Supersymmetry and Supergravity — Problem Sheet 1
MMathPhys, University of Oxford, HT2021, Dr Federico Bonetti

These problems refer to material covered in Lectures 1 through 8. They are due by Saturday before

the class on week 3 by 11 am. Links to submit:
TA A. Boido: https://cloud.maths.ox.ac.uk/index.php/s/WP8kazikbpNZjmi
TA J. McGovern: https://cloud.maths.ox.ac.uk/index.php/s/oBKgZcaE9F4bw3z
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l.a

1.b

Poincaré symmetry

Let us parametrize an element of the Poincaré group as g(A,a), where A*, is a matrix in the
Lorentz group SO(1,3) (i.e. A*, AP, 1., = M) and a* is a constant 4-vector. Let g(A,a) act

on the coordinates z* from the left according to
g(Aa) -zt = 2" = AN, 2" +a . (1)
Verify the composition law
g(Ag,a2) g(A1,a1) = g(A2 Ay, Agar + ag) . (2)

This law shows that the Poincaré group is isomorphic to the semidirect product SO(1,3) x R4
Use (2)) to show
g(Aa a)_l = g(A_1> —A7! CL) . (3)

Let U(A,a) be the unitary operator in the Hilbert space of the QFT that implements the

transformation g(A,a). We demand the composition law
U(Ag,ag) U(Al,al) :U(AQAl,A2a1+(Z2) . (4)

For an infinitesimal transformation, the vector a* is infinitesimal and A, = 6*, + \¥, where
A = Nup AP, is antisymmetric in pv. Let us write the unitary operator associated to such an

infinitesimal transformation as
Ul+Aa)=1+LMJ,, —id" P, , (5)

where J,,,, P, are Hermitian operators. Use the composition law (&) to derive the commutation

relations of the Poincaré generators:

(s o] = iMpp Jvo — iMvp Juo — iue Jup + iMve Jup
[Juuapp]:inuppu_inuppu> [PH,P,,]:O. (6)

Hint: Recall 8] and compute U (A2, a2) U(A1,a1) U(Az,az)~t. Specialize to infinitesimal (A1, a1).

Finally, specialize to infinitesimal (A9, as).



1.c By definition, we say that a local operator O(z) transforms as a scalar under the action of the

Poincaré group if
O'(z) = O(x) where O'(z):=U(A,a) ' O@)U(A,a) and 2" := A", 2" +a" . (7)

Specialize this definition to an infinitesimal transformation and compute the commutators [P, O(x)]
and [J,,, O(x)]. Write them in the form

[Py, O(@)] = =P,O(x) ,  [Juw, O(@)] = =30 O(2) (8)

and identify the differential operators P, J,,. Verify that these differential operators satisfy

the same commutation relations (f]) as the abstract generators of the Poincaré algebra.

1.d Suppose O(z) is a scalar operator satisfying (7). Define O* = n**9,O. Verify the transformation

law

U(A,a) PO (2 )U(A, a) = A*, O¥(x) where " := A", 2" + ' . 9)
l.e Let us consider a local operator that carries an index O(z) and transforms as a
UA,a) L OAE)U(A, a) = M(A)A3OB(x) where a'*:= AH, 2" + a* . (10)

Show that consistency with (@) requires the matrices M (A)“5 to form a representation of the

Lorentz group, i.e.

M (A5 M(A2)Be = M(Ay Ay) e . (11)

1.f Let us write
M(I+ M5 =64+ 2 M (S,,)"5 (12)

for an infinitesimal transformation, where (SW)AB are the Lorentz generators in the represen-
tation with indices A, B. Use (I0) to compute the commutators [P, O4(x)] and [J,,,, O4(x)].

2 Clifford algebra and Lorentz generators

2.a Use the abstract Clifford algebra anticommutation relation {y*,~v"} = 2n*" 1 to verify that the
objects

S,u,u - _i (7,11, Yo — Y '.Y,u) (13)

satisfy the same commutation relations as the .J,,,’s in (@l).
2.b Verify that the gamma matrices are invariant tensors of the Lorentz algebra, i.e.

