supertranslation:


  :         ,       ,           


We plug this into  and we cast the result in the form


      where      ,       


Remarks:


• we have used 


• to compare to Wess-Bagger, notice that our ,  have an extra i compared to WB, and use 



• we also have  so our  is the same as theirs

δΦ = − δxμ ∂μΦ − δθα ∂
∂θα

Φ − δθ ·α
∂

∂θ ·α
Φ

g0 = exp(iξ Q + i ξ Q) δθα = − ξα δθ ·α = − ξ ·α δxμ = − (i θ σμ ξ − i ξ σμ θ)
δΦ

δΦ = (−i ξα Qα − i ξ ·α Q ·α) Φ Qα = i ( ∂
∂θα

− i (σμ θ)α ∂μ) Q ·α = i ( ∂
∂θ ·α

+ i (θ σμ) ·α ∂μ)
(θ σμ) ·α ξ ·α = − ξ ·α (θ σμ) ·α = + ξ ·α (θ σμ) ·α

Qα Q ·α

(θ σμ) ·α = ϵ ·α ·β (θ σμ) ·β = − (θ σμ) ·β ϵ
·β ·α

(−i ξα Qα − i ξ ·α Q ·α)here = (ξα Qα + ξ ·α Q ·α)WB δΦ



Differential op’s implementing SUSY
 ,             ,       


The coset formalism guarantees that the differential operators , ,  satisfy the same SUSY 
algebra as the abstract generators:


  ,               


      ,                  ,          


One can also check these relations explicitly.


NB: when we lower the index on   we get





We will see later in more detail how differentiation wrt Grassman variables works.  

Pμ = − i ∂μ Qα = i ( ∂
∂θα

− i (σμ θ)α ∂μ) Q ·α = i ( ∂
∂θ ·α

+ i (θ σμ) ·α ∂μ)
Pμ Qα Q ·α

[Pμ, Qα] = 0 [Pμ, Q ·α] = 0

{Qα, Qβ} = 0 {Q ·α, Q ·β} = 0 {Qα, Q ·β} = 2 (σμ)α ·β Pμ

Q ·α

Q ·α = ϵ ·α ·β Q
·β = i (ϵ ·α ·β

∂
∂θ ·β

+ i (θ σμ) ·α ∂μ) = i ( −
∂

∂θ ·α
+ i (θ σμ) ·α ∂μ)



Extra: cosets and diff op’s in general

Let us consider a general coset  with a choice of standard 
representatives  for a set of coordinates . The left action of  on 
the coset determines a motion in  according to


 


If  is infinitesimal, we can write


   ,        


In this way we associate to each generator  of  a vector 
field  on .

G/H
G(z) zM G

G/H
g−1

0 G(z) = G(z′ ) mod H

g0

g0 = 𝕀 + i αA TA zM → zM + αA VA
M(z)

TA 𝔤 = Lie(G)
VA

M(z) G/H



Extra: cosets and diff op’s in general

The Lie bracket of the vector fields  gives a representation of the 
abstract algebra: if  is the abstract commutator of  and 

, 


 


then the vector field  associated to  is the Lie bracket of 
those of   and , 


VA
M(z)

i αA
3 TA i αA

1 TA
i αA

2 TA

i αA
3 TA = [i αA

1 TA, i αB
2 TB]

αA
3 VA

M(z) i αA
3 TA

i αA
1 TA i αA

2 TA

αA
3 VA

M = αA
1 VA

N ∂N(αB
2 VB

M) − αA
2 VA

N ∂N(αB
1 VB

M)



Extra: cosets and diff op’s in general
To see this: define  and observe that


  


Because of the inverse in our definition  , acting with 
 means considering the motion induced by , then , then , finally ,


  ,    


   ,   


Keep only terms at most linear in  and get


 

g1,2 = 𝕀 + i αA
1,2 TA

g0 = g−1
1 g−1

2 g1 g2 = 𝕀 + [i αA
1 TA, i αB

2 TB] + …
g−1

0 G(z) = G(z′ ) mod H
g0 g−1

1 g−1
2 g1 g2

z′ = z − αA
1 VA(z) z′ ′ = z′ − αA

2 VA(z′ )
z′ ′ ′ = z′ ′ + αA

1 VA(z′ ′ ) z′ ′ ′ ′ = z′ ′ ′ + αA
2 VA(z′ ′ ′ )

α1,2

z′ ′ ′ ′ − z = αA
1 VA

N ∂N(αB
2 VB

M) − αA
2 VA

N ∂N(αB
1 VB

M)



Extra: cosets and diff op’s in general
The transformation law of a scalar field (“active pov”)  gives


      where by def       

These operators obey the same algebra as the abstract generators: if we have


 


then we have 


 


This is easy to see using the fact that 


 


NB: we have given a “purely bosonic” argument, but if one is careful not to change the order 
of generators/params this extends to cosets built with supergroups/Lie superalgebras.

Φ′ (z′ ) = Φ(z)
δΦ = − δzM ∂MΦ = − αA VA

M ∂MΦ ≡ − i αA TAΦ TA = − i VA
M ∂M

i αA
3 TA = [i αA

1 TA, i αB
2 TB]

i αA
3 TAΦ = i αA

1 TA(i αB
2 TBΦ) − i αA

2 TA(i αB
1 TBΦ)

αA
3 VA

M = αA
1 VA

N ∂N(αB
2 VB

M) − αA
2 VA

N ∂N(αB
1 VB

M)



Supersymmetry and supergravity
Lecture 15



Calculus with Grassmann variables
• We need to set our conventions about manipulating Grassmann variables to work 

with superspace


• Let’s start with a single Grassmann variable 


• Any function of  is understood as a power series. It truncates because  :


  


• If  is Grassmann-even, then  is Grassmann-odd, and vice versa (so the order 
 is important when  is Grassmann-odd)


• The differential operator  acts from the left and satisfies


         for example:  

η
η η η = 0

f(η) = f0 + η f1
f0 f1

η f1 f1
∂/(∂η)

∂
∂η

η = 1
∂
∂η

f(η) = f1



Calculus with Grassmann variables
• If we have two Grassmann variables  then we have


  


• For example  does not act on , but we pick up a minus sign when  moves past  , 


  


• By definition,  is defined by acting from the left and picking up  factors


  

θα = (θ1, θ2)
∂

∂θα
θβ = δα

β

∂
∂θ1

θ2 ∂
∂θ1

θ2

∂
∂θ1

(θ2 θ1) = − θ2 ∂
∂θ1

θ1 = − θ2

∂
∂θα

θα

∂
∂θα

θβ = δβ
α



Calculus with Grassmann variables
• How are  and  related? Let’s consider the quantity  where  does not depend 

on ’s. Our definitions give


  


• On the other hand we can also write  . Since we are not changing the order of  and  it 
doesn’t matter if  is a boson or a fermion. We then have


    


• Since  we have verified the identity


 


• For applications to superspace we need both ’s and ’s. The definitions for derivatives wrt  follow the 
same conventions

∂/(∂θα) ∂/(∂θα) f(θ) = θα χα χα
θ

∂
∂θβ

f(θ) = δβ
α χα = χβ

f(θ) = − θα χα θ χ
χ

∂
∂θβ

f(θ) = − χβ

χβ = ϵβγ χγ

ϵαβ ∂
∂θβ

= −
∂

∂θα

θ θ θ



Calculus with Grassmann variables
• Integration over Grassmann variables is a formal operation (aka Berezin integral) 

determined by linearity, translational invariance, integration by parts. In the case of 
a single variable, we demand


    


           ,         


• One verifies that integration wrt to  is the same as differentiation wrt to 


             


• Similar remarks apply to the case of several variables

∫ dη[ f(η) c1 + g(η) c2] = (∫ dη f(η)) c1 + (∫ dη g(η)) c2

∫ dη f(η − η0) = ∫ dη f(η) ∫ dη
∂
∂η

f(η) = 0

η η

∫ dη η = 1



Calculus with Grassmann variables
• In superspace we have four Grassmann variables  and  and we set by definition


  ,        


• This is useful because it implies


    ,        ,  


• For example,  because  and therefore  


 


• NB: we have    which shows that this measure is Lorentz invariant; similarly 
for the measure 

θα=1,2 θ ·α=1,2

∫ d2θ = ∫
1
2

dθ1 dθ2 ∫ d2θ = ∫
1
2

dθ2 dθ1

∫ d2θ (θα θα) = 1 ∫ d2θ (θ ·α θ ·α) = 1 ∫ d2θ d2θ (θα θα) (θ ·β θ ·β) = 1

θα θα = θα ϵαβ θβ = − θ1 θ2 + θ2 θ1 = 2 θ2 θ1 ϵ12 = − 1

∫ 1
2 dθ1 dθ2 (2 θ2 θ1) = 1

d2θ ∝ ϵαβ dθα dθβ

d2θ



Taylor expansion of a generic superfield

• Let us consider an arbitrary function  of regular spacetime and the four Grassmann variables 
 and  . The possible monomials that can appear in the Taylor expansion of  in the 

odd coordinates are


   ,   ,     ,       ,     ,        ,    ,    


• Inspired by the Wess-Bagger parametrization of a real superfield we write












• The coeff of  is written as  rather than just  for later convenience, and 
similarly with the coeffs of  and 

𝒮(x, θ, θ)
θα=1,2 θ ·α=1,2 𝒮(x, θ, θ)

θα θ ·α θ θ ≡ θα θα θ θ ≡ θ ·α θ ·α θα θ
·β ∝ (σμ)

·βα (θ σμ θ) (θ θ) θ ·α (θ θ) θα (θ θ) (θ θ)

𝒮(x, θ, θ) = C(x) + i θα χα(x) − i θ ·α χ ·α(x)
+ 1

2 i (θ θ) M(x)− 1
2 i (θ θ) M(x) − (θ σμ θ) vμ(x)

+ i (θ θ) θ ·α [λ ·α(x)+ 1
2 i (σμ) ·αβ ∂μχβ(x)] − i (θ θ) θα [λα(x)+ 1

2 i (σμ)α ·β ∂μχ
·β(x)]

+ 1
2 (θ θ) (θ θ) [D(x)+ 1

2 ∂μ ∂μC(x)]
(θ θ) θ ·α λ ·α+ 1

2 i (σμ) ·αβ ∂μχβ λ ·α

(θ θ) θα (θ θ) (θ θ)



Taylor expansion of a generic superfield













Remarks:


• In the simplest case  does not carry any indices. Then the component fields , , , 
 are Lorentz scalars, , , ,  are spinors, and  is a vector. , , , ,  have the same 

statistics, and similarly for , , , 


• If there is no gauge-invariance, a generic  without spinor indices describes 16 + 16 real 
dof’s off-shell.

𝒮(x, θ, θ) = C(x) + i θα χα(x) − i θ ·α χ ·α(x)
+ 1

2 i (θ θ) M(x)− 1
2 i (θ θ) M(x) − (θ σμ θ) vμ(x)

+ i (θ θ) θ ·α [λ ·α(x)+ 1
2 i (σμ) ·αβ ∂μχβ(x)] − i (θ θ) θα [λα(x)+ 1

2 i (σμ)α ·β ∂μχ
·β(x)]

+ 1
2 (θ θ) (θ θ) [D(x)+ 1

2 ∂μ ∂μC(x)]

𝒮(x, θ, θ) C M M
D χ χ λ λ vμ C M M D vμ

χ χ λ λ
𝒮(x, θ, θ)



Taylor expansion of a generic superfield












Remarks:


• A generic  is complex, and all the component fields are complex, too. A real superfield 
satisfies  which translates to


    ,      ,    ,    ,      ,  


• We can use the above Taylor expansion also if  carries spinor indices, . In 
that case all the component fields carry the extra set of indices  and transform under the 
Lorentz group accordingly

𝒮(x, θ, θ) = C(x) + i θα χα(x) − i θ ·α χ ·α(x)
+ 1

2 i (θ θ) M(x)− 1
2 i (θ θ) M(x) − (θ σμ θ) vμ(x)

+ i (θ θ) θ ·α [λ ·α(x)+ 1
2 i (σμ) ·αβ ∂μχβ(x)] − i (θ θ) θα [λα(x)+ 1

2 i (σμ)α ·β ∂μχ
·β(x)]

+ 1
2 (θ θ) (θ θ) [D(x)+ 1

2 ∂μ ∂μC(x)]

𝒮(x, θ, θ)
𝒮(x, θ, θ)* = 𝒮(x, θ, θ)

C* = C (χα)* = χ ·α M* = M (vμ)* = vμ (λα)* = λ ·α D* = D

𝒮(x, θ, θ) 𝒮α… ·α…(x, θ, θ)
α… ·α…



SUSY variations from Taylor expansion
• The function  is a superfield if it transforms under SUSY according to


      where      ,      


• One computes   and compares the result with


 


• For example, to read off the variation of  we need the terms with no ’s or ’s. The terms  
and  inside ,  don’t contribute, we only need


   ,            


to conclude 


 

• Finding the variations of all other component fields is tedious but straightforward.

