
Supersymmetry and Supergravity — Problem Sheet 1

MMathPhys, University of Oxford, HT2021, Dr Federico Bonetti

These problems refer to material covered in Lectures 1 through 8. They are due by Saturday before

the class on week 3 by 11 am. Links to submit:

TA A. Boido: https://cloud.maths.ox.ac.uk/index.php/s/WP8kazik5pNZjmi

TA J. McGovern: https://cloud.maths.ox.ac.uk/index.php/s/oBKgZcaE9F4bw3z

1 Poincaré symmetry

1.a Let us parametrize an element of the Poincaré group as g(Λ, a), where Λµ
ν is a matrix in the

Lorentz group SO(1, 3) (i.e. Λµ
ν Λ

ρ
σ ηµρ = ηνσ) and aµ is a constant 4-vector. Let g(Λ, a) act

on the coordinates xµ from the left according to

g(Λ, a) · xµ = x′µ := Λµ
ν x

ν + aµ . (1)

Verify the composition law

g(Λ2, a2) g(Λ1, a1) = g(Λ2 Λ1,Λ2 a1 + a2) . (2)

This law shows that the Poincaré group is isomorphic to the semidirect product SO(1, 3)⋉R
4.

Use (2) to show

g(Λ, a)−1 = g(Λ−1,−Λ−1 a) . (3)

1.b Let U(Λ, a) be the unitary operator in the Hilbert space of the QFT that implements the

transformation g(Λ, a). We demand the composition law

U(Λ2, a2)U(Λ1, a1) = U(Λ2 Λ1,Λ2 a1 + a2) . (4)

For an infinitesimal transformation, the vector aµ is infinitesimal and Λµ
ν = δµν + λµν where

λµν = ηµρ λ
ρ
ν is antisymmetric in µν. Let us write the unitary operator associated to such an

infinitesimal transformation as

U(I+ λ, a) = I+ i
2 λ

µν Jµν − i aµ Pµ , (5)

where Jµν , Pµ are Hermitian operators. Use the composition law (5) to derive the commutation

relations of the Poincaré generators:

[Jµν , Jρσ] = i ηµρ Jνσ − i ηνρ Jµσ − i ηµσ Jνρ + i ηνσ Jµρ ,

[Jµν , Pρ] = i ηµρ Pν − i ηνρ Pµ , [Pµ, Pν ] = 0 . (6)

Hint: Recall (3) and compute U(Λ2, a2)U(Λ1, a1)U(Λ2, a2)
−1. Specialize to infinitesimal (Λ1, a1).

Finally, specialize to infinitesimal (Λ2, a2).
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1.c By definition, we say that a local operator O(x) transforms as a scalar under the action of the

Poincaré group if

O′(x′) = O(x) where O′(x) := U(Λ, a)−1O(x)U(Λ, a) and x′µ := Λµ
ν x

ν + aµ . (7)

Specialize this definition to an infinitesimal transformation and compute the commutators [Pµ,O(x)]

and [Jµν ,O(x)]. Write them in the form

[Pµ,O(x)] = −PµO(x) , [Jµν ,O(x)] = −JµνO(x) , (8)

and identify the differential operators Pµ, Jµν . Verify that these differential operators satisfy

the same commutation relations (6) as the abstract generators of the Poincaré algebra.

1.d Suppose O(x) is a scalar operator satisfying (7). Define Oµ = ηµν∂νO. Verify the transformation

law

U(Λ, a)−1Oµ(x′)U(Λ, a) = Λµ
ν O

ν(x) where x′µ := Λµ
ν x

ν + aµ . (9)

1.e Let us consider a local operator that carries an index OA(x) and transforms as a

U(Λ, a)−1OA(x′)U(Λ, a) =M(Λ)AB OB(x) where x′µ := Λµ
ν x

ν + aµ . (10)

Show that consistency with (4) requires the matrices M(Λ)AB to form a representation of the

Lorentz group, i.e.

M(Λ1)
A
BM(Λ2)

B
C =M(Λ1 Λ2)

A
C . (11)

1.f Let us write

M(I+ λ)AB = δAB + i
2 λ

µν (Sµν)
A
B (12)

for an infinitesimal transformation, where (Sµν)
A
B are the Lorentz generators in the represen-

tation with indices A, B. Use (10) to compute the commutators [Pµ,O
A(x)] and [Jµν ,O

A(x)].

2 Clifford algebra and Lorentz generators

2.a Use the abstract Clifford algebra anticommutation relation {γµ, γν} = 2 ηµν I to verify that the

objects

Sµν = − i
4 (γµ γν − γν γµ) (13)

satisfy the same commutation relations as the Jµν ’s in (6).

2.b Verify that the gamma matrices are invariant tensors of the Lorentz algebra, i.e.