0 =[S V1 + (5 077 (14)

where the generators in the vector representations are defined by the relation \*, = % M3 ) o



3 The homomorphism SL(2,C) — SO(1,3)

Our conventions for the o matrices are
50— -1 0 7 ol 01 7 o2 0 —1 ’ o3 = 1 0 ’ (15)
0o -1 10 7 0 0 -1

g =0, g =-0 , g°=—0", 7’ =—0". (16)

as well as

Notice that all these o matrices are Hermitian. The index structure on o# is (o#) 4> and the index
structure on * is (7*)%. The epsilon symbols €afs B, €4 € satisfy €19 = —1, €'2 = +1, both for
dotted and undotted indices. We also define

O'V’V:%(O—MEV—O'VEM) ’ EMV:%(EHJV_EVUN) . (17)

Here are some useful identities:

Tr(o#a") = =20, (0"),5 (@) = —24) 5g , (@) =T (o) (18)
M ol Tt =2y, Tlo’ 40" ot = 20", (19)
Te(o™ o™7) = —§ (0" — ' ?) = F e OB =y (20)

3.a We consider the following linear map that sends vectors z# in Minkowski space to Hermitian
2 X 2 matrices,
' = oyt (21)

Determine the inverse of this map, i.e. solve the equation M = o, 2" for z*.

3.b The group SL(2,C) acts on the vector space of Hermitian 2 x 2 matrices via
M' =AM At or equiv. M:XB =AM ; ZBS where AeSL(2,C). (22)

In our notation ng are the entries of the complex conjugate of the matrix A with entries A,”.
Write M = o, a#, M' = 0, 2" and compute z'* in terms of z* and A. Write the result in the

form 2/* = A(A)*, z¥ and identify the expression for the matrix A(A)#, in terms of A.

3.c Use the expression A(A)*, to verify by direct computation that the following composition law
holds,
A(A)F, A(A2)" ), = A(A1A2)H, (23)

and that A(A)*, is a Lorentz transformation, i.e.
A(A)", A(A)’, Nup = Nvo - (24)

These relations show that the map SL(2,C) 5 A — A(A)*, € SO(1,3) is a group homomor-
phism.



3.d Compute the kernel of the homomorphism, i.e. the set of matrices A for which A(A)*, = §*,.

3.e Let us consider a matrix A € SL(2,C) that is infinitesimally close to the identity, A = I + J A.
This matrix is mapped to an infinitesimal Lorentz transformation of the form A(A)*, = 6*,+AH,.
Find the explicit expression for A\, in terms of §A and verify A, = A, The map 64 — M,
is a Lie algebra homomorphism from sl(2,C) to so(1, 3).

3.f Show that the Lie algebra homomorphism 0 A +— A\, can be inverted (and thus is actually an
isomorphism sl(2,C) = so(1,3)) by finding the explicit expression of §A in terms of A\*,. Hint:
any complex traceless 2 x 2 matrix ¥ can be written uniquely as ¥ = y*” 0, for suitable real

coefficients yH* =yl

4  Spinor bilinears

All 2-component spinors we consider are anticommuting, i.e. Grassmann-odd. Our raising/lowering
conventions are ¥, = €up B, e = P 3. When a pair of contracted « indices is implicit, it is
understood as %,. The raising/lowering conventions for dotted indices are the same, but when a pair
of contracted ¢ indices is implicit, it is understood as 4%. Complex conjugation interchanges the order
of a product: for any objects a, b, we have (ab)* = b*a*. The complex conjugate of spinors satisfies

(1a)* = 4. The identities recorded in problem 3 can be useful.

4.a Verify the following “flip identities” for spinor bilinears:
Xv=1vx, xo'p=-93'x, xo'd"p=yo""x. (25)
4.b Verify the following reality properties of spinor bilinears:
x¥)" =¢x. (o) =vo'x, (xo"T¥)" =v7s'X. (26)
4.c Verify the following “Fierz identities”:

(x1x2) X3a + (X1 X3) X2a + (X2 X3) X1a = 0, (V&)X = —3 (00" X) (You)a , (27)

(00" 0) (00" 0) = —Ln™ (00) (90) . (28)