𝒮(x, θ, θ)

δ𝒮 = (−i ξα Qα − i ξ ·α Q ·α) 𝒮 Qα = i ( ∂
∂θα

− i (σμ θ)α ∂μ) Q ·α = i ( ∂
∂θ ·α

+ i (θ σμ) ·α ∂μ)
(−i ξα Qα − i ξ ·α Q ·α) 𝒮

δ𝒮(x, θ, θ) = δC(x) + i θα δχα(x) − i θ ·α δχ ·α(x) + …
C(x) θ θ (σμ θ)α ∂μ

(θ σμ) ·α ∂μ Qα Q ·α

ξα ∂
∂θα (i θβ χβ) = i ξα χα ξ ·α

∂
∂θ ·α

( − i θ ·β χ
·β) = − i ξ ·α χ ·α

δC = i ξ χ − i ξ χ



SUSY variations from Taylor expnasion
Here is the result (from Cyril Closset’s note): Remarks:


• This is a linear representation of the SUSY 
algebra on a set of -dependent fields


• This rep is highly reducible


• The task: find constraints on  that 
are supersymmetric and do not impose 
EOMs on the -dependent fields (because 
we want an off-shell formalism)


• Simplest example: the reality conditions


  ,     ,    ,   
 ,      ,  


that define a real superfield

x

𝒮(x, θ, θ)

x

C* = C (χα)* = χ ·α M* = M
(vμ)* = vμ (λα)* = λ ·α D* = D

1 SUSY variations from Cyril’s notes

�C = i ⇠ �� i ⇠ � ,

��↵ = �↵M + (�µ ⇠)↵ (@µC + i vµ) ,

��↵̇ = ⇠↵̇M + (⇠ �µ)↵̇ (@µC � i vµ) ,

�M = 2 i ⇠ �µ @µ�+ 2 ⇠ � ,

�M = 2 i ⇠ �µ @µ�+ 2 ⇠ � ,

�vµ = i ⇠ �µ �+ i ⇠ �µ �+ ⇠ @µ�+ ⇠ @µ� ,

��↵ = i ⇠↵D + 2 (�µ⌫ ⇠)↵ @µv⌫ ,

��↵̇ = �i ⇠↵̇D � 2 (⇠ �µ⌫)↵̇ @µv⌫ ,

�D = �⇠ �µ @µ�+ ⇠ �µ @µ� (1.1)

2 Chiral superspace

A di↵erent coset representative:

exp(i#Q) exp(�i yµ Pµ) exp(i#Q) . (2.1)

Let us relate it to the usual one. The first step is trivial:

exp(i#Q) exp(�i yµ Pµ + i#Q) . (2.2)

Now we use BKH to get

exp(i#Q� i yµ Pµ + i#Q+ 1
2 [i#Q, i#Q]) = exp(i#Q� i yµ Pµ + i#Q� #�µ #Pµ) . (2.3)

The lesson is

✓ = # , ✓ = # , x = y � i#� # . (2.4)

We act from the right with exp(�i ⇠Q). We have immediately the motion

#0 = # , y0 = y , #
0
= #� ⇠ . (2.5)

We conclude that

D↵̇ = �
@

@#
↵̇ . (2.6)

Now we act with exp(�i ⇠Q). We have

exp(i#Q) exp(�i ⇠Q) = exp(sum + 1
2 [i#Q,�i ⇠Q])

= exp(sum� ⇠ �µ #Pµ) = exp(sum) exp(�⇠ �µ #Pµ) , (2.7)

while

exp(�i ⇠Q) exp(i#Q) = exp(sum) exp(+⇠ �µ #Pµ) , (2.8)

1



The D-component and invariant functionals













The SUSY variation of the component field  in the  component is important, because it 
turns out to be a total spacetime derivative:


 


This is expected, because  has the largest mass dimension. The shift by  does not 
change the fact that


  

𝒮(x, θ, θ) = C(x) + i θα χα(x) − i θ ·α χ ·α(x)
+ 1

2 i (θ θ) M(x)− 1
2 i (θ θ) M(x) − (θ σμ θ) vμ(x)

+ i (θ θ) θ ·α [λ ·α(x)+ 1
2 i (σμ) ·αβ ∂μχβ(x)] − i (θ θ) θα [λα(x)+ 1

2 i (σμ)α ·β ∂μχ
·β(x)]

+ 1
2 (θ θ) (θ θ) [D(x)+ 1

2 ∂μ ∂μC(x)]
D (θ θ) (θ θ)

δD = ∂μ( − ξ σμλ + ξ σμ λ)
D 1

2 ∂μ ∂μC

δ(𝒮(x, θ, θ)
θθθθ

) = ∂μ(…)



The D-component and invariant functionals

This observation gives us a recipe to construct SUSY invariant actions:


• Take any real superfield  ,   


• Extract its  component


• Integrate it over ordinary spacetime: 


We need  to be real because the action should be real.

V(x, θ, θ) V(x, θ, θ)* = V(x, θ, θ)
(θ θ) (θ θ)

∫ d4x V(x, θ, θ)
θθθθ

V(x, θ, θ)



The D-component and invariant functionals
A more suggestive way of writing the same quantity is


      because   


SUSY is manifest in this language. We can see it in two equivalent ways:


1. The integrand transforms as a scalar field and the measure is invariant


       and         


2. An infinitesimal SUSY variation is implemented as a diff op and can be cast as a tot der





and similarly for 

∫ d4x V(x, θ, θ)
θθθθ

= ∫ d4x d2θ d2θ V(x, θ, θ) ∫ d2θ d2θ (θ θ) (θ θ) = 1

V′ (x′ , θ′ , θ′ ) = V(x, θ, θ) d4x′ d2θ′ d2θ′ = d4x d2θ d2θ

∫ d4x d2θ d2θ QαV = i∫ d4x d2θ d2θ( ∂
∂θα

− i (σμ θ)α ∂μ)V = i∫ d4x d2θ d2θ
∂

∂θα
V + ∫ d4x d2θ d2θ ∂μ[(σμ θ)α V]

Q ·α



Aside: invariance of the volume form
For ordinary bosonic change of coordinates, the volume form transforms with the determinant of 
the Jacobian


  


The analog notion in superspace involves the “superdeterminant” of the Jacobian


 


The superdeterminant is defined in block-matrix notation as


  


Here the square matrix  maps bosons to bosons,  the square matrix  maps fermions to 
fermions, while the rectangular matrices ,  interchange them.

d4x′ = d4x det
∂x′ 

μ

∂xν

d4x′ d2θ′ d2θ′ = d4x d2θ d2θ sdet
∂(x′ 

μ, θα, θ ·α)
∂(xν, θβ, θ

·β)

sdet (A B
C D) =

det A
det(D − C A−1 B)

=
det(A − B D−1 C)

det D
A D

B C



Aside: invariance of the volume form
We are interested in a supertranslation


   ,       ,      

We find


  


The , , ,  blocks are


  ,         ,        ,        


and thus 


 

θ′ 
α = θα − ξα θ′ ·α = θ ·α − ξ ·α x′ 

μ = xμ − (i θ σμ ξ − i ξ σμ θ)

∂(x′ 
μ, θα, θ ·α)

∂(xν, θβ, θ
·β)

=

δμ
ν −i (σμ)β ·γ ξ ·γ −i ξγ (σμ)γ ·β

0 δα
β 0

0 0 δ ·α·β

A B C D

A = (δμ
ν ) B = (−i (σμ)β ·γ ξ ·γ −i ξγ (σμ)γ ·β) C = (0

0) D = (
δα

β a

0 δ ·α·β)
sdet (A B

C D) =
det A

det(D − C A−1 B)
=

det(A − B D−1 C)
det D

= 1



Supersymmetry and supergravity
Lecture 16



SUSY covariant derivatives
• A superfield is a function  such that  under the action of 

super-Poincaré. Infinitesimally, the SUSY variation is generated by a differential operator


        


      ,         


• We know that  commutes with ,  and therefore the ordinary derivative of a 
superfield is still a superfield,


   


• The partial derivatives  ,  do not anticommute with , , so the partial fermionic 
derivative of a superfield is not a superfield,


  

𝒮(x, θ, θ) 𝒮′ (x′ , θ′ , θ′ ) = 𝒮(x, θ, θ)

δ𝒮 = (−i ξα Qα − i ξ ·α Q ·α) 𝒮

Qα = i ( ∂
∂θα

− i (σμ θ)α ∂μ) Q ·α = i ( ∂
∂θ ·α

+ i (θ σμ) ·α ∂μ)
Pμ = − i ∂μ Qα Q ·α

δ(∂μ𝒮) = ∂μ(δ𝒮) = ∂μ (−i ξα Qα − i ξ ·α Q ·α) 𝒮 = (−i ξα Qα − i ξ ·α Q ·α) ∂μ𝒮

∂/∂θα ∂/∂θ ·α Qα Q ·α

δ( ∂
∂θβ 𝒮) = ∂

∂θβ (δ𝒮) = ∂
∂θβ (−i ξα Qα − i ξ ·α Q ·α) 𝒮 ≠ (−i ξα Qα − i ξ ·α Q ·α) ∂

∂θβ 𝒮



SUSY covariant derivatives
• We want to construct suitable covariant derivatives ,  that anticommute with ,  


• Recall that ,  were constructed by considering the left action of the super-Poincaré group on the 
coset representative  :   
induces the motion


    ,       ,       


• The can also consider the right action of  on the coset representative. (This should 
not be confused with the quotient by  from the right.)


• In applying the BCH formula, the sign of the  term is flipped, so the right action induces the motion


   ,       ,       


• Collecting factors of ,  we find the operators 


   ,         

Dα D ·α Qα Q ·α

Qα Q ·α
exp(−i xμ Pμ + i θ Q + i θ Q) exp(−iξ Q − i ξ Q) exp(−i xμ Pμ + i θ Q + i θ Q)

θ′ 
α = θα − ξα θ′ ·α = θ ·α − ξ ·α x′ 

μ = xμ − (i θ σμ ξ − i ξ σμ θ)
exp(−iξ Q − i ξ Q)

H
[A, B]

θ′ 
α = θα − ξα θ′ ·α = θ ·α − ξ ·α x′ 

μ = xμ + (i θ σμ ξ − i ξ σμ θ)
ξα ξ ·α

∂
∂θα

+ i (σμ θ)α ∂μ
∂

∂θ ·α
− i (θ σμ) ·α ∂μ



SUSY covariant derivatives
   ,         


• After lowering the index on the second expression, we find the differential operators


           


• Left actions and right actions commute, so we automatically have (or we check 
brute-force that)


  


• The covariant derivative of a superfield is a superfield:


   

∂
∂θα

+ i (σμ θ)α ∂μ
∂

∂θ ·α
− i (θ σμ) ·α ∂μ

Dα =
∂

∂θα
+ i (σμ θ)α ∂μ D ·α = −

∂
∂θ ·α

− i (θ σμ) ·α ∂μ

{Dα, Qβ} = {Dα, Q ·β} = {D ·α, Qβ} = {D ·α, Q ·β} = 0

δ(Dβ𝒮) = Dβ(δ𝒮) = Dβ (−i ξα Qα − i ξ ·α Q ·α) 𝒮 = (−i ξα Qα − i ξ ·α Q ·α) Dβ𝒮



Comment: torsion in flat superspace
• While the partial derivatives  ,  anticommute, the covariant 

derivatives satisfy non-trivial anticommutation relations:


    ,     ,   


• In ordinary geometry, the fact that two covariant derivatives do not 
commute when acting on a scalar field is a signal that the space has 
torsion (the familiar Levi-Civita connection is torsionless by definition)





• One can develop a notion of differential geometry for superspace and 
show that the flat superspace (super-Poincaré)/(Lorentz) has no curvature 
but non-zero torsion

∂/∂θα ∂/∂θ ·α

{Dα, Dβ} = 0 {D ·α, D ·β} = 0 {Dα, D ·β} = − 2 i (σμ)α ·β ∂μ

[∇μ, ∇ν] f = − Tμν
ρ ∂ρ f



Constraining superfields
Recall the expression of a generic complex scalar superfield














• It has 16 + 16 dof’s. SUSY is manifest, but we have too many fields. More precisely, we 
have a linear rep of SUSY, but it is highly reducible.