0 = [Sµν , γ
ρ] + (Svec

µν )
ρ
σ γ

σ , (14)

where the generators in the vector representations are defined by the relation λρσ = i
2 λ

µν (Svec
µν )

ρ
σ.
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3 The homomorphism SL(2,C) → SO(1, 3)

Our conventions for the σ matrices are

σ0 =

(

−1 0

0 −1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

, (15)

as well as

σ0 = σ0 , σ1 = −σ1 , σ2 = −σ2 , σ3 = −σ3 . (16)

Notice that all these σ matrices are Hermitian. The index structure on σµ is (σµ)αβ̇ , and the index

structure on σµ is (σµ)α̇β . The epsilon symbols ǫαβ , ǫ
αβ , ǫα̇β̇ , ǫ

α̇β̇ satisfy ǫ12 = −1, ǫ12 = +1, both for

dotted and undotted indices. We also define

σµν = 1
4 (σ

µ σν − σν σµ) , σµν = 1
4 (σ

µ σν − σν σµ) . (17)

Here are some useful identities:

Tr(σµ σν) = −2 ηµν , (σµ)αβ̇ (σµ)
γ̇δ = −2 δδα δ

γ̇

β̇
, (σµ)α̇β = ǫα̇γ̇ ǫβδ (σµ)δγ̇ , (18)

σµ σν + σν σµ = −2 ηµν I2 , σµ σν + σν σµ = −2 ηµν I2 (19)

Tr(σµν σρσ) = −1
2 (η

µρ ηνσ − ηµσ ηνρ)− i
2 ǫ

µνρσ , ǫ0123 = +1 . (20)

3.a We consider the following linear map that sends vectors xµ in Minkowski space to Hermitian

2× 2 matrices,

xµ 7→ σµ x
µ . (21)

Determine the inverse of this map, i.e. solve the equation M = σµx
µ for xµ.

3.b The group SL(2,C) acts on the vector space of Hermitian 2× 2 matrices via

M ′ = AM A† or equiv. M ′
αβ̇

= Aα
γ Mγδ̇ Aβ̇

δ̇ where A ∈ SL(2,C) . (22)

In our notation Aα̇
β̇ are the entries of the complex conjugate of the matrix A with entries Aα

β .

Write M = σµ x
µ, M ′ = σµ x

′µ and compute x′µ in terms of xµ and A. Write the result in the

form x′µ = Λ(A)µν x
ν and identify the expression for the matrix Λ(A)µν in terms of A.

3.c Use the expression Λ(A)µν to verify by direct computation that the following composition law

holds,

Λ(A1)
µ
ν Λ(A2)

ν
ρ = Λ(A1A2)

µ
ρ , (23)

and that Λ(A)µν is a Lorentz transformation, i.e.

Λ(A)µν Λ(A)
ρ
σ ηµρ = ηνσ . (24)

These relations show that the map SL(2,C) ∋ A 7→ Λ(A)µν ∈ SO(1, 3) is a group homomor-

phism.
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3.d Compute the kernel of the homomorphism, i.e. the set of matrices A for which Λ(A)µν = δµν .

3.e Let us consider a matrix A ∈ SL(2,C) that is infinitesimally close to the identity, A = I + δA.

This matrix is mapped to an infinitesimal Lorentz transformation of the form Λ(A)µν = δµν+λ
µ
ν .

Find the explicit expression for λµν in terms of δA and verify λµν = λ[µν]. The map δA 7→ λµν

is a Lie algebra homomorphism from sl(2,C) to so(1, 3).

3.f Show that the Lie algebra homomorphism δA 7→ λµν can be inverted (and thus is actually an

isomorphism sl(2,C) ∼= so(1, 3)) by finding the explicit expression of δA in terms of λµν . Hint:

any complex traceless 2 × 2 matrix Y can be written uniquely as Y = yµν σµν for suitable real

coefficients yµν = y[µν].

4 Spinor bilinears

All 2-component spinors we consider are anticommuting, i.e. Grassmann-odd. Our raising/lowering

conventions are ψα = ǫαβ ψ
β , ψα = ǫαβ ψβ. When a pair of contracted α indices is implicit, it is

understood as α
α. The raising/lowering conventions for dotted indices are the same, but when a pair

of contracted α̇ indices is implicit, it is understood as α̇
α̇. Complex conjugation interchanges the order

of a product: for any objects a, b, we have (ab)∗ = b∗ a∗. The complex conjugate of spinors satisfies

(ψα)
∗ = ψα̇. The identities recorded in problem 3 can be useful.

4.a Verify the following “flip identities” for spinor bilinears:

χψ = ψ χ , χ σµ ψ = −ψ σµ χ , χ σµ σν ψ = ψ σν σµ χ . (25)

4.b Verify the following reality properties of spinor bilinears:

(χψ)∗ = ψ χ , (χσµ ψ)∗ = ψ σµ χ , (χσµ σν ψ)∗ = ψ σν σµ χ . (26)

4.c Verify the following “Fierz identities”:

(χ1 χ2)χ3α + (χ1 χ3)χ2α + (χ2 χ3)χ1α = 0 , (ψ φ)χα̇ = −1
2 (φσ

µ χ) (ψ σµ)α̇ , (27)

(θ σµ θ) (θ σν θ) = −1
2 η

µν (θ θ) (θ θ) . (28)
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