• We need to find suitable constraints on  that do not spoil manifest SUSY and 
reduce the number of component fields in order to match known off-shell multiplets


• The constraints should not restrict the -dependence of the component fields

𝒮(x, θ, θ) = C(x) + i θα χα(x) − i θ ·α χ ·α(x)
+ 1

2 i (θ θ) M(x)− 1
2 i (θ θ) M(x) − (θ σμ θ) vμ(x)

+ i (θ θ) θ ·α [λ ·α(x)+ 1
2 i (σμ) ·αβ ∂μχβ(x)] − i (θ θ) θα [λα(x)+ 1

2 i (σμ)α ·β ∂μχ
·β(x)]

+ 1
2 (θ θ) (θ θ) [D(x)+ 1

2 ∂μ ∂μC(x)]

𝒮(x, θ, θ)

x



Chiral superfields
A chiral superfield  is defined by the condition


 

while its complex conjugate is an antichiral superfield, in the sense that 


 

A direct but tedious way of finding the most general chiral superfield 
would be to start from the expansion of , use it to compute 

, and set to zero all terms with different ,  structures. There is a 
more illuminating approach using the abstract definition of  in terms of 
the right action on the coset representative

Φ(x, θ, θ)
D ·αΦ = 0

DαΦ = 0

Φ(x, θ, θ)
D ·αΦ θ θ

D ·α



Chiral superspace
Our standard representative of the element in the coset is


  


To study chiral superfields it is convenient to choose a different representative, parametrized 
by coordinates  as


 


Using BKH we can relate the two sets of coordinates:


   ,      ,      

NB: there is also a notion antichiral superspace, based on the coset representative 

. It is the natural set of coordinates for an antichiral 
superfield. All remarks we make about chiral superspace/superfields have analogs for the 
antichiral counterparts.

exp(−i xμ Pμ + i θ Q + i θ Q)

(yμ, ϑ, ϑ)
exp(i ϑ Q) exp(−i yμ Pμ) exp(i ϑ Q)

yμ = xμ + i θ σμ θ ϑ = θ ϑ = θ

exp(i ̂ϑ Q) exp(−i ̂y μ Pμ) exp(i ̂ϑ Q)



Chiral superspace
The advantage of the new representative is that  acts very simply. Recall that this diff op is 
defined via the action of  from the right. This is immediate with the new coset 
representative:


 


This relation implies


 


The other cov der is found computing   


 


With the help of BCH one finds


   

D ·α
exp(−i ξ Q)

exp(i ϑ Q) exp(−i yμ Pμ) exp(i ϑ Q) exp(−i ξ Q) = exp(i ϑ Q) exp(−i yμ Pμ) exp(i (ϑ − ξ) Q)

D ·α = −
∂

∂ϑ ·α

exp(i ϑ Q) exp(−i yμ Pμ) exp(i ϑ Q) exp(−i ξ Q)

Dα =
∂

∂ϑα
+ 2 i (σμ ϑ)α

∂
∂yμ



Chiral superspace
One can also translate the diff op’s that implement a SUSY variation in the new coors.


Summary: in terms of the new coordinates  we have


  ,            ,        


     ,        


A chiral superfield  is simply any superfield that does not depend on . If 
the operators ,  act on a function of  and  only, the resulting quantity is also a 
function of  and  only. A chiral superfield satisfies


 

(y, ϑ, ϑ)

Qα = i
∂

∂ϑα
Q ·α = i[ −

∂
∂ϑ ·α

+ 2 i (ϑ σμ) ·α
∂

∂yμ ] Pμ = − i
∂

∂yμ

Dα =
∂

∂ϑα
+ 2 i (σμ ϑ)α

∂
∂yμ

D ·α = −
∂

∂ϑ ·α

D ·αΦ = 0 ϑ
Qα Q ·α y ϑ

y ϑ
Φ′ (y′ , ϑ′ ) = Φ(y, ϑ)



Chiral superfield expansion
In the new coordinates  a chiral superfield is simply any function of 
 and , but not . Its Taylor expansion is of the form


 

Recalling that


    ,      ,       

one can find the expansion in the original superspace coords:





(y, ϑ, ϑ)
y ϑ ϑ

Φ(y, ϑ, ϑ) = X(y) + 2 ϑα ψα(y) + (ϑ ϑ) F(y)

yμ = xμ + i θ σμ θ ϑ = θ ϑ = θ

Φ(x, θ, θ) = X(x) + 2 θα ψα(x) + (θ θ) F(x)
+ i θ σμ θ ∂μX(x)+ 1

4 (θ θ) (θ θ) ∂μ ∂μX− i

2
(θ θ) ∂μψ(x) σμ θ



Chiral superfield expansion
NB:  is the same as











     


    specialized to:


 ,       ,           ,         ,       

Φ(y, ϑ, ϑ)
𝒮(x, θ, θ) = C(x) + i θα χα(x) − i θ ·α χ ·α(x)

+ 1
2 i (θ θ) M(x)− 1

2 i (θ θ) M(x) − (θ σμ θ) vμ(x)

+ i (θ θ) θ ·α [λ ·α(x)+ 1
2 i (σμ) ·αβ ∂μχβ(x)] − i (θ θ) θα [λα(x)+ 1

2 i (σμ)α ·β ∂μχ
·β(x)]

+ 1
2 (θ θ) (θ θ) [D(x)+ 1

2 ∂μ ∂μC(x)]

C = X vμ = − i ∂μX χα = − i 2 ψα M = − 2 i F
χ = λ = λ = M = D = 0



Chiral superfield expansion
 ,       


                           



• We have identified a way to reduce the 
original SUSY reps on the full set of 
component fields


  








• If we impose the condition , we 
find that 

C = X vμ = − i ∂μX

χα = − i 2 ψα M = − 2 i F
χ = λ = λ = M = D = 0

δX = 2 ξ ψ
δψα = i 2 (σμ ξ)α ∂μX + 2 F ξα

δF = i 2 ξ σμ ∂μψ
𝒮* = 𝒮

𝒮(x, θ, θ) = const

1 SUSY variations from Cyril’s notes

�C = i ⇠ �� i ⇠ � ,

��↵ = �↵M + (�µ ⇠)↵ (@µC + i vµ) ,

��↵̇ = ⇠↵̇M + (⇠ �µ)↵̇ (@µC � i vµ) ,

�M = 2 i ⇠ �µ @µ�+ 2 ⇠ � ,

�M = 2 i ⇠ �µ @µ�+ 2 ⇠ � ,

�vµ = i ⇠ �µ �+ i ⇠ �µ �+ ⇠ @µ�+ ⇠ @µ� ,

��↵ = i ⇠↵D + 2 (�µ⌫ ⇠)↵ @µv⌫ ,

��↵̇ = �i ⇠↵̇D � 2 (⇠ �µ⌫)↵̇ @µv⌫ ,

�D = �⇠ �µ @µ�+ ⇠ �µ @µ� (1.1)

2 Chiral superspace

A di↵erent coset representative:

exp(i#Q) exp(�i yµ Pµ) exp(i#Q) . (2.1)

Let us relate it to the usual one. The first step is trivial:

exp(i#Q) exp(�i yµ Pµ + i#Q) . (2.2)

Now we use BKH to get

exp(i#Q� i yµ Pµ + i#Q+ 1
2 [i#Q, i#Q]) = exp(i#Q� i yµ Pµ + i#Q� #�µ #Pµ) . (2.3)

The lesson is

✓ = # , ✓ = # , x = y � i#� # . (2.4)

We act from the right with exp(�i ⇠Q). We have immediately the motion

#0 = # , y0 = y , #
0
= #� ⇠ . (2.5)

We conclude that

D↵̇ = �
@

@#
↵̇ . (2.6)

Now we act with exp(�i ⇠Q). We have

exp(i#Q) exp(�i ⇠Q) = exp(sum + 1
2 [i#Q,�i ⇠Q])

= exp(sum� ⇠ �µ #Pµ) = exp(sum) exp(�⇠ �µ #Pµ) , (2.7)

while

exp(�i ⇠Q) exp(i#Q) = exp(sum) exp(+⇠ �µ #Pµ) , (2.8)

1



F-type supersymmetric actions

The superspace analysis confirms that  in a chiral superfield  
transforms as a total spacetime derivative.

Chiral superfields give us a new way to generate supersymmetric actions:


      


Since a non-trivial chiral superfield is complex, in order to get a real action 
we have to add the hermitian conjugate by hand.

F D ·αΦ = 0

∫ d4x Φ(x, θ, θ)
θθ



F-type supersymmetric actions
We can write an F-term action as an integral over the slice at 


 


Equivalently, we integrate over the entire superspace with a delta function


 


For a single Grassman variable  we have  because


     for any   


In a similar way


  ,           

θ ·α = 0

∫ d4x Φ(x, θ, θ)
θθ

= ∫ d4x d2θ Φ(x, θ, θ)
θ=0

∫ d4x Φ(x, θ, θ)
θθ

= ∫ d4x d2θ d2θ δ(2)(θ) Φ(x, θ, θ)

η δ(η) = η

∫ dη δ(η) f(η) = f(0) f(η) = f0 + η f1

d2θ = 1
2 dθ2 dθ1 δ(2)(θ) = 2 δ(θ1) δ(θ2) = 2 θ1 θ2 = θ θ



F-type supersymmetric actions
It is instructive to write the same quantity in the chiral superspace coords


   ,         ,           

One can check that the superJacobian of the coord change has superdet equal to 1, so 


 


We can now verify manifest SUSY in two equivalent ways:


1. We know that  and also that  (we have 
checked SUSY invariance of the measure in the original coords, but it is valid in the new 
coords as well). As a result we can write


 


where we have used translational invariance of the Berezin integral in the 's

yμ = xμ + i θ σμ θ ϑ = θ ϑ = θ

∫ d4x d2θ d2θ δ(2)(θ) Φ(x, θ, θ) = ∫ d4y d2ϑ d2ϑ δ(2)(ϑ) Φ(y, ϑ)

Φ′ (y′ , ϑ′ ) = Φ(y, ϑ) d4y′ d2ϑ′ d2ϑ′ = d4y d2ϑ d2ϑ

∫ d4y′ d2ϑ′ d2ϑ′ δ(2)(ϑ′ ) Φ′ (y′ , ϑ′ ) = ∫ d4y d2ϑ d2ϑ δ(2)(ϑ − ξ) Φ(y, ϑ) = ∫ d4y d2ϑ d2ϑ δ(2)(ϑ) Φ(y, ϑ)

ϑ



F-type supersymmetric actions

2. Using   we have          


 


  while using  we have





      where the first term is zero because  is chiral.

−i Qα = ∂/∂ϑα

−i∫ d4y d2ϑ d2ϑ δ(2)(ϑ) Qα Φ(y, ϑ) = ∫ d4y d2ϑ d2ϑ ∂
∂ϑα [δ(2)(ϑ) Φ(y, ϑ)]

−iQ ·α = − ∂/∂ϑ ·α + 2 i (ϑ σμ) ·α ∂/∂yμ = D ·α + 2 i (ϑ σμ) ·α ∂/∂yμ

−i∫ d4y d2ϑ d2ϑ δ(2)(ϑ) Q ·α Φ(y, ϑ) = ∫ d4y d2ϑ d2ϑ δ(2)(ϑ) D ·αΦ + 2 i ∫ d4y d2ϑ d2ϑ ∂
∂yμ [δ(2)(ϑ) (ϑ σμ) ·α Φ]

Φ



F-type actions as D-type actions
• Observation:   and   because these quantities are 

totally antisymmetric in 3 spinor indices.


• If  is any generic superfield, then  is automatically chiral. Conversely, 
given a chiral superfield , it can always be written as  for some 
superfield 


• We suppose  and we use the identities  ,  to write


 


• With this trick we can convert F-type functionals onto D-type functionals 


• We get yet another argument for manifest SUSY of the integral 

D ·α D ·β D ·γ(…) = 0 Dα Dβ Dγ(…) = 0

𝒮(x, θ, θ) Φ = D D𝒮
D ·αΦ = 0 Φ = D D𝒮

𝒮
Φ = D D𝒮 δ(2)(θ) = θ θ DD (θθ) = − 4

∫ d4x d2θ d2θ δ2(θ) Φ = ∫ d4x d2θ d2θ (θθ) DD𝒮 = − 4 ∫ d4x d2θ d2θ 𝒮

∫ d4x d2θ d2θ δ2(θ) Φ



Supersymmetry and supergravity
Lecture 17



Gauge invariance in superspace
• Recall that a real superfield is a Grassmann-even superfield with no spinor indices and satisfying 

. Its expansion is











     


with the reality conditions


  ,      ,    ,       ,      ,  


• This superfield is also known as vector superfield because of the component field , which we want 
to interpret as a gauge field, 


• In the simplest case the gauge group is .  We need the superspace analog of 

V(x, θ, θ) = V(x, θ, θ)*
V(x, θ, θ) = C(x) + i θα χα(x) − i θ ·α χ ·α(x)

+ 1
2 i (θ θ) M(x)− 1

2 i (θ θ) M(x) − (θ σμ θ) vμ(x)

+ i (θ θ) θ ·α [λ ·α(x)+ 1
2 i (σμ) ·αβ ∂μχβ(x)] − i (θ θ) θα [λα(x)+ 1

2 i (σμ)α ·β ∂μχ
·β(x)]

+ 1
2 (θ θ) (θ θ) [D(x)+ 1

2 ∂μ ∂μC(x)]

C* = C (χα)* = χ ·α M* = M (vμ)* = vμ (λα)* = λ ·α D* = D

vμ
vμ ≡ Aμ

U(1) δgaugeAμ = ∂μΛ



Gauge invariance in superspace
The correct recipe is as follows:


• promote the gauge parameter to be a chiral superfield ,   


• define the gauge transformation of a  vector supermultiplet as


 


If we write , this gauge transformation is the same as

















Λ(x, θ, θ) D ·αΛ = 0
U(1)

V → V+ i
2 (Λ − Λ)

Λ(y, ϑ) = XΛ(y) + 2 ϑ ψΛ(y) + ϑ ϑ FΛ(y)
C → C − Im XΛ

χ → χ+ 1

2
ψΛ

M → M + FΛ

Aμ → Aμ + ∂μRe XΛ

λ → λ
D → D

• We get the expected shift of  by a derivative


•  is the the standard gauge parameter


•  and  are gauge invariant


• The other fields are shifted by a gauge transformation

Aμ

Re XΛ

λ D



Wess-Zumino gauge
Let us compare gauge variations and SUSY variations


(recall )


 ,    


  ,       


   ,                  


Since , ,  are arbitrary, we can always use a

gauge transformation to impose


“Wess-Zumino gauge”:    ,    ,    


• Notice that we still have an arbitrary  and gauge transf. for 


• These conditions are not preserved under a SUSY variation!

vμ ≡ Aμ

C → C − Im XΛ χ → χ+ 1

2
ψΛ

M → M + FΛ Aμ → Aμ + ∂μRe XΛ

λ → λ D → D
ImΛX ψΛ FΛ

C = 0 χ = 0 M = 0
Re XΛ Aμ

1 SUSY variations from Cyril’s notes

�C = i ⇠ �� i ⇠ � ,

��↵ = �↵M + (�µ ⇠)↵ (@µC + i vµ) ,

��↵̇ = ⇠↵̇M + (⇠ �µ)↵̇ (@µC � i vµ) ,

�M = 2 i ⇠ �µ @µ�+ 2 ⇠ � ,

�M = 2 i ⇠ �µ @µ�+ 2 ⇠ � ,

�vµ = i ⇠ �µ �+ i ⇠ �µ �+ ⇠ @µ�+ ⇠ @µ� ,

��↵ = i ⇠↵D + 2 (�µ⌫ ⇠)↵ @µv⌫ ,

��↵̇ = �i ⇠↵̇D � 2 (⇠ �µ⌫)↵̇ @µv⌫ ,

�D = �⇠ �µ @µ�+ ⇠ �µ @µ� (1.1)

2 Chiral superspace

A di↵erent coset representative:

exp(i#Q) exp(�i yµ Pµ) exp(i#Q) . (2.1)

Let us relate it to the usual one. The first step is trivial:

exp(i#Q) exp(�i yµ Pµ + i#Q) . (2.2)

Now we use BKH to get

exp(i#Q� i yµ Pµ + i#Q+ 1
2 [i#Q, i#Q]) = exp(i#Q� i yµ Pµ + i#Q� #�µ #Pµ) . (2.3)

The lesson is

✓ = # , ✓ = # , x = y � i#� # . (2.4)

We act from the right with exp(�i ⇠Q). We have immediately the motion

#0 = # , y0 = y , #
0
= #� ⇠ . (2.5)

We conclude that

D↵̇ = �
@

@#
↵̇ . (2.6)

Now we act with exp(�i ⇠Q). We have

exp(i#Q) exp(�i ⇠Q) = exp(sum + 1
2 [i#Q,�i ⇠Q])

= exp(sum� ⇠ �µ #Pµ) = exp(sum) exp(�⇠ �µ #Pµ) , (2.7)

while

exp(�i ⇠Q) exp(i#Q) = exp(sum) exp(+⇠ �µ #Pµ) , (2.8)

1



Wess-Zumino gauge

Even though it is non-supersymmetric, the WZ gauge can be very useful 
because it leads to a superfield  which is nilpotent:








V

V = − θ σμ θ Aμ(x) + i (θ θ) θ λ(x) − i (θ θ) θ λ(x)+ 1
2 (θ θ)(θ θ) D(x)

V V = − 1
2 (θ θ)(θ θ) Aμ Aμ

V V V ≡ 0



Compensating gauge transformation
Suppose we start in WZ gauge


,     ,    

If we perform a SUSY variation, we then have to perform a 
compensating gauge transformation to restore the WZ 
gauge:   where  has component fields





 


  


The variations for , ,  are those of an off-shell vector 
multiplet as discussed earlier

C = 0 χ = 0 M = 0

V → V+ i
2 (Λ − Λ) Λ

XΛ = 0

ψΛα = − i 2 Aμ (σμ ξ)α

FΛ = − 2 ξ λ
Aμ λ D

1 Uploaded 1 to 11

2 SUSY variations from Cyril’s notes

�C = i ⇠ �� i ⇠ � ,

��↵ = �↵M + (�µ ⇠)↵ (@µC + i vµ) ,

��↵̇ = ⇠↵̇M + (⇠ �µ)↵̇ (@µC � i vµ) ,

�M = 2 i ⇠ �µ @µ�+ 2 ⇠ � ,

�M = 2 i ⇠ �µ @µ�+ 2 ⇠ � ,

�vµ = i ⇠ �µ �+ i ⇠ �µ �+ ⇠ @µ�+ ⇠ @µ� ,

��↵ = i ⇠↵D + 2 (�µ⌫ ⇠)↵ @µv⌫ ,

��↵̇ = �i ⇠↵̇D � 2 (⇠ �µ⌫)↵̇ @µv⌫ ,

�D = �⇠ �µ @µ�+ ⇠ �µ @µ� (2.1)

If we vary starting from WZ gauge:

�C = 0 ,

��↵ = i (�µ ⇠)↵Aµ ,

��↵̇ = �i (⇠ �µ)↵̇Aµ ,

�M = 2 ⇠ � ,

�M = 2 ⇠ � ,

�Aµ = i ⇠ �µ �+ i ⇠ �µ � ,

��↵ = i ⇠↵D + (�µ⌫ ⇠)↵ Fµ⌫ ,

��↵̇ = �i ⇠↵̇D � (⇠ �µ⌫)↵̇ Fµ⌫ ,

�D = �⇠ �µ @µ�+ ⇠ �µ @µ� (2.2)

3 Chiral superspace

A di↵erent coset representative:

exp(i#Q) exp(�i yµ Pµ) exp(i#Q) . (3.1)

Let us relate it to the usual one. The first step is trivial:

exp(i#Q) exp(�i yµ Pµ + i#Q) . (3.2)

Now we use BKH to get

exp(i#Q� i yµ Pµ + i#Q+ 1
2 [i#Q, i#Q]) = exp(i#Q� i yµ Pµ + i#Q� #�µ #Pµ) . (3.3)

1

  ,   


    

C → C − Im XΛ χ → χ+ 1

2
ψΛ

M → M + FΛ Aμ → Aμ + ∂μRe XΛ



SUSY variations and gauge covariance
• The SUSY variations realized geometrically in superspace always anticommute to an 

ordinary derivative. For example, the SUSY variation of the gauge field is

 


and because of the  terms it satisfies

 


(even if we start with  we pick up terms from the iterated variation)


• When we use the WZ gauge and the compensating gauge transformation we obtain gauge-
covariant SUSY variations  which close to the gauge-cov. “completion” of translations. Eg:

     ,         


• The variation  is the one we encountered studying SUSY gauge theories before 
superspace. It was simply denoted 

δAμ = i ξ σμ λ + i ξ σμ λ + ξ ∂μχ + ξ ∂μχ
χ
δ1δ2Aμ − δ2δ1Aμ = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) ∂μAν

χ = 0

δ̃
δ̃Aμ = i ξ σμ λ + i ξ σμ λ δ̃1δ̃2Aμ − δ̃2δ̃1Aμ = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) Fμν

δ̃
δ



Field strength superfield
• Given a vector superfield  one defines


      and its complex conj.    


• Since  is bosonic and we act with an odd number of SUSY cov. der’s, the superfields ,  
are fermionic


• Recall . We see that  is chiral, and similarly  is antichiral


• They are also gauge invariant: under  we have


 


The second term goes away because  is antichiral. For the first term we first use


 


where we used that the anticommutator gives a , which commutes with 

V
𝒲α = − 1

4 DDDαV 𝒲 ·α = − 1
4 DDD ·αV

V 𝒲α 𝒲 ·α

D ·αD ·βD ·γ(…) = 0 𝒲α 𝒲 ·α

V → V + i/2 (Λ − Λ)
𝒲α → 𝒲α− i

8 DDDαΛ+ i
8 DDDαΛ

Φ
D ·βD

·βDαΛ = D ·β{D
·β, Dα}Λ − D ·βDαD

·βΛ = D ·β{D
·β, Dα}Λ = {D

·β, Dα}D ·βΛ

Pμ D ·β



Field strength superfield
• Since  is a chiral superfield it is convenient to expand it in the  coordinates:


 


• As usual we have 


• This can be computed in any gauge, for example the WZ gauge


• The expression for  in terms of the natural coords in antichiral superspace is 
similar


• Notice that both  and  are built with the same component fields. Indeed they 
obey a constraint in superspace:


  

𝒲α (y, ϑ)
𝒲α = − i λα(y) + [δα

β D(y) − i (σμν)α
β Fμν(y)] ϑβ + (ϑ ϑ) (σμ)α ·β ∂μλ

·β(y)

Fμν = ∂μAν − ∂νAμ

𝒲 ·α

𝒲α 𝒲 ·α

Dα𝒲α = D ·α𝒲 ·α



U(1) charged matter in superspace
• We have defined the  gauge transformation of the vector superfield as . 

What about a field that has a charge ? We set


 


• This gauge transformation is compatible with  being chiral


• An infinitesimal variation is . In component fields:


    ,               


 


• Recall . We see that  is identified with the parameter of a standard gauge 
transformation.  


• The standard parameter  is naturally combined with  when acting on the matter superfield 
. We have a natural action of the complexified gauge group  on matter chiral superfields.

U(1) V → V + i/2 (Λ − Λ)
q

Φ → e−iqΛ Φ
Φ

δgaugeΦ = − i q Λ Φ

δgaugeXΦ = − i q XΦ XΛ δgaugeψΦ = − i q (ψΦ XΛ + XΦ ψΛ)

δgaugeFΦ = − i q (FΦ XΛ + XΦ FΛ − ψX ψΛ)

δgaugeAμ = ∂μ(Re XΛ) Re XΛ

Re XΛ Im XΛ
Φ ℂ×



Gauge-covariant SUSY variations
• Recall that if we have a  vector superfield in WZ gauge and we act with a SUSY variation in 

superspace, we need a compensating gauge transformation to restore the WZ gauge


    ,          ,            


• The “non-covariant” SUSY variations of the matter field  are those defined by supertranslations. We 
combine them with the compensating gauge transformation  


                                                          


                


                                           


• The total variations are the gauge-cov. SUSY variations


   ,                    


 

U(1)

XΛ = 0 ψΛα = − i 2 Aμ (σμ ξ)α FΛ = − 2 ξ λ

Φ

δn.c.XΦ = 2 ξ ψΦ δcomp.gauge XΦ = 0

δn.c.ψΦα = i 2 (σμ ξ)α ∂μXΦ + 2 ξα FΦ δcomp.gauge ψΦα = − 2 q XΦ Aμ (σμ ξ)α

δn.c.FΦ = i 2 ξ σμ ∂μψΦ δcomp.gauge FΦ = 2 i q XΦ (ξ λ) − 2 q (ξ σμ ψX) Aμ

δ̃XΦ = 2 ξ ψΦ δ̃ψΦ = i 2 (σμ ξ)α (∂μ + i q Aμ)XΦ + 2 ξα FΦ

δ̃FΦ = i 2 ξ σμ (∂μ + i q Aμ) ψΦ + 2 i q XΦ (ξ λ)



Gauge-covariant SUSY variations
   ,                    


 


We have recovered the gauge-cov. SUSY variation of a charged chiral multiplet off-shell. Notice:

• ordinary derivatives are replaced by gauge cov. derivatives


• we find the extra term in the variation of  of the form 


Recall that the gauge cov. SUSY variations close on the gauge cov. version of .  In this 
example 


     etc.


NB: The gauge-cov variation was simply denoted  in the previous lectures, before we 
introduced superspace

δ̃XΦ = 2 ξ ψΦ δ̃ψΦ = i 2 (σμ ξ)α (∂μ + i q Aμ)XΦ + 2 ξα FΦ

δ̃FΦ = i 2 ξ σμ (∂μ + i q Aμ) ψΦ + 2 i q XΦ (ξ λ)

FΦ (ξ λ) XΦ

Pμ

δ̃1δ̃2XΦ − δ̃2δ̃1XΦ = − 2 i (ξ1 σν ξ2 − ξ2 σν ξ1) (∂μ + i q Aμ) XΦ

δ



Gauge transformations of  and Φ Φ e2qV

• Taking the complex conjugate of  we get


  


• If  were an ordinary field charged under a  gauge group,  and its complex conjugate would 
transform in opposite ways, because the gauge parameter would be real


• The gauge parameter is now a chiral superfield  and we know that if we demand  then 
 is a constant in superspace


• In order to get an object that transforms in the opposite way as  we have to combine  and the 
vector superfield . Recall: . Then


   


• If we take a function  of a complex variable  that in invariant under  
for a constant , then the quantity  is a superfield that is invariant under gauge 
transformations in superspace

Φ → e−iqΛ Φ
Φ → eiqΛ Φ

Φ U(1) Φ

D ·αΛ = 0 Λ = Λ
Λ

Φ Φ
V V → V+ i

2 (Λ − Λ)

Φ e2qV → eiqΛ (Φ e2qV)
K(z, z) z (z, z) → (e−iqΛ0 z, eiqΛ0z)

Λ0 K(Φ, Φ e2qV)



Non-Abelian gauge invariance
• We consider a non-Abelian gauge group ; we use  for adjoint indices


• Let us pick a collection of vector superfields  and let us choose a reference representation 
 of . The generators of  in this rep are denoted


    ,     


• We take them to be hermitian and normalized so that


 


• We can construct the matrix-valued superfield


  


• In a similar way we use a collection of chiral superfields  to define


       so that               

G a, b = 1,…, dim G
Va

R G G
(tR

a )i
j i, j = 1,…, dim R

trR(ta tb) = T(R) δab

VR := Va tR
a

Λa

ΛR := Λa tR
a Λ†

R = Λa tR
a



Non-Abelian matter chiral superfields

• We want to write the transformation law for a chiral superfield  in the 
representation  of the gauge group. The natural expression to consider is


      or more explicitly      


• The expression for an infinitesimal gauge transformation is simple


 


• We interpret  as the standard gauge parameter. It is naturally 
accompanied by  leading to an action of the complexified gauge 
group  on 

Φ
R

Φ′ = e−iΛR Φ Φ′ 

i = exp(−iΛa tR
a )i

j Φ j

δgaugeΦi = − i Λa (tR
a )i

j Φ j

Re XΛa

Im XΛa

Gℂ Φ



The transformation law for Φ†

• Taking the  of the matrix equation  we obtain


      or more  explicitly      


• As in the Abelian case,  and  do not transform in opposite (i.e. contragradient) 
ways, because the gauge parameter is not a real quantity


• It is natural to use a collection of vector superfields  with an adjoint index and to 
define their transformation law to be


       recall that   


• In this way we have


  


which does indeed transform in the opposite way as 

† Φ′ = e−iΛR Φ
Φ†′ = Φ† eiΛ†

R Φ′ i = Φj exp(i Λa tR
a )j

i

Φ Φ†

Va

e2 V′ R = e−i Λ†
R e2 VR ei ΛR VR = Va tR

a

(Φ† e2VR)′ = (Φ† e2VR) eiΛR

Φ



Transformation law for vector superfields

• We have picked a representation  and we have demanded


  


• This relation makes sense because it yields the same  irrespectively of 
the reference representation  we choose. This is because on the RHS we 
have to use the BCH formula, and we encounter the commutators  





which have the same functional form in any representation . In the end, 
 can be expressed as an infinite sum in which all terms are built with , 
, , 

R
e2 V′ R = e−i Λ†

R e2 VR ei ΛR

V′ 

a

R

[tR
a , tR

b ] = i fab
c tR

c

R
V′ 

a Va

Λa Λa fab
c



Transformation law for vector superfields

  


We can be more explicit if we work at linear order in  and . To compute  we need the 
following form of the BCH formula


   ,      


Using  we also have a similar formula with the roles of  and  
exchanged. These formulas are useful in extracting expressions that are exact in  and linear in .


Fun fact:  is closely related to the generating function for Bernoulli numbers


 

e2 V′ R = e−i Λ†
R e2 VR ei ΛR

Λa Λa V′ 
a

log(eA eB) = A + [∫
1

0
dt ψ(eadA et adB)]B ψ(x) :=

log x
1 − x−1

log(eB eA) = − log(e−A e−B) A B
A B

ψ(x)
u

eu − 1
=

u
2 (coth

u
2

− 1) =
∞

∑
n=0

Bn un

n!



Transformation law for vector superfields
One finds





To get some intuition, let us expand the RHS in powers of  (notice that the 
expansion of  near 0 starts with a  pole)


 


We can translate this matrix equation into a relation for ,


 


We get an expression in , , , , as promised. Notice that we do not have 
to raise/lower the adjoint indices in these equations.

2 δVR = i adVR
(ΛR + Λ†

R) + i adVR
coth adVR

(ΛR − Λ†
R)

V
coth x 1/x

2 δVR = i (ΛR − Λ†
R) + i [VR, ΛR + Λ†

R]+ i
3 [VR, [VR, ΛR − Λ†

R]] + 𝒪(V3
R)

δVa

2 δVa = i (Λa − Λa) − fbc
a Vb (Λc + Λc)− i

3 fbc
afde

c Vb Vd (Λe − Λe) + …

Va Λa Λa fab
c



Non-Abelian WZ gauge
 


The first term in the variation has the same structure as in the Abelian case. It implies 
that it is still possible to choose the WZ gauge for non-Abelian vector superfields:


,     ,     

In this gauge


  


and in particular . This means that we can compute the gauge variation 
away from WZ gauge exactly:


 

2 δVa = i (Λa − Λa) − fbc
a Vb (Λc + Λc)− i

3 fbc
afde

c Vb Vd (Λe − Λe) + …

Ca = 0 χa = 0 Ma = 0

Va = − θ σμ θ Aa
μ(x) + i (θ θ) θ λa(x) − i (θ θ) θ λa(x)+ 1

2 (θ θ)(θ θ) Da(x)

Va Vb Vc ≡ 0

2 δVa
from WZ gauge

= i (Λa − Λa) − fbc
a Vb (Λc + Λc)− i

3 fbc
afde

c Vb Vd (Λe − Λe)



Non-Abelian gauge-cov SUSY variations



With the above expression one can extract the SUSY variations of the component fields 
(assuming the basepoint is in WZ gauge). Comparing with the SUSY variations away from 
the basepoint, one can extract the compensating gauge transformation that restores the 
WZ gauge after the SUSY variation. Combining the two transformations gives the gauge-
covariant version of the SUSY variations we have seen earlier, 


  


                      





NB: we have reabsorbed the gauge coupling constant in .

2 δVa
from WZ gauge

= i (Λa − Λa) − fbc
a Vb (Λc + Λc)− i

3 fbc
afde

c Vb Vd (Λe − Λe)

δAa
μ = i ξ σμ λa + h . c .

δλa
α = (σμν ξ)α Fa

μν + i Da ξα Dμλa = ∂μλa − fbc
a Ab

μ λc

δDa = ξ σμ Dμλa + h . c .

Aa
μ



Non-Abelian field strength superfields
• In analogy with the Abelian case, let us define


         where   


• This definition makes sense because  does not depend on the representation . This 
follows from the fact that  can be computed with a version of the BCH formula,


  


• Since we only encounter Lie brackets, the result is independent of the representation . For 
example, in WZ gauge one has


  


which implies the formula


      WZ gauge:       

2 𝒲Rα = − 1
4 DDe−2VR Dαe2VR 𝒲Rα := 𝒲a

α tR
a

𝒲a
α R

e−2VR Dαe2VR

e−A deA = dA− 1
2! [A, dA]+ 1

3! [A, [A, dA]] + …

R

e−2VR Dαe2VR = 2 DαVR− 1
2 [2 VR,2 DαVR] = 2 (DαVa − i fbc

a Vb DαVc) tR
a

𝒲a
α = − 1

4 D D (DαVa − i fbc
a Vb DαVc)



Non-Abelian field strength superfields
      where   


• Just like its Abelian counterpart,  is automatically a chiral superfield because it is 
 of something


• In the Abelian case  is gauge-invariant. In the non-Abelian case one can show that 


   implies    


• Notice that the transformation law preserves the fact that  is chiral


• Using the BCH formula  one writes  in terms of , ,  
and verifies that it does not depend on the representation 


• For an infinitesimal transf.:  ,     

2 𝒲Rα = − 1
4 DDe−2VR Dαe2VR 𝒲Rα := 𝒲a

α tR
a

𝒲a
α

D D
𝒲α

e2 V′ R = e−i Λ†
R e2 VR ei ΛR 𝒲Rα′ = e−i ΛR 𝒲Rα ei ΛR

𝒲a
α

eA B e−A = eadAB 𝒲a
α′ 𝒲a

α Λa fbc
a

R
δ𝒲Rα = − i [ΛR, 𝒲Rα] δ𝒲a

α = fbc
a Λb 𝒲c

α



Non-Abelian field strength superfields
      where   


• The expression of  is easier in WZ gauge, where it is the natural non-Abelian generalization of 
the gauge-invariant  of the Abelian case


 WZ gauge:     


• We have introduced


   ,      


• Similar remarks apply to the hermitian conjugate  which is antichiral


• There is a non-Abelian analog of the constraint  but to write it down one needs 
a suitable gauge covariant generalization of , . We will not pursue this further

2 𝒲Rα = − 1
4 DDe−2VR Dαe2VR 𝒲Rα := 𝒲a

α tR
a

𝒲a
α

𝒲α

𝒲a
α = − i λa

α(y) + [δα
β Da(y) − i (σμν)α

β Fa
μν(y)] ϑβ + (ϑ ϑ) (σμ)α ·β Dμλa ·β(y)

Fa
μν = ∂μAa

ν − ∂νAa
μ − fbc

a Ab
μ Ac

ν Dμλa = ∂μλa − fbc
a Ab

μ λc

𝒲a·α

Dα 𝒲α = D ·α 𝒲 ·α

Dα D ·α



A remark on notation
• We are using the conventions of Wess-Bagger, up to a different normalization for  

and  (both in the Abelian and non-Abelian cases)


       and         


• This factor of 2 in needed in order to get the gauge-cov derivatives


   ,           


• Cfr exercise (7) of Chapter VII of Wess-Bagger. Notice that we choose to work with 
gauge-cov derivatives that do not contain explicitly the gauge coupling . If desired 
one can make the rescaling , , ,

V
𝒲

VWB = 2 Vhere (Wα)WB = 2 (𝒲α)here

Fa
μν = ∂μAa

ν − ∂νAa
μ − fbc

a Ab
μ Ac

ν Dμλa = ∂μλa − fbc
a Ab

μ λc

g
Aa

μ → g Aa
μ Fa

μν → g Fa
μν λa → g λa Da → g Da



Supersymmetry and supergravity
Lecture 18



Elementary and composite superfields
• Our goal is to use the superspace formalism to construct SUSY invariant actions for off-shell 

chiral multiplets and vector multiplets


• Our fundamental superfields are a collection of chiral fields  and of vector superfields 


• We have to construct composite superfields out of ,  and integrate them in superspace 
to get invariant actions


• Recall that we have two types of contributions:

‣ type-D terms: full superspace integrals of a real superfield


 


‣ type-F terms: half superspace integrals of a chiral superfield (plus h.c.)


Φi Va

Φi Va

∫ d4x d2θ d2θ Vcomposite

∫ d4x d2θ Φcomposite + h . c .



Elementary and composite superfields
Here some useful facts to keep in mind when constructing composite 
superfields:

• Any linear combination of superfields with constant coefficients is a 

superfield

• Any linear combination of chiral superfields with constant coefficients is 

a chiral superfield

• The product of two superfields is a superfield

• The product of two chiral superfields is a chiral superfield

• The product of two real superfields is real superfield


• If we act with ,  or  on a superfield we get a superfield∂/∂xμ Dα D ·α



Elementary and composite superfields

• As a first task, let us discuss how to write a renormalizable QFT of chiral 
superfields and vector superfields. We will generalize to non-
renormalizable models later


• Let us start considering a model with chiral superfields only and no 
gauge invariance



Canonical kinetic terms for chiral superfields

• We start with the chiral superfields  with expansions


  


• Their complex conjugates are antichiral: 


• The object  is a real superfield as soon as the constant matrix  is 
hermitian. Its component expansion can be worked out starting from the 
component expansion of . When the dust settles, one finds





                                      

D ·αΦi = 0

Φi = Xi(y) + 2 ϑ ψ i(y) + ϑ ϑ Fi(y)
DαΦı̄ = 0

hjı̄ Φı̄ Φ j h

Φi

Φı̄ Φ j = … + θθθθ [Fı̄ Fj+ 1
4 Xı̄ ∂μ∂μXj+ 1

4 ∂μ∂μXı̄ Xj− 1
2 ∂μXı̄ ∂μXj

+ i
2 ∂μψ ı̄ σμ ψ j− i

2 ψ ı̄ σμ ∂μψ j]



Canonical kinetic terms for chiral superfields




                                      


• We see that the real superfield  can be used to write down the canonical kinetic terms 
for the chiral multiplets.


• In order to have non-degenerate kinetic terms with the correct sign, the constant matrix  has to 
be positive definite. After a unitary field redefinition we can set  without loss of generality


• It is customary to use the constant tensor  to convert upper barred indices into lower unbarred 
indices, and write


 

Φı̄ Φ j = … + θθθθ [Fı̄ Fj+ 1
4 Xı̄ ∂μ∂μXj+ 1

4 ∂μ∂μXı̄ Xj− 1
2 ∂μXı̄ ∂μXj

+ i
2 ∂μψ ı̄ σμ ψ j− i

2 ψ ı̄ σμ ∂μψ j]
hjı̄ Φı̄ Φ j

h
hi𝚥 = δi𝚥

δjı̄

∫ d4x d2θ d2θ Φi Φi = ∫ d4x [Fi Fi − ∂μXi ∂μXi + i ∂μψi σμ ψ i]



Interaction terms for chiral superfields
• The monomials , , , etc. are all chiral 

superfields. In fact, any function that depends on  but not  or 
derivatives of  is again a chiral superfield. This can be seen formally 
by thinking of the arbitrary function as a series expansion in .


• We can thus consider an arbitrary holomorphic function 

• This is the superspace origin of the superpotential for chiral multiplets


• Once  is chosen, we can use it to build an F-type term


  

Φi Φ j Φi Φ j Φk Φi Φ j Φk Φℓ

Φi Φi
Φi

Φi

W(Φi)

W(Φi)

∫ d4x d2θ W(Φ) + h . c .



Interaction terms for chiral superfields

• If we want a renormalizable model,  should be a polynomial of degree at most 3


 


• Our task is to find the component expansion of the monomials  and . This is most 
conveniently done in the  coords:

















• A useful identity:  which follows from the Fierz id 

W
W = Ei Φi+ 1

2 mij Φi Φ j+ 1
3 gijk Φi Φ j Φk

Φi Φ j Φi Φ j Φk

(y, ϑ)
Φi Φ j = Xi(y) Xj(y) + 2 ϑ [ψ i(y) Xj(y) + ψ j(y) Xi(y)]

+ ϑ ϑ [Xi(y) Fj(y) + Xj(y) Fi(y) − ψ i(y) ψ j(y)]
Φi Φ j Φk = Xi(y) Xj(y) Xk(y) + 2 ϑ [ψ i(y) Xj(y) Xk(y) + ψ j(y) Xi(y) Xk(y) + ψk(y) Xi(y) Xj(y)]

+ ϑ ϑ [Fi(y) Xj(y) Xk(y) + Fj(y) Xi(y) Xk(y) + Fk(y) Xi(y) Xj(y)
− ψ i(y) ψ j(y) Xk(y) − ψ i(y) ψk(y) Xj(y) − ψ j(y) ψk(y) Xi(y)]

(ϑ χ1) (ϑ χ2) = − 1
2 (ϑ ϑ) (χ1 χ2) (χ1 χ2) χ3α + … = 0



Interaction terms for chiral superfields

• We collect the  components to arrive at





• We have used the fact that ,  are symmetric in their indices


• The same expression is written more suggestively as


   ,      ,   


• We have used superspace to derive the superpotential terms we have 
discussed in previous lectures

ϑϑ

∫ d4x d2θ W = ∫ d4x [(Ei + mij Xi + gijk Xj Xk) Fj− 1
2 (mij + 2 gijk Xk) ψ i ψ j]

mij gijk

∫ d4x d2θ W = ∫ d4x [Wi Fj− 1
2 Wij ψ i ψ j] Wi =

∂W
∂Xi

Wij =
∂2W

∂Xi ∂Xj



Maxwell term for Abelian vector superfields
• Next, let us use superspace to write a kinetic term for an Abelian vector superfield. Recall the gauge variation 

of  and the definition of the field strength superfield


   ,         


• For Abelian gauge fields  is chiral and gauge-invariant. Its expansion is


  


• The composite object  is a chiral superfield and a Lorentz scalar and is thus a good candidate to 
build an F-type term. Indeed, one finds


  


• The F-term built from  is the desired SUSY completion of the Maxwell term:


 


• NB: the  term is a total derivative. It does not affect the EOMs

V
V′ = V+ i

2 (Λ − Λ) 𝒲α = − 1
4 DDDαV

𝒲α

𝒲α = − i λα(y) + [δα
β D(y) − i (σμν)α

β Fμν(y)] ϑβ + (ϑ ϑ) (σμ)α ·β ∂μλ
·β(y)

𝒲α 𝒲α

𝒲α 𝒲α = … + ϑ ϑ [ − 2 i λ σμ ∂μλ− 1
2 Fμν Fμν + D2+ i

4 ϵμνρσ Fμν Fρσ]
𝒲α 𝒲α

∫ d4x d2θ 1
4 𝒲α 𝒲α + h . c . = ∫ d4x[ − i λ σμ ∂μλ− 1

4 Fμν Fμν+
1
2 D2]

ϵFF



FI term for Abelian vector superfield
• A vector superfield  is itself a real superfield. What happens if we try to build a D-type term out of 

it? Let us go back to the expression for  before WZ gauge fixing:











     


• The above expression gives us


 


• While  is not gauge invariant, the component field  is gauge invariant for a  gauge field

• This is the superspace origin of the Fayet-Iliopoulos term

V
V

V(x, θ, θ) = C(x) + i θα χα(x) − i θ ·α χ ·α(x)
+ 1

2 i (θ θ) M(x)− 1
2 i (θ θ) M(x) − (θ σμ θ) vμ(x)

+ i (θ θ) θ ·α [λ ·α(x)+ 1
2 i (σμ) ·αβ ∂μχβ(x)] − i (θ θ) θα [λα(x)+ 1

2 i (σμ)α ·β ∂μχ
·β(x)]

+ 1
2 (θ θ) (θ θ) [D(x)+ 1

2 ∂μ ∂μC(x)]

∫ d4x d2θ d2θ V = ∫ d4x [ 1
2 D+ 1

4 ∂μ∂μC] = 1
2 ∫ d4x D

V D(x) U(1)



Kinetic terms for matter charged under U(1)

• As a first example of a system with gauge interactions, let us consider 
an elementary chiral superfield of charge ,


      ,           ,      


• Since  is complex,  and  do not transform in opposite ways, but 
we know how to fix this:


 


• The monomial  is a gauge-invariant real superfield. It contains 
the appropriate gauge-cov version of the canonical kinetic term for 

q
V′ = V+ i

2 (Λ − Λ) Φ′ = e−i q Λ Φ Φ′ = ei q Λ Φ

Λ Φ Φ

(Φ e2qV)′ = eiqΛ (Φ e2qV)
Φ e2qV Φ

Φ



Kinetic terms for matter charged under U(1)

• Indeed, one can compute the  component of  by direct expansion (for 
convenience, in WZ gauge)











• This result does not look gauge covariant. After some partial integrations in -space, 
however, we can write





  ,          

θθθθ Φ e2qV Φ

Φ e2qV Φ = … + θ θ θ θ [F F + X ∂μ∂μX + i ∂μψ σμ ψ

+q Aμ(ψ σμ ψ + i X ∂μX − i ∂μX X) − q2 Aμ Aμ X X

−i 2 q (X λ ψ − X λ ψ) + q D X X]
x

∫ d4x d2θ d2θ Φ e2qV Φ = ∫ d4x[F F − DμX DμX + i Dμψ σμ ψ − i 2 q (X λ ψ − X λ ψ) + q D X X]
DμX = ∂μX + i q Aμ X Dμψ = ∂μX + i q Aμ ψ



Kinetic terms for matter charged under U(1)




  ,          


• We have found the desired gauge-cov. kinetic terms

• We have also automatically generated the interaction terms





• Those were first encountered without derivation in previous lectures

∫ d4x d2θ d2θ X e2qV X = ∫ d4x[F F − DμΦ DμΦ + i Dμψ σμ ψ − i 2 q (X λ ψ − X λ ψ) + q D X X]
DμX = ∂μX + i q Aμ X Dμψ = ∂μX + i q Aμ ψ

−i 2 q (X λ ψ − X λ ψ) + q D X X



Non-Abelian gauge theory

• We can now turn to non-Abelian renormalizable models. The elementary 
fields are a vector superfield  in the adjoint rep of the gauge group  
and a collection of chiral superfields in a representation . We take  to 
be a simple non-Abelian group. The generalization to several simple 
factors and  factors is straightforward


• The generators  are hermitian and satisfy


  ,        

Va G
R G

U(1)
tR
a

[tR
a , tR

b ] = i fab
c tR

c TrR (ta tb) = T(R) δab



Short reminder

• Reminder of gauge transformations: ,  ,   


   ,         ,    
  


• Non-Abelian field strength superfield


     ,         


• Its gauge transformation:   


 

VR = Va tR
a ΛR = Λa tR

a

e2 V′ R = e−i Λ†
R e2 VR ei ΛR Φ′ = e−iΛR Φ

(Φ† e2VR)′ = (Φ† e2VR) eiΛR

2 𝒲Rα = − 1
4 DDe−2VR Dαe2VR 𝒲Rα := 𝒲a

α tR
a

𝒲Rα′ = e−i ΛR 𝒲Rα ei ΛR



YM term and SUSY completion
  ,   ,   


The quantity  is a gauge-invariant chiral superfield. It is convenient to 
compute it in WZ gauge. In the end, one finds


 


Let  be any complex constant. We can construct the F-type term


   ,           


This F-term yields the Lagrangian


      

Φ′ = e−iΛR Φ (Φ† e2VR)′ = (Φ† e2VR) eiΛR 𝒲Rα′ = e−i ΛR 𝒲Rα ei ΛR

TrR (𝒲α 𝒲α)

TrR (𝒲α 𝒲α) = … + ϑ ϑ TrR [ − 2 i λ σμ Dμλ− 1
2 Fμν Fμν + D2+ i

4 ϵμνρσ Fμν Fρσ]
τ

∫ d4x d2θ
−i τ

16πT(R)
TrR (𝒲α 𝒲α) + h . c . τ =

θ
2π

+ i
4π
g2

ℒ =
1

T(R)
TrR [ −

1
4 g2

Fμν Fμν +
1

2 g2
D2 −

1
g2

i λ σμ Dμλ +
1

64π2
θ ϵμνρσ Fμν Fρσ]



YM term and SUSY completion
   ,           


      


Remarks:


• The trace  cancels the prefactor  and yields  . 

One can achieve canonical normalization with the rescaling ,  (and similarly for  
and ). The presentation with  as an overall prefactor is better suited for a non-perturbative analysis.


• The  term is a total derivative but has important non-perturbative effects related to instantons (cfr 
to  angle in QCD). The real parameter  is identified modulo 


• Each factor in the gauge group can have a different 

∫ d4x d2θ
−i τ

16πT(R)
TrR (𝒲α 𝒲α) + h . c . τ =

θ
2π

+ i
4π
g2

ℒ =
1

T(R)
TrR [ −

1
4 g2

Fμν Fμν +
1

2 g2
D2 −

1
g2

i λ σμ Dμλ +
1

64π2
θ ϵμνρσ Fμν Fρσ]

TrR (ta tb) = T(R) δab T(R) ℒ = − 1
4g2 δabFa

μν Fb
μν + …

Aa
μ → g Aa

μ Fa
μ → g Fa

μ λ
D τ

θϵFF
θ θ 2π

τ



Gauge-cov. kinetic terms for matter
  ,        ,        


• Gauge-cov kinetic term for matter fields


    ,        


• Since this is gauge invariant, it can be computed in WZ gauge for convenience. This D-
type action yields the gauge-cov. kinetic terms for matter fields, plus additional 
interactions


 


 


• NB: compared to previous lectures, we have reabsorbed  in the vector multiplet fields

Φ′ = e−iΛR Φ (Φ† e2VR)′ = (Φ† e2VR) eiΛR 𝒲Rα′ = e−i ΛR 𝒲Rα ei ΛR

∫ d4x d2θ d2θ Φ† e2qV Φ Φ† e2qV Φ = Φi (e2qVa tR
a )i

j Φ j

ℒkin = − DμXi DμXi + i Dμψi σμ ψ i + Fi Fi

ℒcoupl = i 2 [Xi (ta)i
j ψ j λa − λa ψi (ta)i

j Xj] + Da Xi (ta)i
j Xj

g



Superpotential interactions
• They work exactly as in the case without gauge symmetry





• For this term to be allowed, however,  must be gauge invariant


• NB: if  is invariant under a rigid transformation  where  
are real and constant, then  is automatically invariant under a complexified 
rigid transformation where the  are complex and constants. It is also 
invariant under a superspace gauge transformations , where 
now  is a full chiral superfield. This is because  contains  but no  or 
derivatives

∫ d4x d2θ W(Φ) + h . c .

W
W Φi′ = (e−iΛa

0 tR
a )i

j Φ j Λa
0

W
Λa

0
Φ′ = e−iΛR Φ

Λ W Φ Φ†



Supersymmetry and supergravity
Lecture 19



Non-renormalizable SUSY models

• The superspace formalism allows us to construct non-renormalizable 
SUSY models for chiral and vector superfields


• A non-renormalizable model should be regarded as a low-energy 
effective theory that is valid up to a cut-off scale


• A natural way to organize terms in a low-energy effective action is by 
derivative counting


• The leading-order terms are those with at most two derivatives 



Models with chiral superfields
• We have seen that a renormalizable SUSY model of chiral superfields has action





where  is at most cubic

• The most general SUSY model at 2-derivative level is given by


 


• It is specified by two functions:


‣ an arbitrary holomorphic superpotential 


‣ a real Kähler potential 

S = ∫ d4x d2θ d2θ δj ı̄Φı̄ Φ j + [∫ d4x d2θ d2θ δ(2)(θ) W(Φ) + h . c . ]
W

S = ∫ d4x d2θ d2θ K(Φ, Φ) + [∫ d4x d2θ d2θ δ(2)(θ) W(Φ) + h . c . ]

W(Φ)
K(Φ, Φ)



Superpotential terms
• We have verified explicitly that, when  is a cubic polynomial, the 

Lagrangian can be written as


    


• We use the notation


   ,         


• This relation remains valid when  is an arbitrary holomorphic 
function of 

W

∫ d4x d2θ d2θ δ(2)(θ) W = ∫ d4x [∂iW Fj− 1
2 ∂i∂jW ψ i ψ j]

∂i =
∂

∂Xi
∂ı̄ =

∂
∂Xı̄

W(Φ)
Φi



Kähler potential terms
The component field expansion of the quantity


  


can be found by working monomial by monomial. In the end, one finds an expression in 
terms of derivatives of :


∫ d4x d2θ d2θ K(Φ, Φ)

K(X, X)
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3 Exercises on non-Abelian gauge invariance

log(eA eB) = A+

 Z 1

0
dt (eadA et adB )

�
B ,  (x) :=

log x

1� x�1
(3.1)

We work at linear order in B:

log(eA eB) = A+  (eadA)B = A+
adA

1� e�adA
B = A+ adA/2 (1 + coth adA/2)B . (3.2)

Next, we use log(eB eA) = � log(e�A e�B) to get

log(eB eA) = A+

 Z 1

0
dt (e�adA e�t adB )

�
B ,  (x) :=

log x

1� x�1
(3.3)

At linear order in B,

log(eA eB) = A� adA/2 (1� coth adA/2)B . (3.4)

Our application is

e�i⇤
a
ta e2V

a ta ei⇤
a ta = e�i⇤

a
ta [2V a ta + adV ata (1 + coth adV ata)i⇤

btb]

= 2V a ta + adV ata (1 + coth adV ata)i⇤
btb

� adV ata (1� coth adV ata)(�i⇤
b
tb) (3.5)

which gives us

2 �V a ta = i adV ata (⇤
b tb + ⇤

b
tb) + i adV ata coth adV ata (⇤

b tb � ⇤
b
tb) (3.6)

We would like to modify the WB expressions with suitable factors of 2:

2W↵ = �
1
4 DDe�2V D↵e

2V , e2V
0
= e�i⇤†

e2V ei⇤ . (3.7)

In our conventions:

e�i⇤ e�2V ei⇤
†
D↵(e

�i⇤†
e2V ei⇤) = e�i⇤ e�2V D↵(e

2V ei⇤) =

= e�i⇤ (e�2V D↵e
2V ) ei⇤ + e�i⇤D↵e

i⇤ (3.8)

1



Kinetic terms and non-linear sigma-models

• The terms in the action that come from the Käher potential have a 
geometric interpretation


• Let us first consider a simpler situation: no SUSY, and a collection  
of real scalar fields


• A non-linear sigma model is a theory defined by an action of the form


 


• The quantity  is symmetric in its  indices. In order to have a 
well-behaved theory, it should be positive-definite

ϕM

S = − 1
2 ∫ d4x GMN(ϕ) ∂μϕM ∂μϕN

GMN(ϕ) MN



Kinetic terms and non-linear sigma-models

 


• Geometric interpretation:


‣ the scalar fields  are local coordinates on a target space 


‣ the target space is equipped with a Riemannian metric 


• The canonical kinetic terms are recovered if we choose  = flat space, we 
identify  with Cartesian coordinates, and we choose the metric . 
This is the only option if we want a renormalizable model


• In non-renormalizable models we can consider any target space  and any 
metric 

S = − 1
2 ∫ d4x GMN(ϕ) ∂μϕM ∂μϕN

ϕM ℳ
GMN

ℳ
ϕM GMN = δMN

ℳ
GMN



Kähler manifolds from SUSY
• The superspace object  gives among other terms


  


• We interpret the fields  as complex coordinates on a target space 

• On the physics side, we are free to perform any field redefinition of the 

form , as long as  is a holomorphic function (to 
preserve the fact that the ’s should be chiral superfields)


• On the maths side, we say that the manifold  can be covered by local 
complex coordinates with holomorphic transition functions between 
patches. This condition defines a complex manifold

K(Φ, Φ)
ℒ = − 1

2 ∂i∂j̄K ∂μX𝚥 ∂μXi + …

Xi ℳ

Xi′ = Xi′ (X) Xi′ (X)
X

ℳ



Kähler manifolds from SUSY
• The metric on  that we read off from the action is . Notice that it 

does not have  or  components. Such a metric is usually referred to as hermitian


• The metric  is written locally as the derivative of a real function. Such a 
metric is called a Kähler metric, and the function  is known as Kähler potential 
(hence the name for the same object in superspace)


• Lesson: SUSY constrains the allowed target spaces  and the metric on them. 
We must have a complex manifold endowed with a Kähler metric


• NB: the canonical kinetic terms of a renormalizable model correspond to the choice


 

ℳ Gi𝚥 = ∂i∂𝚥K
ij ı̄ 𝚥

Gi𝚥 = ∂i∂𝚥K
K

ℳ

K(Φ, Φ) = δi𝚥 Φi Φ 𝚥



Geometric interpretation of the fermions

• If the scalar fields  are complex coordinates on the target space , 
what is the interpretation of the fermions ?


• As anticipated by their index structure, they are interpreted as tangent 
vector fields on 


• This means that under a field redefinition (holom coord change) 
, the fermions transform as vectors


   ,            

Xi ℳ
ψ i

ℳ

Xi′ = Xi′ (X)

ψ i′ =
∂Xi′ 

∂Xj
ψ j ψ ı̄′ =

∂Xı̄′ 

∂X𝚥
ψ𝚥



Geometric interpretation of the fermions
• The fact that  transform as a vector under coord changes suggests that it is 

natural to replace  with a suitable covariant derivative, which is compatible 

with 


• We can construct such covariant derivative using the Levi-Civita connection of 
the Kähler metric


• It turns out that the only non-zero components of the Levi-Civita connection are


         and its c.c.  


• The covariant derivative of the fermions is


  

ψ i

∂μψ i

ψ i′ =
∂Xi′ 

∂Xj
ψ j

Γi
jk = Giℓ̄ ∂j Gkℓ̄ = Giℓ̄ ∂j∂k∂ℓ̄K

𝒟μψ i = ∂μψ i + Γi
jk∂μXj ψk



The full action with auxiliary fields
• The full Lagrangian, including the auxiliary fields, can be written by 

combining the terms that come from the Kähler potentials and those 
that come from the superpotential. This final result is still rather 
cumbersome:


• We have made progress in elucidating the geometric meaning of the 
action, but we still have Christoffel symbols and partial derivatives of W
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3 Exercises on non-Abelian gauge invariance

log(eA eB) = A+

 Z 1

0
dt (eadA et adB )

�
B ,  (x) :=

log x

1� x�1
(3.1)

We work at linear order in B:

log(eA eB) = A+  (eadA)B = A+
adA

1� e�adA
B = A+ adA/2 (1 + coth adA/2)B . (3.2)

Next, we use log(eB eA) = � log(e�A e�B) to get

log(eB eA) = A+

 Z 1

0
dt (e�adA e�t adB )

�
B ,  (x) :=

log x

1� x�1
(3.3)

At linear order in B,

log(eA eB) = A� adA/2 (1� coth adA/2)B . (3.4)

Our application is

e�i⇤
a
ta e2V

a ta ei⇤
a ta = e�i⇤

a
ta [2V a ta + adV ata (1 + coth adV ata)i⇤

btb]

= 2V a ta + adV ata (1 + coth adV ata)i⇤
btb

� adV ata (1� coth adV ata)(�i⇤
b
tb) (3.5)

which gives us

2 �V a ta = i adV ata (⇤
b tb + ⇤

b
tb) + i adV ata coth adV ata (⇤

b tb � ⇤
b
tb) (3.6)

1



Integrating out the auxiliary fields
• The EOM for the auxiliary fields is


     and its c.c.


• Since the metric is non-degenerate, this can be solved for the ’s. 
Plugging back in the action we get a form that is fully covariant


Gi𝚥 Fi− 1
2 Gk𝚥 Γk

hℓ ψh ψℓ + ∂ı̄W = 0

F
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3 Exercises on non-Abelian gauge invariance

log(eA eB) = A+

 Z 1

0
dt (eadA et adB )

�
B ,  (x) :=

log x

1� x�1
(3.1)

We work at linear order in B:

log(eA eB) = A+  (eadA)B = A+
adA

1� e�adA
B = A+ adA/2 (1 + coth adA/2)B . (3.2)

Next, we use log(eB eA) = � log(e�A e�B) to get

log(eB eA) = A+

 Z 1

0
dt (e�adA e�t adB )

�
B ,  (x) :=

log x

1� x�1
(3.3)

At linear order in B,

log(eA eB) = A� adA/2 (1� coth adA/2)B . (3.4)

Our application is

e�i⇤
a
ta e2V

a ta ei⇤
a ta = e�i⇤

a
ta [2V a ta + adV ata (1 + coth adV ata)i⇤

btb]

= 2V a ta + adV ata (1 + coth adV ata)i⇤
btb

� adV ata (1� coth adV ata)(�i⇤
b
tb) (3.5)

1



Integrating out the auxiliary fields

Comments:


• The quantities  are the components of the Riemann tensor computed from 


• The function  is a scalar field on the target space . Its first derivative is already 
a covariant derivative: . Its second derivative is not covariant, because 

 has a contravariant index. We know how to fix this using the 
Christoffel symbols:


 

Ri𝚥kℓ̄ Gi𝚥

W ℳ
∂iW = 𝒟iW

∂iW = 𝒟iW

𝒟i𝒟jW = ∂i∂jW − Γk
ij ∂kW
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Scalar potential and SUSY vacua

The scalar potential of this model is . As usual in rigid SUSY 
theories, it is non-negative. SUSY is unbroken iff , which is the same as


   

We can also see this from the SUSY variation of the fermions:


  ,       


In the vacuum the fermions are zero and , and thus the ’s are zero. 
Moreover the ’s are constant.
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Kähler transformations
• On the maths side, a Kahler transformation is any shift of the Kähler potential of the form


  


• Here  is any holomorphic function. This shift does not change the geometry, because the extra 
terms go away under 


• Superspace knows about this! Indeed, the superspace version of a Kahler transformation is 


  


• The new terms vanish under . To see this, we recall the -expansion of a chiral superfield:








The  component of  is a total derivative in -space.

K(X, X) → K(X, X) + f(X) + f(X)
f(X)

∂i∂𝚥

K(Φ, Φ) → K(Φ, Φ) + f(Φ) + f(Φ)

∫ d4x d2θ d2θ x

f(x, θ, θ) = Xf(x) + 2 θα ψf α(x) + (θ θ) Ff(x)

+ i θ σμ θ ∂μXf(x)+ 1
4 (θ θ) (θ θ) ∂μ ∂μXf−

i

2
(θ θ) ∂μψf(x) σμ θ

θθθθ f(Φ) + f(Φ) x



R-symmetry
• Our discussion of R-symmetry in renormalizable models with chiral superfields extends 

immediately to general models


• The Kähler potential  for renormalizable models is automatically 
invariant, but for a general Kähler potential we have to require 


• The problem is to ensure that the superpotential is compatible with R-symmetry. As we 
have seen, the condition is


 


• There is an easy superspace argument to see this. When we integrate  in superspace 
  cancels against  and we are left with . Recall . The volume 

form in a Berezin integral transforms in the opposite way as a normal bosonic integral 
under coordinate transformations. Hence . This is way we must have 

 to have an invariant action

K(Φ, Φ) = δi𝚥 Xi X 𝚥

R[K] = 0

R[W] = 2
W

d2θ δ(2)(θ) d2θ R[θ] = 1

R[dθ] = − 1
R[W] = 2



Remarks

• SUSY non-linear sigma-models exist in various dimensions and with 
various amounts of supersymmetry


• The larger the number of real supercharges, the more constrained is the 
geometry of the target space


• For example, with 4d  SUSY the target space is a specific kind 
of Kähler manifold, known as special-Kähler


• With 4d  SUSY the target space is so severely restricted that it 
can only be flat space with the flat metric

𝒩 = 2

𝒩 = 4



Supersymmetry and supergravity
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Non-renormalizable models with gauge fields

• We have seen that the standard YM term for a non-Abelian gauge field in superspace 
takes the form


   ,          


• The idea is to replace the complex constant  with an arbitrary chiral superfield 
constructed from the elementary chiral matter fields . As usual, we must use a 
holomorphic function in order to get a chiral composite

∫ d4x d2θ
−i τ

16πT(R)
TrR (𝒲α 𝒲α) + h . c . τ =

θ
2π

+ i
4π
g2

τ
Φ



Non-renormalizable models with gauge fields

• This leads us to the notion of holomorphic gauge coupling function 


  


• The indices  are adjoint indices.  is symmetric in 


• Recall that . For an infinitesimal gauge transformation


       or          


• The gauge coupling function must transform as dictated by its lower  
indices:


 

fab(Φ)

∫ d4x d2θ fab(Φ) 𝒲aα 𝒲b
α + h . c .

ab fab(Φ) ab
𝒲Rα′ = e−i ΛR 𝒲Rα ei ΛR

δ𝒲Rα = − i [ΛR, 𝒲Rα] δ𝒲a
α = fbc

a Λb 𝒲c
α

ab

δfab = − fca
d Λc fdb − fcb

d Λc fad



Non-renormalizable models with gauge fields

• We recover the canonical SYM term with the choice 


 


• In this case the equation  is true because both sides are 0 (The 
structure constants with their upper index lowered with the inverse of  are totally 
antisymmetric.)


• A simple generalization is for example


 


where  is gauge-invariant


• If  label  factors in the gauge group (instead of generators of a simple non-Abelian factor), 
then  can be any gauge invariant holomorphic function, possibly with off-diagonal entries 
that induce “kinetic mixing” among the  gauge fields

fab(Φ) =
−i τ

16πT(R)
TrR(tatb) =

−i τ
16π

δab

δfab = − fca
d Λc fdb − fcb

d Λc fad
TrR(tatb)

fab(Φ) = f(Φ) TrR(tatb)
f(Φ)

ab U(1)
fab(Φ)

U(1)



Some models with gauged chiral superfields

• In order to discuss the coupling between gauge fields and matter we have to 
understand the relation between the Kähler potential and gauge symmetries


• The general story is quite complicated so we start with a simpler scenario

• We fix the gauge transformation of the scalars to be the same standard linear 

variation that we have seen in renormalizable models


      or  using indices     


• “Linear” here means linear in . Recall that  is a chiral superfield


• We already know that the combination  has a nice gauge variation that 
contains  and not 


       

δgaugeΦ = − i Λa tR
a Φ δgaugeΦi = − i Λa (tR

a )i
j Φ j

X Λa

X† e2VR

Λa Λa

δgauge(Φ† e2VR) = i (Φ† e2VR) Λa tR
a



Some models with gauged chiral superfields

• Let us suppose that the Kähler potential of the model before introducing gauge 
fields in invariant under a rigid transformation  for real and 
constant params 


• With the replacement


   


we are sure that the quantity  is a gauge-invariant real superfield. It 
gives the desired gauge-covariant completion of the couplings that we have seen 
in the ungauged sigma-model


• Example: imagine that  is in the fundamental representation of  and 
consider . This is a non-renormalizable model of the 
kind we are considering

δΦi = − i Λa
0 (tR

a )i
j Φ j

Λa
0

K(Φ, Φ†) → K(Φ, Φ† e2qVR)
K(Φ, Φ† e2qVR)

Φ U(N)
K(Φ, Φ†) = Φ†Φ + α (Φ†Φ)2



Some models with gauged chiral superfields

To summarize: We take a collection of chiral superfields with linear gauge transformation 
 and we couple them to vector superfields. The kinetic terms for the 

vectors are inside


  


where  is symmetric, holomorphic, and transforms under gauge transformations 
according to its  adjoint indices. The Kähler and superpotential terms for matter fields are  


 


where we assume that  and  are invariant under the rigid variations 
.

δgaugeΦ = − i Λa tR
a Φ

∫ d4x d2θ fab(Φ) 𝒲aα 𝒲b
α + h . c .

fab(Φ)
ab

∫ d4x d2θ d2θ K(Φ, Φ† e2qVR) + [∫ d4x d2θ W(Φ) + h . c . ]
K(Φ, Φ†) W(Φ)

δΦ = − i Λa
0 tR

a Φ



Is this the most general story?
• The models in the previous slide are appealing because the gauge transformation of the 

matter superfields  is simple and we can write an action in superspace with small 
modifications from the ungauged case


• The general story is richer. We have seen that in a model with chiral superfields only, 
everything is covariant under arbitrary holomorphic field redefinitions . This 
covariance is lost if we fix only allow for linear gauge transformations


• Rather than fixing the gauge transformations and demanding that the Kähler potential is 
invariant, the natural thing to do is to pick a Kähler potential, find the isometries of the 
Kähler metric, and determine the gauge variations accordingly


• The superspace treatment of this most general case is considerably more involved than 
the models we have considered so far (see e.g. Chapter XXIV of Wess-Bagger)


• Let us just state a few facts about these general models, without derivations. We 
abandon superspace and work in ordinary space, in component fields

Φ

Φi′ = Φi′ (Φi)



Geometric point of view on gauging
• The isometries of a generic Riemannian manifolds can be described using Killing 

vector fields, which preserve the metric


• A generic Killing field on a complex manifold with local coordinates  has 
components  and their complex conjugates 


• On a Kähler manifold, the natural notion is that of a holomorphic Killing vector. A 
holomorphic Killing vector is a Killing vector that satisfies an extra condition: the 
components  must be a function of  but not .


• A holomorphic Killing vector generates a symmetry that does not mix the ’s and 
the ’s


    ,           

while at the same time preserving the Kähler metric

Xi

ki(X, X) kı̄(X, X)

ki X X
X

X
Xi → Xi + ki(X) Xı̄ → Xı̄ + kı̄(X)



Moment maps
• Let us take a holomorphic vector field  and let us demand that it is also a 

Killing vector. It turns out that this is equivalent to demanding that there exists 
locally a real function  such that


 


• The function  is called moment map. It is only determined up by a shift by a 
real constant


• Since the LHS is holomorphic, we have a constraint on :  


• Finding all local solutions to  for a given Kähler metric is 
equivalent to finding all local holomorphic Killing vectors (and is in general a 
hard task)

ki(X)

𝒫 = 𝒫(X, X)
ki(X) = − i Gi𝚥 ∂𝚥𝒫

𝒫

𝒫 ∂k̄(Gi𝚥 ∂𝚥𝒫) = 0

∂k̄(Gi𝚥 ∂𝚥𝒫) = 0



Non-linear gauge transformations
• Recall that the Lie bracket of two Killing vector fields is also a Killing 

vector field. This is why (infinitesimal) isometries form a Lie algebra.

• It turns out that the Lie bracket of two holomorphic Killing vector fields 

is also a holomorphic Killing vector field, so (infinitesimal) holom. isom’s 
also form a Lie algebra 


• To build a gauged model, we gauge a subalgebra  of . We 
use the label  for the holom. killing vectors  that generate . 
Thus  in interpreted as an adjoint index in the model. The moment 
maps are labeled 

𝔤hol.isom

𝔤gauge 𝔤hol.isom
a ki

a(X) 𝔤gauge
a

𝒫a(X, X)



Non-linear gauge transformations

• A vector field can be thought of as an infinitesimal displacement . In 
a sigma-model,  is a complex scalar field (we work in ordinary space, 
not superspace). We identify the displacement  induced by 
holomorphic Killing vector as a gauge transformation





• Here  is a real -dependent infinitesimal gauge parameter, carrying as 
usual an adjoint index 


• Notice that now  can be a non-linear function of the ’s

δXi

Xi

δXi

δgaugeXi = εa ki
a(X)

εa x
a

δgaugeXi X



A summary on the conditions on 𝒫
• The real functions  must solve , in such a way that 

 is indeed a holomorphic Killing vector


• At this stage we can freely shift  by a real constant 


• In order to “take seriously” the label  on  as an adjoint index of the 
gauge group, the following “equivariance relation” has to hold


  


• It turns out that the equivariance relation fixes the ambiguity of shifts by  if  
labels a generator of a simple non-Abelian factor in the gauge group. If instead  
labels a  factor, the ambiguity  remains


• This is the origin of FI terms in the geometry of Kähler manifolds

𝒫a(X, X) ∂k̄(Gi𝚥 ∂𝚥𝒫a) = 0
ki

a(X) = − i Gi𝚥 ∂𝚥𝒫a

𝒫a(X, X) pa

a 𝒫a(X, X)

(ki
a ∂i + kı̄

a ∂ı̄)𝒫b = fab
c 𝒫c

pa a
a

U(1) 𝒫a(X, X) → 𝒫a(X, X) + pa



The data of the most general gauged model
We can recap the data that defines the most general 2-derivative SUSY action for chiral 
multiplets and vector multiplets:


• The Kähler potential  (up to a Kähler transformation)

• The choice of subgroup of the holom. isom. group of the Kähler metric; this subgroup 

becomes the gauge group of the physical model. The real moment maps  
must be found for the generators of the gauge group, subject to the conditions 
summarized before


• The holomorphic superpotential , which must be invariant under the subgroup of 
the holom. isom. group that we are gauging


• The holomorphic gauge coupling function , which is symmetric in , transforms 
according to these adjoint indices, and is also such that  is positive definite 
(to get well-behaved kinetic terms)

K(X, X)

𝒫a(X, X)

W(X)

fab(X) ab
Re fab(X)



The scalar potential of the most general model

• The full action of the most general SUSY model if quite involved. It can be found for 
example in Chapter 14 of the “Supergravity” book by Freedman and van Proeyen. Let us 
just record here the scalar potential. After eliminating the auxiliary fields, one finds


 


• This is the sigma-model generalization of the result for renormalizable models. We still find a 
sum of “F-terms”  and “D-terms”  


• As usual SUSY is unbroken iff  in the vacuum. Both  and  are non-
degenerate (otherwise the model would have ill-behaved kinetic terms). We conclude that a 
SUSY vacuum must satisfy


   and      for all  and  


• Conversely, as soon as any of the  or  are non-zero in the vacuum, SUSY is 
spontaneously broken

V = Gi𝚥 ∂iW ∂𝚥W+ 1
2 (Ref )−1ab 𝒫a 𝒫b

Gi𝚥 ∂iW ∂𝚥W (Ref )−1ab 𝒫a 𝒫b

V = 0 Gi𝚥 (Ref )−1ab

∂iW = 0 𝒫a = 0 i a
∂iW 𝒫a


